Implement acct and pretend to implement madvise.
[qemu/mini2440.git] / hw / i8254.c
blob6f05168274058ccbc8bdff729229a713e5c99fa8
1 /*
2 * QEMU 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 //#define DEBUG_PIT
28 #define RW_STATE_LSB 1
29 #define RW_STATE_MSB 2
30 #define RW_STATE_WORD0 3
31 #define RW_STATE_WORD1 4
33 typedef struct PITChannelState {
34 int count; /* can be 65536 */
35 uint16_t latched_count;
36 uint8_t count_latched;
37 uint8_t status_latched;
38 uint8_t status;
39 uint8_t read_state;
40 uint8_t write_state;
41 uint8_t write_latch;
42 uint8_t rw_mode;
43 uint8_t mode;
44 uint8_t bcd; /* not supported */
45 uint8_t gate; /* timer start */
46 int64_t count_load_time;
47 /* irq handling */
48 int64_t next_transition_time;
49 QEMUTimer *irq_timer;
50 int irq;
51 } PITChannelState;
53 struct PITState {
54 PITChannelState channels[3];
57 static PITState pit_state;
59 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
61 static int pit_get_count(PITChannelState *s)
63 uint64_t d;
64 int counter;
66 d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
67 switch(s->mode) {
68 case 0:
69 case 1:
70 case 4:
71 case 5:
72 counter = (s->count - d) & 0xffff;
73 break;
74 case 3:
75 /* XXX: may be incorrect for odd counts */
76 counter = s->count - ((2 * d) % s->count);
77 break;
78 default:
79 counter = s->count - (d % s->count);
80 break;
82 return counter;
85 /* get pit output bit */
86 static int pit_get_out1(PITChannelState *s, int64_t current_time)
88 uint64_t d;
89 int out;
91 d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
92 switch(s->mode) {
93 default:
94 case 0:
95 out = (d >= s->count);
96 break;
97 case 1:
98 out = (d < s->count);
99 break;
100 case 2:
101 if ((d % s->count) == 0 && d != 0)
102 out = 1;
103 else
104 out = 0;
105 break;
106 case 3:
107 out = (d % s->count) < ((s->count + 1) >> 1);
108 break;
109 case 4:
110 case 5:
111 out = (d == s->count);
112 break;
114 return out;
117 int pit_get_out(PITState *pit, int channel, int64_t current_time)
119 PITChannelState *s = &pit->channels[channel];
120 return pit_get_out1(s, current_time);
123 /* return -1 if no transition will occur. */
124 static int64_t pit_get_next_transition_time(PITChannelState *s,
125 int64_t current_time)
127 uint64_t d, next_time, base;
128 int period2;
130 d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
131 switch(s->mode) {
132 default:
133 case 0:
134 case 1:
135 if (d < s->count)
136 next_time = s->count;
137 else
138 return -1;
139 break;
140 case 2:
141 base = (d / s->count) * s->count;
142 if ((d - base) == 0 && d != 0)
143 next_time = base + s->count;
144 else
145 next_time = base + s->count + 1;
146 break;
147 case 3:
148 base = (d / s->count) * s->count;
149 period2 = ((s->count + 1) >> 1);
150 if ((d - base) < period2)
151 next_time = base + period2;
152 else
153 next_time = base + s->count;
154 break;
155 case 4:
156 case 5:
157 if (d < s->count)
158 next_time = s->count;
159 else if (d == s->count)
160 next_time = s->count + 1;
161 else
162 return -1;
163 break;
165 /* convert to timer units */
166 next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
167 /* fix potential rounding problems */
168 /* XXX: better solution: use a clock at PIT_FREQ Hz */
169 if (next_time <= current_time)
170 next_time = current_time + 1;
171 return next_time;
174 /* val must be 0 or 1 */
