2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #define CPU_NO_GLOBAL_REGS
26 #if !defined(CONFIG_SOFTMMU)
38 #include <sys/ucontext.h>
42 #if defined(__sparc__) && !defined(HOST_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
45 #define env cpu_single_env
48 int tb_invalidated_flag
;
51 //#define DEBUG_SIGNAL
53 void cpu_loop_exit(void)
55 /* NOTE: the register at this point must be saved by hand because
56 longjmp restore them */
58 longjmp(env
->jmp_env
, 1);
61 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
70 #if !defined(CONFIG_SOFTMMU)
72 struct ucontext
*uc
= puc
;
73 #elif defined(__OpenBSD__)
74 struct sigcontext
*uc
= puc
;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
84 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
92 longjmp(env
->jmp_env
, 1);
95 /* Execute the code without caching the generated code. An interpreter
96 could be used if available. */
97 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
99 unsigned long next_tb
;
100 TranslationBlock
*tb
;
102 /* Should never happen.
103 We only end up here when an existing TB is too long. */
104 if (max_cycles
> CF_COUNT_MASK
)
105 max_cycles
= CF_COUNT_MASK
;
107 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
109 env
->current_tb
= tb
;
110 /* execute the generated code */
111 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
113 if ((next_tb
& 3) == 2) {
114 /* Restore PC. This may happen if async event occurs before
115 the TB starts executing. */
116 CPU_PC_FROM_TB(env
, tb
);
118 tb_phys_invalidate(tb
, -1);
122 static TranslationBlock
*tb_find_slow(target_ulong pc
,
123 target_ulong cs_base
,
126 TranslationBlock
*tb
, **ptb1
;
128 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
130 tb_invalidated_flag
= 0;
132 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
134 /* find translated block using physical mappings */
135 phys_pc
= get_phys_addr_code(env
, pc
);
136 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
138 h
= tb_phys_hash_func(phys_pc
);
139 ptb1
= &tb_phys_hash
[h
];
145 tb
->page_addr
[0] == phys_page1
&&
146 tb
->cs_base
== cs_base
&&
147 tb
->flags
== flags
) {
148 /* check next page if needed */
149 if (tb
->page_addr
[1] != -1) {
150 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
152 phys_page2
= get_phys_addr_code(env
, virt_page2
);
153 if (tb
->page_addr
[1] == phys_page2
)
159 ptb1
= &tb
->phys_hash_next
;
162 /* if no translated code available, then translate it now */
163 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
166 /* we add the TB in the virtual pc hash table */
167 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
171 static inline TranslationBlock
*tb_find_fast(void)
173 TranslationBlock
*tb
;
174 target_ulong cs_base
, pc
;
177 /* we record a subset of the CPU state. It will
178 always be the same before a given translated block
180 #if defined(TARGET_I386)
182 flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
183 cs_base
= env
->segs
[R_CS
].base
;
184 pc
= cs_base
+ env
->eip
;
185 #elif defined(TARGET_ARM)
186 flags
= env
->thumb
| (env
->vfp
.vec_len
<< 1)
187 | (env
->vfp
.vec_stride
<< 4);
188 if ((env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
)
190 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30))
192 flags
|= (env
->condexec_bits
<< 8);
195 #elif defined(TARGET_SPARC)
196 #ifdef TARGET_SPARC64
197 // AM . Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
198 flags
= ((env
->pstate
& PS_AM
) << 2)
199 | (((env
->pstate
& PS_PEF
) >> 1) | ((env
->fprs
& FPRS_FEF
) << 2))
200 | (env
->pstate
& PS_PRIV
) | ((env
->lsu
& (DMMU_E
| IMMU_E
)) >> 2);
202 // FPU enable . Supervisor
203 flags
= (env
->psref
<< 4) | env
->psrs
;
207 #elif defined(TARGET_PPC)
211 #elif defined(TARGET_MIPS)
212 flags
= env
->hflags
& (MIPS_HFLAG_TMASK
| MIPS_HFLAG_BMASK
);
214 pc
= env
->active_tc
.PC
;
215 #elif defined(TARGET_M68K)
216 flags
= (env
->fpcr
& M68K_FPCR_PREC
) /* Bit 6 */
217 | (env
->sr
& SR_S
) /* Bit 13 */
