target-ppc: Add float register read/write using XML
[qemu/mini2440.git] / linux-user / vm86.c
blobcc6c8c99ddf5b3b691c4313b284929b3675d0e8c
1 /*
2 * vm86 linux syscall support
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 * MA 02110-1301, USA.
21 #include <stdlib.h>
22 #include <stdio.h>
23 #include <stdarg.h>
24 #include <string.h>
25 #include <errno.h>
26 #include <unistd.h>
28 #include "qemu.h"
30 //#define DEBUG_VM86
32 #ifdef DEBUG_VM86
33 # define LOG_VM86(...) qemu_log(__VA_ARGS__);
34 #else
35 # define LOG_VM86(...) do { } while (0)
36 #endif
39 #define set_flags(X,new,mask) \
40 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
42 #define SAFE_MASK (0xDD5)
43 #define RETURN_MASK (0xDFF)
45 static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
47 return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
50 static inline void vm_putw(uint32_t segptr, unsigned int reg16, unsigned int val)
52 stw(segptr + (reg16 & 0xffff), val);
55 static inline void vm_putl(uint32_t segptr, unsigned int reg16, unsigned int val)
57 stl(segptr + (reg16 & 0xffff), val);
60 static inline unsigned int vm_getb(uint32_t segptr, unsigned int reg16)
62 return ldub(segptr + (reg16 & 0xffff));
65 static inline unsigned int vm_getw(uint32_t segptr, unsigned int reg16)
67 return lduw(segptr + (reg16 & 0xffff));
70 static inline unsigned int vm_getl(uint32_t segptr, unsigned int reg16)
72 return ldl(segptr + (reg16 & 0xffff));
75 void save_v86_state(CPUX86State *env)
77 TaskState *ts = env->opaque;
78 struct target_vm86plus_struct * target_v86;
80 if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
81 /* FIXME - should return an error */
82 return;
83 /* put the VM86 registers in the userspace register structure */
84 target_v86->regs.eax = tswap32(env->regs[R_EAX]);
85 target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
86 target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
87 target_v86->regs.edx = tswap32(env->regs[R_EDX]);
88 target_v86->regs.esi = tswap32(env->regs[R_ESI]);
89 target_v86->regs.edi = tswap32(env->regs[R_EDI]);
90 target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
91 target_v86->regs.esp = tswap32(env->regs[R_ESP]);
92 target_v86->regs.eip = tswap32(env->eip);
93 target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
94 target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
95 target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
96 target_v86->regs.es = tswap16(env->segs[R_ES].selector);
97 target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
98 target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
99 set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
100 target_v86->regs.eflags = tswap32(env->eflags);
101 unlock_user_struct(target_v86, ts->target_v86, 1);
102 LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
103 env->eflags, env->segs[R_CS].selector, env->eip);
105 /* restore 32 bit registers */
106 env->regs[R_EAX] = ts->vm86_saved_regs.eax;
107 env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
108 env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
109 env->regs[R_EDX] = ts->vm86_saved_regs.edx;
110 env->regs[R_ESI] = ts->vm86_saved_regs.esi;
111 env->regs[R_EDI] = ts->vm86_saved_regs.edi;
112 env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
113 env->regs[R_ESP] = ts->vm86_saved_regs.esp;
114 env->eflags = ts->vm86_saved_regs.eflags;
115 env->eip = ts->vm86_saved_regs.eip;
117 cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
118 cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
119 cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
120 cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
121 cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
122 cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
125 /* return from vm86 mode to 32 bit. The vm86() syscall will return
126 'retval' */
127 static inline void return_to_32bit(CPUX86State *env, int retval)
129 LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
130 save_v86_state(env);
131 env->regs[R_EAX] = retval;
134 static inline int set_IF(CPUX86State *env)
136 TaskState *ts = env->opaque;
138 ts->v86flags |= VIF_MASK;
139 if (ts->v86flags & VIP_MASK) {
140 return_to_32bit(env, TARGET_VM86_STI);
141 return 1;
143 return 0;
146 static inline void clear_IF(CPUX86State *env)
148 TaskState *ts = env->opaque;
150 ts->v86flags &= ~VIF_MASK;
153 static inline void clear_TF(CPUX86State *env)
155 env->eflags &= ~TF_MASK;
158 static inline void clear_AC(CPUX86State *env)
160 env->eflags &= ~AC_MASK;
163 static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
165 TaskState *ts = env->opaque;