175 void pit_set_gate(PITState *pit, int channel, int val)
177 PITChannelState *s = &pit->channels[channel];
179 switch(s->mode) {
180 default:
181 case 0:
182 case 4:
183 /* XXX: just disable/enable counting */
184 break;
185 case 1:
186 case 5:
187 if (s->gate < val) {
188 /* restart counting on rising edge */
189 s->count_load_time = qemu_get_clock(vm_clock);
190 pit_irq_timer_update(s, s->count_load_time);
192 break;
193 case 2:
194 case 3:
195 if (s->gate < val) {
196 /* restart counting on rising edge */
197 s->count_load_time = qemu_get_clock(vm_clock);
198 pit_irq_timer_update(s, s->count_load_time);
200 /* XXX: disable/enable counting */
201 break;
203 s->gate = val;
206 int pit_get_gate(PITState *pit, int channel)
208 PITChannelState *s = &pit->channels[channel];
209 return s->gate;
212 static inline void pit_load_count(PITChannelState *s, int val)
214 if (val == 0)
215 val = 0x10000;
216 s->count_load_time = qemu_get_clock(vm_clock);
217 s->count = val;
218 pit_irq_timer_update(s, s->count_load_time);
221 /* if already latched, do not latch again */
222 static void pit_latch_count(PITChannelState *s)
224 if (!s->count_latched) {
225 s->latched_count = pit_get_count(s);
226 s->count_latched = s->rw_mode;
230 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
232 PITState *pit = opaque;
233 int channel, access;
234 PITChannelState *s;
236 addr &= 3;
237 if (addr == 3) {
238 channel = val >> 6;
239 if (channel == 3) {
240 /* read back command */
241 for(channel = 0; channel < 3; channel++) {
242 s = &pit->channels[channel];
243 if (val & (2 << channel)) {
244 if (!(val & 0x20)) {
245 pit_latch_count(s);
247 if (!(val & 0x10) && !s->status_latched) {
248 /* status latch */
249 /* XXX: add BCD and null count */
250 s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
251 (s->rw_mode << 4) |
252 (s->mode << 1) |
253 s->bcd;
254 s->status_latched = 1;
258 } else {
259 s = &pit->channels[channel];
260 access = (val >> 4) & 3;
261 if (access == 0) {
262 pit_latch_count(s);
263 } else {
264 s->rw_mode = access;
265 s->read_state = access;
266 s->write_state = access;
268 s->mode = (val >> 1) & 7;
269 s->bcd = val & 1;
270 /* XXX: update irq timer ? */
273 } else {
274 s = &pit->channels[addr];
275 switch(s->write_state) {
276 default:
277 case RW_STATE_LSB:
278 pit_load_count(s, val);
279 break;
280 case RW_STATE_MSB:
281 pit_load_count(s, val << 8);
282 break;
283 case RW_STATE_WORD0:
284 s->write_latch = val;
285 s->write_state = RW_STATE_WORD1;
286 break;
287 case RW_STATE_WORD1:
288 pit_load_count(s, s->write_latch | (val << 8));
289 s->write_state = RW_STATE_WORD0;
290 break;
295 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
297 PITState *pit = opaque;
298 int ret, count;
299 PITChannelState *s;
301 addr &= 3;
302 s = &pit->channels[addr];
303 if (s->status_latched) {
304 s->status_latched = 0;
305 ret = s->status;
306 } else if (s->count_latched) {
307 switch(s->count_latched) {
308 default:
309 case RW_STATE_LSB:
310 ret = s->latched_count & 0xff;
311 s->count_latched = 0;
312 break;
313 case RW_STATE_MSB:
314 ret = s->latched_count >> 8;
315 s->count_latched = 0;
316 break;
317 case RW_STATE_WORD0:
318 ret = s->latched_count & 0xff;
319 s->count_latched = RW_STATE_MSB;
320 break;
322 } else {
323 switch(s->read_state) {
324 default:
325 case RW_STATE_LSB:
326 count = pit_get_count(s);
327 ret = count & 0xff;
328 break;