218 | ((env
->macsr
>> 4) & 0xf); /* Bits 0-3 */
221 #elif defined(TARGET_SH4)
222 flags
= (env
->flags
& (DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
223 | DELAY_SLOT_TRUE
| DELAY_SLOT_CLEARME
)) /* Bits 0- 3 */
224 | (env
->fpscr
& (FPSCR_FR
| FPSCR_SZ
| FPSCR_PR
)) /* Bits 19-21 */
225 | (env
->sr
& (SR_MD
| SR_RB
)); /* Bits 29-30 */
228 #elif defined(TARGET_ALPHA)
232 #elif defined(TARGET_CRIS)
233 flags
= env
->pregs
[PR_CCS
] & (S_FLAG
| P_FLAG
| U_FLAG
| X_FLAG
);
238 #error unsupported CPU
240 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
241 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
242 tb
->flags
!= flags
)) {
243 tb
= tb_find_slow(pc
, cs_base
, flags
);
248 /* main execution loop */
250 int cpu_exec(CPUState
*env1
)
252 #define DECLARE_HOST_REGS 1
253 #include "hostregs_helper.h"
254 int ret
, interrupt_request
;
255 TranslationBlock
*tb
;
257 unsigned long next_tb
;
259 if (cpu_halted(env1
) == EXCP_HALTED
)
262 cpu_single_env
= env1
;
264 /* first we save global registers */
265 #define SAVE_HOST_REGS 1
266 #include "hostregs_helper.h"
270 #if defined(TARGET_I386)
271 /* put eflags in CPU temporary format */
272 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
273 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
274 CC_OP
= CC_OP_EFLAGS
;
275 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
276 #elif defined(TARGET_SPARC)
277 #elif defined(TARGET_M68K)
278 env
->cc_op
= CC_OP_FLAGS
;
279 env
->cc_dest
= env
->sr
& 0xf;
280 env
->cc_x
= (env
->sr
>> 4) & 1;
281 #elif defined(TARGET_ALPHA)
282 #elif defined(TARGET_ARM)
283 #elif defined(TARGET_PPC)
284 #elif defined(TARGET_MIPS)
285 #elif defined(TARGET_SH4)
286 #elif defined(TARGET_CRIS)
289 #error unsupported target CPU
291 env
->exception_index
= -1;
293 /* prepare setjmp context for exception handling */
295 if (setjmp(env
->jmp_env
) == 0) {
296 env
->current_tb
= NULL
;
297 /* if an exception is pending, we execute it here */
298 if (env
->exception_index
>= 0) {
299 if (env
->exception_index
>= EXCP_INTERRUPT
) {
300 /* exit request from the cpu execution loop */
301 ret
= env
->exception_index
;
303 } else if (env
->user_mode_only
) {
304 /* if user mode only, we simulate a fake exception
305 which will be handled outside the cpu execution
307 #if defined(TARGET_I386)
308 do_interrupt_user(env
->exception_index
,
309 env
->exception_is_int
,
311 env
->exception_next_eip
);
312 /* successfully delivered */
313 env
->old_exception
= -1;
315 ret
= env
->exception_index
;
318 #if defined(TARGET_I386)
319 /* simulate a real cpu exception. On i386, it can
320 trigger new exceptions, but we do not handle
321 double or triple faults yet. */
322 do_interrupt(env
->exception_index
,
323 env
->exception_is_int
,
325 env
->exception_next_eip
, 0);
326 /* successfully delivered */
327 env
->old_exception
= -1;
328 #elif defined(TARGET_PPC)
330 #elif defined(TARGET_MIPS)
332 #elif defined(TARGET_SPARC)
334 #elif defined(TARGET_ARM)
336 #elif defined(TARGET_SH4)
338 #elif defined(TARGET_ALPHA)
340 #elif defined(TARGET_CRIS)
342 #elif defined(TARGET_M68K)
346 env
->exception_index
= -1;
349 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
351 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
352 ret
= kqemu_cpu_exec(env
);
353 /* put eflags in CPU temporary format */
354 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
355 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
356 CC_OP
= CC_OP_EFLAGS
;
357 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
360 longjmp(env
->jmp_env
, 1);
361 } else if (ret
== 2) {
362 /* softmmu execution needed */
364 if (env
->interrupt_request
!= 0) {
365 /* hardware interrupt will be executed just after */
367 /* otherwise, we restart */
368 longjmp(env
->jmp_env
, 1);
374 next_tb
= 0; /* force lookup of first TB */
376 interrupt_request
= env
->interrupt_request
;
377 if (unlikely(interrupt_request
) &&
378 likely(!(env
->singlestep_enabled
& SSTEP_NOIRQ
))) {