167 set_flags(ts->v86flags, eflags, ts->v86mask);
168 set_flags(env->eflags, eflags, SAFE_MASK);
169 if (eflags & IF_MASK)
170 return set_IF(env);
171 else
172 clear_IF(env);
173 return 0;
176 static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
178 TaskState *ts = env->opaque;
180 set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
181 set_flags(env->eflags, flags, SAFE_MASK);
182 if (flags & IF_MASK)
183 return set_IF(env);
184 else
185 clear_IF(env);
186 return 0;
189 static inline unsigned int get_vflags(CPUX86State *env)
191 TaskState *ts = env->opaque;
192 unsigned int flags;
194 flags = env->eflags & RETURN_MASK;
195 if (ts->v86flags & VIF_MASK)
196 flags |= IF_MASK;
197 flags |= IOPL_MASK;
198 return flags | (ts->v86flags & ts->v86mask);
201 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
203 /* handle VM86 interrupt (NOTE: the CPU core currently does not
204 support TSS interrupt revectoring, so this code is always executed) */
205 static void do_int(CPUX86State *env, int intno)
207 TaskState *ts = env->opaque;
208 uint32_t int_addr, segoffs, ssp;
209 unsigned int sp;
211 if (env->segs[R_CS].selector == TARGET_BIOSSEG)
212 goto cannot_handle;
213 if (is_revectored(intno, &ts->vm86plus.int_revectored))
214 goto cannot_handle;
215 if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
216 &ts->vm86plus.int21_revectored))
217 goto cannot_handle;
218 int_addr = (intno << 2);
219 segoffs = ldl(int_addr);
220 if ((segoffs >> 16) == TARGET_BIOSSEG)
221 goto cannot_handle;
222 LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
223 intno, segoffs >> 16, segoffs & 0xffff);
224 /* save old state */
225 ssp = env->segs[R_SS].selector << 4;
226 sp = env->regs[R_ESP] & 0xffff;
227 vm_putw(ssp, sp - 2, get_vflags(env));
228 vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
229 vm_putw(ssp, sp - 6, env->eip);
230 ADD16(env->regs[R_ESP], -6);
231 /* goto interrupt handler */
232 env->eip = segoffs & 0xffff;
233 cpu_x86_load_seg(env, R_CS, segoffs >> 16);
234 clear_TF(env);
235 clear_IF(env);
236 clear_AC(env);
237 return;
238 cannot_handle:
239 LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
240 return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
243 void handle_vm86_trap(CPUX86State *env, int trapno)
245 if (trapno == 1 || trapno == 3) {
246 return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
247 } else {
248 do_int(env, trapno);
252 #define CHECK_IF_IN_TRAP() \
253 if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
254 (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
255 newflags |= TF_MASK
257 #define VM86_FAULT_RETURN \
258 if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
259 (ts->v86flags & (IF_MASK | VIF_MASK))) \
260 return_to_32bit(env, TARGET_VM86_PICRETURN); \
261 return
263 void handle_vm86_fault(CPUX86State *env)
265 TaskState *ts = env->opaque;
266 uint32_t csp, ssp;
267 unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
268 int data32, pref_done;
270 csp = env->segs[R_CS].selector << 4;
271 ip = env->eip & 0xffff;
273 ssp = env->segs[R_SS].selector << 4;
274 sp = env->regs[R_ESP] & 0xffff;
276 LOG_VM86("VM86 exception %04x:%08x\n",
277 env->segs[R_CS].selector, env->eip);
279 data32 = 0;
280 pref_done = 0;
281 do {
282 opcode = vm_getb(csp, ip);
283 ADD16(ip, 1);
284 switch (opcode) {
285 case 0x66: /* 32-bit data */ data32=1; break;
286 case 0x67: /* 32-bit address */ break;
287 case 0x2e: /* CS */ break;
288 case 0x3e: /* DS */ break;
289 case 0x26: /* ES */ break;
290 case 0x36: /* SS */ break;
291 case 0x65: /* GS */ break;
292 case 0x64: /* FS */ break;
293 case 0xf2: /* repnz */ break;
294 case 0xf3: /* rep */ break;
295 default: pref_done = 1;
297 } while (!pref_done);
299 /* VM86 mode */
300 switch(opcode) {
301 case 0x9c: /* pushf */
302 if (data32) {
303 vm_putl(ssp, sp - 4, get_vflags(env));
304 ADD16(env->regs[R_ESP], -4);
305 } else {
306 vm_putw(ssp, sp - 2, get_vflags(env));
307 ADD16(env->regs[R_ESP], -2);
309 env->eip = ip;
310 VM86_FAULT_RETURN;
312 case 0x9d: /* popf */
313 if (data32) {
314 newflags = vm_getl(ssp, sp);
315 ADD16(env->regs[R_ESP], 4);
316 } else {
317 newflags = vm_getw(ssp, sp);
318 ADD16(env->regs[R_ESP], 2);
320 env->eip = ip;
321 CHECK_IF_IN_TRAP();
322 if (data32) {
323 if (set_vflags_long(newflags, env))
324 return;
325 } else {
326 if (set_vflags_short(newflags, env))
327 return;
329 VM86_FAULT_RETURN;
331 case 0xcd: /* int */
332 intno = vm_getb(csp, ip);
333 ADD16(ip, 1);
334 env->eip = ip;
335 if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
336 if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
337 (intno &7)) & 1) {
338 return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