329 case RW_STATE_MSB:
330 count = pit_get_count(s);
331 ret = (count >> 8) & 0xff;
332 break;
333 case RW_STATE_WORD0:
334 count = pit_get_count(s);
335 ret = count & 0xff;
336 s->read_state = RW_STATE_WORD1;
337 break;
338 case RW_STATE_WORD1:
339 count = pit_get_count(s);
340 ret = (count >> 8) & 0xff;
341 s->read_state = RW_STATE_WORD0;
342 break;
345 return ret;
348 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
350 int64_t expire_time;
351 int irq_level;
353 if (!s->irq_timer)
354 return;
355 expire_time = pit_get_next_transition_time(s, current_time);
356 irq_level = pit_get_out1(s, current_time);
357 pic_set_irq(s->irq, irq_level);
358 #ifdef DEBUG_PIT
359 printf("irq_level=%d next_delay=%f\n",
360 irq_level,
361 (double)(expire_time - current_time) / ticks_per_sec);
362 #endif
363 s->next_transition_time = expire_time;
364 if (expire_time != -1)
365 qemu_mod_timer(s->irq_timer, expire_time);
366 else
367 qemu_del_timer(s->irq_timer);
370 static void pit_irq_timer(void *opaque)
372 PITChannelState *s = opaque;
374 pit_irq_timer_update(s, s->next_transition_time);
377 static void pit_save(QEMUFile *f, void *opaque)
379 PITState *pit = opaque;
380 PITChannelState *s;
381 int i;
383 for(i = 0; i < 3; i++) {
384 s = &pit->channels[i];
385 qemu_put_be32s(f, &s->count);
386 qemu_put_be16s(f, &s->latched_count);
387 qemu_put_8s(f, &s->count_latched);
388 qemu_put_8s(f, &s->status_latched);
389 qemu_put_8s(f, &s->status);
390 qemu_put_8s(f, &s->read_state);
391 qemu_put_8s(f, &s->write_state);
392 qemu_put_8s(f, &s->write_latch);
393 qemu_put_8s(f, &s->rw_mode);
394 qemu_put_8s(f, &s->mode);
395 qemu_put_8s(f, &s->bcd);
396 qemu_put_8s(f, &s->gate);
397 qemu_put_be64s(f, &s->count_load_time);
398 if (s->irq_timer) {
399 qemu_put_be64s(f, &s->next_transition_time);
400 qemu_put_timer(f, s->irq_timer);
405 static int pit_load(QEMUFile *f, void *opaque, int version_id)
407 PITState *pit = opaque;
408 PITChannelState *s;
409 int i;
411 if (version_id != 1)
412 return -EINVAL;
414 for(i = 0; i < 3; i++) {
415 s = &pit->channels[i];
416 qemu_get_be32s(f, &s->count);
417 qemu_get_be16s(f, &s->latched_count);
418 qemu_get_8s(f, &s->count_latched);
419 qemu_get_8s(f, &s->status_latched);
420 qemu_get_8s(f, &s->status);
421 qemu_get_8s(f, &s->read_state);
422 qemu_get_8s(f, &s->write_state);
423 qemu_get_8s(f, &s->write_latch);
424 qemu_get_8s(f, &s->rw_mode);
425 qemu_get_8s(f, &s->mode);
426 qemu_get_8s(f, &s->bcd);
427 qemu_get_8s(f, &s->gate);
428 qemu_get_be64s(f, &s->count_load_time);
429 if (s->irq_timer) {
430 qemu_get_be64s(f, &s->next_transition_time);
431 qemu_get_timer(f, s->irq_timer);
434 return 0;
437 static void pit_reset(void *opaque)
439 PITState *pit = opaque;
440 PITChannelState *s;
441 int i;
443 for(i = 0;i < 3; i++) {
444 s = &pit->channels[i];
445 s->mode = 3;
446 s->gate = (i != 2);
447 pit_load_count(s, 0);
451 PITState *pit_init(int base, int irq)
453 PITState *pit = &pit_state;
454 PITChannelState *s;
456 s = &pit->channels[0];
457 /* the timer 0 is connected to an IRQ */
458 s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
459 s->irq = irq;
461 register_savevm("i8254", base, 1, pit_save, pit_load, pit);
463 qemu_register_reset(pit_reset, pit);
464 register_ioport_write(base, 4, 1, pit_ioport_write, pit);
465 register_ioport_read(base, 3, 1, pit_ioport_read, pit);
467 pit_reset(pit);
469 return pit;