Add "cache" parameter to "-drive" (Laurent Vivier).
[qemu/mini2440.git] / hw / slavio_intctl.c
bloba0aa53c21b8849ead53032753908344d5e51679c
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "console.h"
28 //#define DEBUG_IRQ_COUNT
29 //#define DEBUG_IRQ
31 #ifdef DEBUG_IRQ
32 #define DPRINTF(fmt, args...) \
33 do { printf("IRQ: " fmt , ##args); } while (0)
34 #else
35 #define DPRINTF(fmt, args...)
36 #endif
39 * Registers of interrupt controller in sun4m.
41 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 * There is a system master controller and one for each cpu.
49 #define MAX_CPUS 16
50 #define MAX_PILS 16
52 typedef struct SLAVIO_INTCTLState {
53 uint32_t intreg_pending[MAX_CPUS];
54 uint32_t intregm_pending;
55 uint32_t intregm_disabled;
56 uint32_t target_cpu;
57 #ifdef DEBUG_IRQ_COUNT
58 uint64_t irq_count[32];
59 #endif
60 qemu_irq *cpu_irqs[MAX_CPUS];
61 const uint32_t *intbit_to_level;
62 uint32_t cputimer_bit;
63 uint32_t pil_out[MAX_CPUS];
64 } SLAVIO_INTCTLState;
66 #define INTCTL_MAXADDR 0xf
67 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
68 #define INTCTLM_MAXADDR 0x13
69 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
70 #define INTCTLM_MASK 0x1f
71 #define MASTER_IRQ_MASK ~0x4fb2007f
72 #define MASTER_DISABLE 0x80000000
73 #define CPU_IRQ_MASK 0xfffe0000
74 #define CPU_IRQ_INT15_IN 0x0004000
75 #define CPU_IRQ_INT15_MASK 0x80000000
77 static void slavio_check_interrupts(void *opaque);
79 // per-cpu interrupt controller
80 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
82 SLAVIO_INTCTLState *s = opaque;
83 uint32_t saddr, ret;
84 int cpu;
86 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
87 saddr = (addr & INTCTL_MAXADDR) >> 2;
88 switch (saddr) {
89 case 0:
90 ret = s->intreg_pending[cpu];
91 break;
92 default:
93 ret = 0;
94 break;
96 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
98 return ret;
101 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
103 SLAVIO_INTCTLState *s = opaque;
104 uint32_t saddr;
105 int cpu;
107 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
108 saddr = (addr & INTCTL_MAXADDR) >> 2;
109 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
110 switch (saddr) {
111 case 1: // clear pending softints
112 if (val & CPU_IRQ_INT15_IN)
113 val |= CPU_IRQ_INT15_MASK;
114 val &= CPU_IRQ_MASK;
115 s->intreg_pending[cpu] &= ~val;
116 slavio_check_interrupts(s);
117 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
118 break;
119 case 2: // set softint
120 val &= CPU_IRQ_MASK;
121 s->intreg_pending[cpu] |= val;
122 slavio_check_interrupts(s);
123 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
124 break;
125 default:
126 break;
130 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
131 slavio_intctl_mem_readl,
132 slavio_intctl_mem_readl,
133 slavio_intctl_mem_readl,
136 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
137 slavio_intctl_mem_writel,
138 slavio_intctl_mem_writel,
139 slavio_intctl_mem_writel,
142 // master system interrupt controller
143 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
145 SLAVIO_INTCTLState *s = opaque;
146 uint32_t saddr, ret;
148 saddr = (addr & INTCTLM_MAXADDR) >> 2;
149 switch (saddr) {
150 case 0:
151 ret = s->intregm_pending & ~MASTER_DISABLE;
152 break;
153 case 1:
154 ret = s->intregm_disabled;
155 break;
156 case 4:
157 ret = s->target_cpu;
158 break;
159 default:
160 ret = 0;
161 break;
163 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
165 return ret;
168 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
170 SLAVIO_INTCTLState *s = opaque;
171 uint32_t saddr;
173 saddr = (addr & INTCTLM_MASK) >> 2;
174 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
175 switch (saddr) {
176 case 2: // clear (enable)
177 // Force clear unused bits
178 val &= MASTER_IRQ_MASK;
179 s->intregm_disabled &= ~val;
180 DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
181 slavio_check_interrupts(s);
182 break;
183 case 3: // set (disable, clear pending)
184 // Force clear unused bits
185 val &= MASTER_IRQ_MASK;
186 s->intregm_disabled |= val;
187 s->intregm_pending &= ~val;
188 slavio_check_interrupts(s);
189 DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
190 break;
191 case 4:
192 s->target_cpu = val & (MAX_CPUS - 1);
193 slavio_check_interrupts(s);
194 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
195 break;
196 default:
197 break;
201 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
202 slavio_intctlm_mem_readl,
203 slavio_intctlm_mem_readl,
204 slavio_intctlm_mem_readl,
207 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
208 slavio_intctlm_mem_writel,