339 return;
342 do_int(env, intno);
343 break;
345 case 0xcf: /* iret */
346 if (data32) {
347 newip = vm_getl(ssp, sp) & 0xffff;
348 newcs = vm_getl(ssp, sp + 4) & 0xffff;
349 newflags = vm_getl(ssp, sp + 8);
350 ADD16(env->regs[R_ESP], 12);
351 } else {
352 newip = vm_getw(ssp, sp);
353 newcs = vm_getw(ssp, sp + 2);
354 newflags = vm_getw(ssp, sp + 4);
355 ADD16(env->regs[R_ESP], 6);
357 env->eip = newip;
358 cpu_x86_load_seg(env, R_CS, newcs);
359 CHECK_IF_IN_TRAP();
360 if (data32) {
361 if (set_vflags_long(newflags, env))
362 return;
363 } else {
364 if (set_vflags_short(newflags, env))
365 return;
367 VM86_FAULT_RETURN;
369 case 0xfa: /* cli */
370 env->eip = ip;
371 clear_IF(env);
372 VM86_FAULT_RETURN;
374 case 0xfb: /* sti */
375 env->eip = ip;
376 if (set_IF(env))
377 return;
378 VM86_FAULT_RETURN;
380 default:
381 /* real VM86 GPF exception */
382 return_to_32bit(env, TARGET_VM86_UNKNOWN);
383 break;
387 int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
389 TaskState *ts = env->opaque;
390 struct target_vm86plus_struct * target_v86;
391 int ret;
393 switch (subfunction) {
394 case TARGET_VM86_REQUEST_IRQ:
395 case TARGET_VM86_FREE_IRQ:
396 case TARGET_VM86_GET_IRQ_BITS:
397 case TARGET_VM86_GET_AND_RESET_IRQ:
398 gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
399 ret = -TARGET_EINVAL;
400 goto out;
401 case TARGET_VM86_PLUS_INSTALL_CHECK:
402 /* NOTE: on old vm86 stuff this will return the error
403 from verify_area(), because the subfunction is
404 interpreted as (invalid) address to vm86_struct.
405 So the installation check works.
407 ret = 0;
408 goto out;
411 /* save current CPU regs */
412 ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
413 ts->vm86_saved_regs.ebx = env->regs[R_EBX];
414 ts->vm86_saved_regs.ecx = env->regs[R_ECX];
415 ts->vm86_saved_regs.edx = env->regs[R_EDX];
416 ts->vm86_saved_regs.esi = env->regs[R_ESI];
417 ts->vm86_saved_regs.edi = env->regs[R_EDI];
418 ts->vm86_saved_regs.ebp = env->regs[R_EBP];
419 ts->vm86_saved_regs.esp = env->regs[R_ESP];
420 ts->vm86_saved_regs.eflags = env->eflags;
421 ts->vm86_saved_regs.eip = env->eip;
422 ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
423 ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
424 ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
425 ts->vm86_saved_regs.es = env->segs[R_ES].selector;
426 ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
427 ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
429 ts->target_v86 = vm86_addr;
430 if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
431 return -TARGET_EFAULT;
432 /* build vm86 CPU state */
433 ts->v86flags = tswap32(target_v86->regs.eflags);
434 env->eflags = (env->eflags & ~SAFE_MASK) |
435 (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
437 ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
438 switch (ts->vm86plus.cpu_type) {
439 case TARGET_CPU_286:
440 ts->v86mask = 0;
441 break;
442 case TARGET_CPU_386:
443 ts->v86mask = NT_MASK | IOPL_MASK;
444 break;
445 case TARGET_CPU_486:
446 ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
447 break;
448 default:
449 ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
450 break;
453 env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
454 env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
455 env->regs[R_EDX] = tswap32(target_v86->regs.edx);
456 env->regs[R_ESI] = tswap32(target_v86->regs.esi);
457 env->regs[R_EDI] = tswap32(target_v86->regs.edi);
458 env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
459 env->regs[R_ESP] = tswap32(target_v86->regs.esp);
460 env->eip = tswap32(target_v86->regs.eip);
461 cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
462 cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
463 cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
464 cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
465 cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
466 cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
467 ret = tswap32(target_v86->regs.eax); /* eax will be restored at
468 the end of the syscall */
469 memcpy(&ts->vm86plus.int_revectored,
470 &target_v86->int_revectored, 32);
471 memcpy(&ts->vm86plus.int21_revectored,
472 &target_v86->int21_revectored, 32);
473 ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
474 memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
475 target_v86->vm86plus.vm86dbg_intxxtab, 32);
476 unlock_user_struct(target_v86, vm86_addr, 0);
478 LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
479 env->segs[R_CS].selector, env->eip);
480 /* now the virtual CPU is ready for vm86 execution ! */
481 out:
482 return ret;