379 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
380 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
381 env
->exception_index
= EXCP_DEBUG
;
384 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
385 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
386 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
387 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
389 env
->exception_index
= EXCP_HLT
;
393 #if defined(TARGET_I386)
394 if (env
->hflags2
& HF2_GIF_MASK
) {
395 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
396 !(env
->hflags
& HF_SMM_MASK
)) {
397 svm_check_intercept(SVM_EXIT_SMI
);
398 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
401 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
402 !(env
->hflags2
& HF2_NMI_MASK
)) {
403 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
404 env
->hflags2
|= HF2_NMI_MASK
;
405 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
407 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
408 (((env
->hflags2
& HF2_VINTR_MASK
) &&
409 (env
->hflags2
& HF2_HIF_MASK
)) ||
410 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
411 (env
->eflags
& IF_MASK
&&
412 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
414 svm_check_intercept(SVM_EXIT_INTR
);
415 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
416 intno
= cpu_get_pic_interrupt(env
);
417 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
418 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
420 do_interrupt(intno
, 0, 0, 0, 1);
421 /* ensure that no TB jump will be modified as
422 the program flow was changed */
424 #if !defined(CONFIG_USER_ONLY)
425 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
426 (env
->eflags
& IF_MASK
) &&
427 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
429 /* FIXME: this should respect TPR */
430 svm_check_intercept(SVM_EXIT_VINTR
);
431 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
432 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
433 if (loglevel
& CPU_LOG_TB_IN_ASM
)
434 fprintf(logfile
, "Servicing virtual hardware INT=0x%02x\n", intno
);
435 do_interrupt(intno
, 0, 0, 0, 1);
440 #elif defined(TARGET_PPC)
442 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
446 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
447 ppc_hw_interrupt(env
);
448 if (env
->pending_interrupts
== 0)
449 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
452 #elif defined(TARGET_MIPS)
453 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
454 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
455 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
456 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
457 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
458 !(env
->hflags
& MIPS_HFLAG_DM
)) {
460 env
->exception_index
= EXCP_EXT_INTERRUPT
;
465 #elif defined(TARGET_SPARC)
466 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
468 int pil
= env
->interrupt_index
& 15;
469 int type
= env
->interrupt_index
& 0xf0;
471 if (((type
== TT_EXTINT
) &&
472 (pil
== 15 || pil
> env
->psrpil
)) ||
474 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
475 env
->exception_index
= env
->interrupt_index
;
477 env
->interrupt_index
= 0;
478 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
483 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
484 //do_interrupt(0, 0, 0, 0, 0);
485 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
487 #elif defined(TARGET_ARM)
488 if (interrupt_request
& CPU_INTERRUPT_FIQ
489 && !(env
->uncached_cpsr
& CPSR_F
)) {
490 env
->exception_index
= EXCP_FIQ
;
494 /* ARMv7-M interrupt return works by loading a magic value
495 into the PC. On real hardware the load causes the
496 return to occur. The qemu implementation performs the
497 jump normally, then does the exception return when the
498 CPU tries to execute code at the magic address.
499 This will cause the magic PC value to be pushed to
500 the stack if an interrupt occured at the wrong time.