209 slavio_intctlm_mem_writel,
210 slavio_intctlm_mem_writel,
213 void slavio_pic_info(void *opaque)
215 SLAVIO_INTCTLState *s = opaque;
216 int i;
218 for (i = 0; i < MAX_CPUS; i++) {
219 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
221 term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
224 void slavio_irq_info(void *opaque)
226 #ifndef DEBUG_IRQ_COUNT
227 term_printf("irq statistic code not compiled.\n");
228 #else
229 SLAVIO_INTCTLState *s = opaque;
230 int i;
231 int64_t count;
233 term_printf("IRQ statistics:\n");
234 for (i = 0; i < 32; i++) {
235 count = s->irq_count[i];
236 if (count > 0)
237 term_printf("%2d: %" PRId64 "\n", i, count);
239 #endif
242 static void slavio_check_interrupts(void *opaque)
244 SLAVIO_INTCTLState *s = opaque;
245 uint32_t pending = s->intregm_pending, pil_pending;
246 unsigned int i, j;
248 pending &= ~s->intregm_disabled;
250 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
251 for (i = 0; i < MAX_CPUS; i++) {
252 pil_pending = 0;
253 if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
254 (i == s->target_cpu)) {
255 for (j = 0; j < 32; j++) {
256 if (pending & (1 << j))
257 pil_pending |= 1 << s->intbit_to_level[j];
260 pil_pending |= (s->intreg_pending[i] & CPU_IRQ_MASK) >> 16;
262 for (j = 0; j < MAX_PILS; j++) {
263 if (pil_pending & (1 << j)) {
264 if (!(s->pil_out[i] & (1 << j)))
265 qemu_irq_raise(s->cpu_irqs[i][j]);
266 } else {
267 if (s->pil_out[i] & (1 << j))
268 qemu_irq_lower(s->cpu_irqs[i][j]);
271 s->pil_out[i] = pil_pending;
276 * "irq" here is the bit number in the system interrupt register to
277 * separate serial and keyboard interrupts sharing a level.
279 static void slavio_set_irq(void *opaque, int irq, int level)
281 SLAVIO_INTCTLState *s = opaque;
282 uint32_t mask = 1 << irq;
283 uint32_t pil = s->intbit_to_level[irq];
285 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
286 level);
287 if (pil > 0) {
288 if (level) {
289 #ifdef DEBUG_IRQ_COUNT
290 s->irq_count[pil]++;
291 #endif
292 s->intregm_pending |= mask;
293 s->intreg_pending[s->target_cpu] |= 1 << pil;
294 } else {
295 s->intregm_pending &= ~mask;
296 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
298 slavio_check_interrupts(s);
302 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
304 SLAVIO_INTCTLState *s = opaque;
306 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
308 if (level)
309 s->intreg_pending[cpu] |= s->cputimer_bit;
310 else
311 s->intreg_pending[cpu] &= ~s->cputimer_bit;
313 slavio_check_interrupts(s);
316 static void slavio_intctl_save(QEMUFile *f, void *opaque)
318 SLAVIO_INTCTLState *s = opaque;
319 int i;
321 for (i = 0; i < MAX_CPUS; i++) {
322 qemu_put_be32s(f, &s->intreg_pending[i]);
324 qemu_put_be32s(f, &s->intregm_pending);
325 qemu_put_be32s(f, &s->intregm_disabled);
326 qemu_put_be32s(f, &s->target_cpu);
329 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
331 SLAVIO_INTCTLState *s = opaque;
332 int i;
334 if (version_id != 1)
335 return -EINVAL;
337 for (i = 0; i < MAX_CPUS; i++) {
338 qemu_get_be32s(f, &s->intreg_pending[i]);
340 qemu_get_be32s(f, &s->intregm_pending);
341 qemu_get_be32s(f, &s->intregm_disabled);
342 qemu_get_be32s(f, &s->target_cpu);
343 slavio_check_interrupts(s);
344 return 0;
347 static void slavio_intctl_reset(void *opaque)
349 SLAVIO_INTCTLState *s = opaque;
350 int i;
352 for (i = 0; i < MAX_CPUS; i++) {
353 s->intreg_pending[i] = 0;
355 s->intregm_disabled = ~MASTER_IRQ_MASK;
356 s->intregm_pending = 0;
357 s->target_cpu = 0;
358 slavio_check_interrupts(s);
361 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
362 const uint32_t *intbit_to_level,
363 qemu_irq **irq, qemu_irq **cpu_irq,
364 qemu_irq **parent_irq, unsigned int cputimer)
366 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
367 SLAVIO_INTCTLState *s;
369 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
370 if (!s)
371 return NULL;
373 s->intbit_to_level = intbit_to_level;
374 for (i = 0; i < MAX_CPUS; i++) {
375 slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
376 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
377 slavio_intctl_io_memory);
378 s->cpu_irqs[i] = parent_irq[i];
381 slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
382 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
384 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
385 qemu_register_reset(slavio_intctl_reset, s);
386 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
388 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
389 s->cputimer_bit = 1 << s->intbit_to_level[cputimer];
390 slavio_intctl_reset(s);
391 return s;