501 We avoid this by disabling interrupts when
502 pc contains a magic address. */
503 if (interrupt_request
& CPU_INTERRUPT_HARD
504 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
505 || !(env
->uncached_cpsr
& CPSR_I
))) {
506 env
->exception_index
= EXCP_IRQ
;
510 #elif defined(TARGET_SH4)
511 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
515 #elif defined(TARGET_ALPHA)
516 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
520 #elif defined(TARGET_CRIS)
521 if (interrupt_request
& CPU_INTERRUPT_HARD
522 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
523 env
->exception_index
= EXCP_IRQ
;
527 if (interrupt_request
& CPU_INTERRUPT_NMI
528 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
529 env
->exception_index
= EXCP_NMI
;
533 #elif defined(TARGET_M68K)
534 if (interrupt_request
& CPU_INTERRUPT_HARD
535 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
536 < env
->pending_level
) {
537 /* Real hardware gets the interrupt vector via an
538 IACK cycle at this point. Current emulated
539 hardware doesn't rely on this, so we
540 provide/save the vector when the interrupt is
542 env
->exception_index
= env
->pending_vector
;
547 /* Don't use the cached interupt_request value,
548 do_interrupt may have updated the EXITTB flag. */
549 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
550 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
551 /* ensure that no TB jump will be modified as
552 the program flow was changed */
555 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
556 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
557 env
->exception_index
= EXCP_INTERRUPT
;
562 if ((loglevel
& CPU_LOG_TB_CPU
)) {
563 /* restore flags in standard format */
565 #if defined(TARGET_I386)
566 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
567 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
568 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
569 #elif defined(TARGET_ARM)
570 cpu_dump_state(env
, logfile
, fprintf
, 0);
571 #elif defined(TARGET_SPARC)
572 cpu_dump_state(env
, logfile
, fprintf
, 0);
573 #elif defined(TARGET_PPC)
574 cpu_dump_state(env
, logfile
, fprintf
, 0);
575 #elif defined(TARGET_M68K)
576 cpu_m68k_flush_flags(env
, env
->cc_op
);
577 env
->cc_op
= CC_OP_FLAGS
;
578 env
->sr
= (env
->sr
& 0xffe0)
579 | env
->cc_dest
| (env
->cc_x
<< 4);
580 cpu_dump_state(env
, logfile
, fprintf
, 0);
581 #elif defined(TARGET_MIPS)
582 cpu_dump_state(env
, logfile
, fprintf
, 0);
583 #elif defined(TARGET_SH4)
584 cpu_dump_state(env
, logfile
, fprintf
, 0);
585 #elif defined(TARGET_ALPHA)
586 cpu_dump_state(env
, logfile
, fprintf
, 0);
587 #elif defined(TARGET_CRIS)
588 cpu_dump_state(env
, logfile
, fprintf
, 0);
590 #error unsupported target CPU
596 /* Note: we do it here to avoid a gcc bug on Mac OS X when
597 doing it in tb_find_slow */
598 if (tb_invalidated_flag
) {
599 /* as some TB could have been invalidated because
600 of memory exceptions while generating the code, we
601 must recompute the hash index here */
603 tb_invalidated_flag
= 0;
606 if ((loglevel
& CPU_LOG_EXEC
)) {
607 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
608 (long)tb
->tc_ptr
, tb
->pc
,
609 lookup_symbol(tb
->pc
));
612 /* see if we can patch the calling TB. When the TB
613 spans two pages, we cannot safely do a direct
618 (env
->kqemu_enabled
!= 2) &&
620 tb
->page_addr
[1] == -1) {
621 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
624 spin_unlock(&tb_lock
);
625 env
->current_tb
= tb
;
626 while (env
->current_tb
) {
628 /* execute the generated code */
629 #if defined(__sparc__) && !defined(HOST_SOLARIS)
631 env
= cpu_single_env
;
632 #define env cpu_single_env
634 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
635 env
->current_tb
= NULL
;
636 if ((next_tb
& 3) == 2) {
637 /* Instruction counter expired. */
639 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
641 CPU_PC_FROM_TB(env
, tb
);
642 insns_left
= env
->icount_decr
.u32
;
643 if (env
->icount_extra
&& insns_left
>= 0) {
644 /* Refill decrementer and continue execution. */
645 env
->icount_extra
+= insns_left
;
646 if (env
->icount_extra
> 0xffff) {
649 insns_left
= env
->icount_extra
;
651 env
->icount_extra
-= insns_left
;
652 env
->icount_decr
.u16
.low
= insns_left
;
654 if (insns_left
> 0) {
655 /* Execute remaining instructions. */
656 cpu_exec_nocache(insns_left
, tb
);
658 env
->exception_index
= EXCP_INTERRUPT
;
664 /* reset soft MMU for next block (it can currently
665 only be set by a memory fault) */
666 #if defined(USE_KQEMU)
667 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
668 if (kqemu_is_ok(env
) &&
669 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
680 #if defined(TARGET_I386)
681 /* restore flags in standard format */
682 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
683 #elif defined(TARGET_ARM)
684 /* XXX: Save/restore host fpu exception state?. */
685 #elif defined(TARGET_SPARC)
686 #elif defined(TARGET_PPC)
687 #elif defined(TARGET_M68K)
688 cpu_m68k_flush_flags(env
, env
->cc_op
);
689 env
->cc_op
= CC_OP_FLAGS
;
690 env
->sr
= (env
->sr
& 0xffe0)
691 | env
->cc_dest
| (env
->cc_x
<< 4);
692 #elif defined(TARGET_MIPS)
693 #elif defined(TARGET_SH4)
694 #elif defined(TARGET_ALPHA)
695 #elif defined(TARGET_CRIS)
698 #error unsupported target CPU
701 /* restore global registers */
702 #include "hostregs_helper.h"
704 /* fail safe : never use cpu_single_env outside cpu_exec() */
705 cpu_single_env
= NULL
;
709 /* must only be called from the generated code as an exception can be
711 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
713 /* XXX: cannot enable it yet because it yields to MMU exception
714 where NIP != read address on PowerPC */
716 target_ulong phys_addr
;
717 phys_addr
= get_phys_addr_code(env
, start
);
718 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
722 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
724 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
726 CPUX86State
*saved_env
;
730 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
732 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
733 (selector
<< 4), 0xffff, 0);
735 helper_load_seg(seg_reg
, selector
);
740 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
742 CPUX86State
*saved_env
;
747 helper_fsave(ptr
, data32
);
752 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
754 CPUX86State
*saved_env
;
759 helper_frstor(ptr
, data32
);
764 #endif /* TARGET_I386 */
766 #if !defined(CONFIG_SOFTMMU)
768 #if defined(TARGET_I386)
770 /* 'pc' is the host PC at which the exception was raised. 'address' is
771 the effective address of the memory exception. 'is_write' is 1 if a
772 write caused the exception and otherwise 0'. 'old_set' is the
773 signal set which should be restored */
774 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
775 int is_write
, sigset_t
*old_set
,
778 TranslationBlock
*tb
;
782 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
783 #if defined(DEBUG_SIGNAL)
784 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
785 pc
, address
, is_write
, *(unsigned long *)old_set
);
787 /* XXX: locking issue */
788 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
792 /* see if it is an MMU fault */
793 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
795 return 0; /* not an MMU fault */
797 return 1; /* the MMU fault was handled without causing real CPU fault */
798 /* now we have a real cpu fault */
801 /* the PC is inside the translated code. It means that we have
802 a virtual CPU fault */
803 cpu_restore_state(tb
, env
, pc
, puc
);
807 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
808 env
->eip
, env
->cr
[2], env
->error_code
);
810 /* we restore the process signal mask as the sigreturn should
811 do it (XXX: use sigsetjmp) */
812 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
813 raise_exception_err(env
->exception_index
, env
->error_code
);
815 /* activate soft MMU for this block */
816 env
->hflags
|= HF_SOFTMMU_MASK
;
817 cpu_resume_from_signal(env
, puc
);
819 /* never comes here */
823 #elif defined(TARGET_ARM)
824 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
825 int is_write
, sigset_t
*old_set
,
828 TranslationBlock
*tb
;
832 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
833 #if defined(DEBUG_SIGNAL)
834 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
835 pc
, address
, is_write
, *(unsigned long *)old_set
);
837 /* XXX: locking issue */
838 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
841 /* see if it is an MMU fault */
842 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
844 return 0; /* not an MMU fault */
846 return 1; /* the MMU fault was handled without causing real CPU fault */
847 /* now we have a real cpu fault */
850 /* the PC is inside the translated code. It means that we have
851 a virtual CPU fault */
852 cpu_restore_state(tb
, env
, pc
, puc
);
854 /* we restore the process signal mask as the sigreturn should
855 do it (XXX: use sigsetjmp) */
856 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
858 /* never comes here */
861 #elif defined(TARGET_SPARC)
862 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
863 int is_write
, sigset_t
*old_set
,
866 TranslationBlock
*tb
;
870 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
871 #if defined(DEBUG_SIGNAL)
872 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
873 pc
, address
, is_write
, *(unsigned long *)old_set
);
875 /* XXX: locking issue */
876 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
879 /* see if it is an MMU fault */
880 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
882 return 0; /* not an MMU fault */
884 return 1; /* the MMU fault was handled without causing real CPU fault */
885 /* now we have a real cpu fault */
888 /* the PC is inside the translated code. It means that we have
889 a virtual CPU fault */
890 cpu_restore_state(tb
, env
, pc
, puc
);
892 /* we restore the process signal mask as the sigreturn should
893 do it (XXX: use sigsetjmp) */
894 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
896 /* never comes here */
899 #elif defined (TARGET_PPC)
900 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
901 int is_write
, sigset_t
*old_set
,
904 TranslationBlock
*tb
;
908 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
909 #if defined(DEBUG_SIGNAL)
910 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
911 pc
, address
, is_write
, *(unsigned long *)old_set
);
913 /* XXX: locking issue */
914 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
918 /* see if it is an MMU fault */
919 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
921 return 0; /* not an MMU fault */
923 return 1; /* the MMU fault was handled without causing real CPU fault */
925 /* now we have a real cpu fault */
928 /* the PC is inside the translated code. It means that we have
929 a virtual CPU fault */
930 cpu_restore_state(tb
, env
, pc
, puc
);
934 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
935 env
->nip
, env
->error_code
, tb
);
937 /* we restore the process signal mask as the sigreturn should
938 do it (XXX: use sigsetjmp) */
939 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
940 do_raise_exception_err(env
->exception_index
, env
->error_code
);
942 /* activate soft MMU for this block */
943 cpu_resume_from_signal(env
, puc
);
945 /* never comes here */
949 #elif defined(TARGET_M68K)
950 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
951 int is_write
, sigset_t
*old_set
,
954 TranslationBlock
*tb
;
958 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
959 #if defined(DEBUG_SIGNAL)
960 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
961 pc
, address
, is_write
, *(unsigned long *)old_set
);
963 /* XXX: locking issue */
964 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
967 /* see if it is an MMU fault */
968 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
970 return 0; /* not an MMU fault */
972 return 1; /* the MMU fault was handled without causing real CPU fault */
973 /* now we have a real cpu fault */
976 /* the PC is inside the translated code. It means that we have
977 a virtual CPU fault */
978 cpu_restore_state(tb
, env
, pc
, puc
);
980 /* we restore the process signal mask as the sigreturn should
981 do it (XXX: use sigsetjmp) */
982 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
984 /* never comes here */
988 #elif defined (TARGET_MIPS)
989 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
990 int is_write
, sigset_t
*old_set
,
993 TranslationBlock
*tb
;
997 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
998 #if defined(DEBUG_SIGNAL)
999 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1000 pc
, address
, is_write
, *(unsigned long *)old_set
);
1002 /* XXX: locking issue */
1003 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1007 /* see if it is an MMU fault */
1008 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1010 return 0; /* not an MMU fault */
1012 return 1; /* the MMU fault was handled without causing real CPU fault */
1014 /* now we have a real cpu fault */
1015 tb
= tb_find_pc(pc
);
1017 /* the PC is inside the translated code. It means that we have
1018 a virtual CPU fault */
1019 cpu_restore_state(tb
, env
, pc
, puc
);
1023 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1024 env
->PC
, env
->error_code
, tb
);
1026 /* we restore the process signal mask as the sigreturn should
1027 do it (XXX: use sigsetjmp) */
1028 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1029 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1031 /* activate soft MMU for this block */
1032 cpu_resume_from_signal(env
, puc
);
1034 /* never comes here */
1038 #elif defined (TARGET_SH4)
1039 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1040 int is_write
, sigset_t
*old_set
,
1043 TranslationBlock
*tb
;
1047 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1048 #if defined(DEBUG_SIGNAL)
1049 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1050 pc
, address
, is_write
, *(unsigned long *)old_set
);
1052 /* XXX: locking issue */
1053 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1057 /* see if it is an MMU fault */
1058 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1060 return 0; /* not an MMU fault */
1062 return 1; /* the MMU fault was handled without causing real CPU fault */
1064 /* now we have a real cpu fault */
1065 tb
= tb_find_pc(pc
);
1067 /* the PC is inside the translated code. It means that we have
1068 a virtual CPU fault */
1069 cpu_restore_state(tb
, env
, pc
, puc
);
1072 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1073 env
->nip
, env
->error_code
, tb
);
1075 /* we restore the process signal mask as the sigreturn should
1076 do it (XXX: use sigsetjmp) */
1077 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1079 /* never comes here */
1083 #elif defined (TARGET_ALPHA)
1084 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1085 int is_write
, sigset_t
*old_set
,
1088 TranslationBlock
*tb
;
1092 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1093 #if defined(DEBUG_SIGNAL)
1094 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1095 pc
, address
, is_write
, *(unsigned long *)old_set
);
1097 /* XXX: locking issue */
1098 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1102 /* see if it is an MMU fault */
1103 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1105 return 0; /* not an MMU fault */
1107 return 1; /* the MMU fault was handled without causing real CPU fault */
1109 /* now we have a real cpu fault */
1110 tb
= tb_find_pc(pc
);
1112 /* the PC is inside the translated code. It means that we have
1113 a virtual CPU fault */
1114 cpu_restore_state(tb
, env
, pc
, puc
);
1117 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1118 env
->nip
, env
->error_code
, tb
);
1120 /* we restore the process signal mask as the sigreturn should
1121 do it (XXX: use sigsetjmp) */
1122 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1124 /* never comes here */
1127 #elif defined (TARGET_CRIS)
1128 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1129 int is_write
, sigset_t
*old_set
,
1132 TranslationBlock
*tb
;
1136 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1137 #if defined(DEBUG_SIGNAL)
1138 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1139 pc
, address
, is_write
, *(unsigned long *)old_set
);
1141 /* XXX: locking issue */
1142 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1146 /* see if it is an MMU fault */
1147 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1149 return 0; /* not an MMU fault */
1151 return 1; /* the MMU fault was handled without causing real CPU fault */
1153 /* now we have a real cpu fault */
1154 tb
= tb_find_pc(pc
);
1156 /* the PC is inside the translated code. It means that we have
1157 a virtual CPU fault */
1158 cpu_restore_state(tb
, env
, pc
, puc
);
1160 /* we restore the process signal mask as the sigreturn should
1161 do it (XXX: use sigsetjmp) */
1162 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1164 /* never comes here */
1169 #error unsupported target CPU
1172 #if defined(__i386__)
1174 #if defined(__APPLE__)
1175 # include <sys/ucontext.h>
1177 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1178 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1179 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1181 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1182 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1183 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1186 int cpu_signal_handler(int host_signum
, void *pinfo
,
1189 siginfo_t
*info
= pinfo
;
1190 struct ucontext
*uc
= puc
;
1198 #define REG_TRAPNO TRAPNO
1201 trapno
= TRAP_sig(uc
);
1202 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1204 (ERROR_sig(uc
) >> 1) & 1 : 0,
1205 &uc
->uc_sigmask
, puc
);
1208 #elif defined(__x86_64__)
1210 int cpu_signal_handler(int host_signum
, void *pinfo
,
1213 siginfo_t
*info
= pinfo
;
1214 struct ucontext
*uc
= puc
;
1217 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1218 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1219 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1220 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1221 &uc
->uc_sigmask
, puc
);
1224 #elif defined(__powerpc__)
1226 /***********************************************************************
1227 * signal context platform-specific definitions
1231 /* All Registers access - only for local access */
1232 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1233 /* Gpr Registers access */
1234 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1235 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1236 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1237 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1238 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1239 # define LR_sig(context) REG_sig(link, context) /* Link register */
1240 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1241 /* Float Registers access */
1242 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1243 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1244 /* Exception Registers access */
1245 # define DAR_sig(context) REG_sig(dar, context)
1246 # define DSISR_sig(context) REG_sig(dsisr, context)
1247 # define TRAP_sig(context) REG_sig(trap, context)
1251 # include <sys/ucontext.h>
1252 typedef struct ucontext SIGCONTEXT
;
1253 /* All Registers access - only for local access */
1254 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1255 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1256 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1257 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1258 /* Gpr Registers access */
1259 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1260 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1261 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1262 # define CTR_sig(context) REG_sig(ctr, context)
1263 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1264 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1265 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1266 /* Float Registers access */
1267 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1268 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1269 /* Exception Registers access */
1270 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1271 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1272 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1273 #endif /* __APPLE__ */
1275 int cpu_signal_handler(int host_signum
, void *pinfo
,
1278 siginfo_t
*info
= pinfo
;
1279 struct ucontext
*uc
= puc
;
1287 if (DSISR_sig(uc
) & 0x00800000)
1290 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1293 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1294 is_write
, &uc
->uc_sigmask
, puc
);
1297 #elif defined(__alpha__)
1299 int cpu_signal_handler(int host_signum
, void *pinfo
,
1302 siginfo_t
*info
= pinfo
;
1303 struct ucontext
*uc
= puc
;
1304 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1305 uint32_t insn
= *pc
;
1308 /* XXX: need kernel patch to get write flag faster */
1309 switch (insn
>> 26) {
1324 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1325 is_write
, &uc
->uc_sigmask
, puc
);
1327 #elif defined(__sparc__)
1329 int cpu_signal_handler(int host_signum
, void *pinfo
,
1332 siginfo_t
*info
= pinfo
;
1335 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1336 uint32_t *regs
= (uint32_t *)(info
+ 1);
1337 void *sigmask
= (regs
+ 20);
1338 /* XXX: is there a standard glibc define ? */
1339 unsigned long pc
= regs
[1];
1342 struct sigcontext
*sc
= puc
;
1343 unsigned long pc
= sc
->sigc_regs
.tpc
;
1344 void *sigmask
= (void *)sc
->sigc_mask
;
1345 #elif defined(__OpenBSD__)
1346 struct sigcontext
*uc
= puc
;
1347 unsigned long pc
= uc
->sc_pc
;
1348 void *sigmask
= (void *)(long)uc
->sc_mask
;
1352 /* XXX: need kernel patch to get write flag faster */
1354 insn
= *(uint32_t *)pc
;
1355 if ((insn
>> 30) == 3) {
1356 switch((insn
>> 19) & 0x3f) {
1368 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1369 is_write
, sigmask
, NULL
);
1372 #elif defined(__arm__)
1374 int cpu_signal_handler(int host_signum
, void *pinfo
,
1377 siginfo_t
*info
= pinfo
;
1378 struct ucontext
*uc
= puc
;
1382 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1383 pc
= uc
->uc_mcontext
.gregs
[R15
];
1385 pc
= uc
->uc_mcontext
.arm_pc
;
1387 /* XXX: compute is_write */
1389 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1391 &uc
->uc_sigmask
, puc
);
1394 #elif defined(__mc68000)
1396 int cpu_signal_handler(int host_signum
, void *pinfo
,
1399 siginfo_t
*info
= pinfo
;
1400 struct ucontext
*uc
= puc
;
1404 pc
= uc
->uc_mcontext
.gregs
[16];
1405 /* XXX: compute is_write */
1407 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1409 &uc
->uc_sigmask
, puc
);
1412 #elif defined(__ia64)
1415 /* This ought to be in <bits/siginfo.h>... */
1416 # define __ISR_VALID 1
1419 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1421 siginfo_t
*info
= pinfo
;
1422 struct ucontext
*uc
= puc
;
1426 ip
= uc
->uc_mcontext
.sc_ip
;
1427 switch (host_signum
) {
1433 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1434 /* ISR.W (write-access) is bit 33: */
1435 is_write
= (info
->si_isr
>> 33) & 1;
1441 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1443 &uc
->uc_sigmask
, puc
);
1446 #elif defined(__s390__)
1448 int cpu_signal_handler(int host_signum
, void *pinfo
,
1451 siginfo_t
*info
= pinfo
;
1452 struct ucontext
*uc
= puc
;
1456 pc
= uc
->uc_mcontext
.psw
.addr
;
1457 /* XXX: compute is_write */
1459 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1460 is_write
, &uc
->uc_sigmask
, puc
);
1463 #elif defined(__mips__)
1465 int cpu_signal_handler(int host_signum
, void *pinfo
,
1468 siginfo_t
*info
= pinfo
;
1469 struct ucontext
*uc
= puc
;
1470 greg_t pc
= uc
->uc_mcontext
.pc
;
1473 /* XXX: compute is_write */
1475 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1476 is_write
, &uc
->uc_sigmask
, puc
);
1479 #elif defined(__hppa__)
1481 int cpu_signal_handler(int host_signum
, void *pinfo
,
1484 struct siginfo
*info
= pinfo
;
1485 struct ucontext
*uc
= puc
;
1489 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1490 /* FIXME: compute is_write */
1492 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1494 &uc
->uc_sigmask
, puc
);
1499 #error host CPU specific signal handler needed
1503 #endif /* !defined(CONFIG_SOFTMMU) */