Fix off-by-one memory region sizes.
[qemu/mini2440.git] / cpu-exec.c
blobc3d99d418123c24b5cf6c58261fc0ebf1b8bc395
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
44 defined(TARGET_ALPHA)
45 /* XXX: unify with i386 target */
46 void cpu_loop_exit(void)
48 longjmp(env->jmp_env, 1);
50 #endif
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52 #define reg_T2
53 #endif
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState *env1, void *puc)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62 #endif
64 env = env1;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
73 #endif
74 longjmp(env->jmp_env, 1);
78 static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
80 unsigned int flags)
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
88 spin_lock(&tb_lock);
90 tb_invalidated_flag = 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
119 ptb1 = &tb->phys_hash_next;
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
145 tb_link_phys(tb, phys_pc, phys_page2);
147 found:
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
154 static inline TranslationBlock *tb_find_fast(void)
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
158 unsigned int flags;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163 #if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 cs_base = env->segs[R_CS].base;
167 pc = cs_base + env->eip;
168 #elif defined(TARGET_ARM)
169 flags = env->thumb | (env->vfp.vec_len << 1)
170 | (env->vfp.vec_stride << 4);
171 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172 flags |= (1 << 6);
173 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174 flags |= (1 << 7);
175 cs_base = 0;
176 pc = env->regs[15];
177 #elif defined(TARGET_SPARC)
178 #ifdef TARGET_SPARC64
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182 #else
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185 | env->psrs;
186 #endif
187 cs_base = env->npc;
188 pc = env->pc;
189 #elif defined(TARGET_PPC)
190 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191 (msr_se << MSR_SE) | (msr_le << MSR_LE);
192 cs_base = 0;
193 pc = env->nip;
194 #elif defined(TARGET_MIPS)
195 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196 cs_base = 0;
197 pc = env->PC;
198 #elif defined(TARGET_M68K)
199 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
200 | (env->sr & SR_S) /* Bit 13 */
201 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
202 cs_base = 0;
203 pc = env->pc;
204 #elif defined(TARGET_SH4)
205 flags = env->sr & (SR_MD | SR_RB);
206 cs_base = 0; /* XXXXX */
207 pc = env->pc;
208 #elif defined(TARGET_ALPHA)
209 flags = env->ps;
210 cs_base = 0;
211 pc = env->pc;
212 #else
213 #error unsupported CPU
214 #endif
215 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
216 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
217 tb->flags != flags, 0)) {
218 tb = tb_find_slow(pc, cs_base, flags);
219 /* Note: we do it here to avoid a gcc bug on Mac OS X when
220 doing it in tb_find_slow */
221 if (tb_invalidated_flag) {
222 /* as some TB could have been invalidated because
223 of memory exceptions while generating the code, we
224 must recompute the hash index here */
225 T0 = 0;
228 return tb;
232 /* main execution loop */
234 int cpu_exec(CPUState *env1)
236 #define DECLARE_HOST_REGS 1
237 #include "hostregs_helper.h"
238 #if defined(TARGET_SPARC)
239 #if defined(reg_REGWPTR)
240 uint32_t *saved_regwptr;
241 #endif
242 #endif
243 #if defined(__sparc__) && !defined(HOST_SOLARIS)
244 int saved_i7;
245 target_ulong tmp_T0;
246 #endif
247 int ret, interrupt_request;
248 void (*gen_func)(void);
249 TranslationBlock *tb;
250 uint8_t *tc_ptr;
252 #if defined(TARGET_I386)
253 /* handle exit of HALTED state */
254 if (env1->hflags & HF_HALTED_MASK) {
255 /* disable halt condition */
256 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
257 (env1->eflags & IF_MASK)) {
258 env1->hflags &= ~HF_HALTED_MASK;
259 } else {
260 return EXCP_HALTED;
263 #elif defined(TARGET_PPC)
264 if (env1->halted) {
265 if (env1->msr[MSR_EE] &&
266 (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
267 env1->halted = 0;
268 } else {
269 return EXCP_HALTED;
272 #elif defined(TARGET_SPARC)
273 if (env1->halted) {
274 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
275 (env1->psret != 0)) {
276 env1->halted = 0;
277 } else {
278 return EXCP_HALTED;
281 #elif defined(TARGET_ARM)
282 if (env1->halted) {
283 /* An interrupt wakes the CPU even if the I and F CPSR bits are
284 set. We use EXITTB to silently wake CPU without causing an
285 actual interrupt. */
286 if (env1->interrupt_request &
287 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB)) {
288 env1->halted = 0;
289 } else {
290 return EXCP_HALTED;
293 #elif defined(TARGET_MIPS)
294 if (env1->halted) {
295 if (env1->interrupt_request &
296 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
297 env1->halted = 0;
298 } else {
299 return EXCP_HALTED;
302 #elif defined(TARGET_ALPHA) || defined(TARGET_M68K)
303 if (env1->halted) {
304 if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
305 env1->halted = 0;
306 } else {
307 return EXCP_HALTED;
310 #endif
312 cpu_single_env = env1;
314 /* first we save global registers */
315 #define SAVE_HOST_REGS 1
316 #include "hostregs_helper.h"
317 env = env1;
318 #if defined(__sparc__) && !defined(HOST_SOLARIS)
319 /* we also save i7 because longjmp may not restore it */
320 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
321 #endif
323 #if defined(TARGET_I386)
324 env_to_regs();
325 /* put eflags in CPU temporary format */
326 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327 DF = 1 - (2 * ((env->eflags >> 10) & 1));
328 CC_OP = CC_OP_EFLAGS;
329 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
330 #elif defined(TARGET_ARM)
331 #elif defined(TARGET_SPARC)
332 #if defined(reg_REGWPTR)
333 saved_regwptr = REGWPTR;
334 #endif
335 #elif defined(TARGET_PPC)
336 #elif defined(TARGET_M68K)
337 env->cc_op = CC_OP_FLAGS;
338 env->cc_dest = env->sr & 0xf;
339 env->cc_x = (env->sr >> 4) & 1;
340 #elif defined(TARGET_MIPS)
341 #elif defined(TARGET_SH4)
342 /* XXXXX */
343 #elif defined(TARGET_ALPHA)
344 env_to_regs();
345 #else
346 #error unsupported target CPU
347 #endif
348 env->exception_index = -1;
350 /* prepare setjmp context for exception handling */
351 for(;;) {
352 if (setjmp(env->jmp_env) == 0) {
353 env->current_tb = NULL;
354 /* if an exception is pending, we execute it here */
355 if (env->exception_index >= 0) {
356 if (env->exception_index >= EXCP_INTERRUPT) {
357 /* exit request from the cpu execution loop */
358 ret = env->exception_index;
359 break;
360 } else if (env->user_mode_only) {
361 /* if user mode only, we simulate a fake exception
362 which will be handled outside the cpu execution
363 loop */
364 #if defined(TARGET_I386)
365 do_interrupt_user(env->exception_index,
366 env->exception_is_int,
367 env->error_code,
368 env->exception_next_eip);
369 #endif
370 ret = env->exception_index;
371 break;
372 } else {
373 #if defined(TARGET_I386)
374 /* simulate a real cpu exception. On i386, it can
375 trigger new exceptions, but we do not handle
376 double or triple faults yet. */
377 do_interrupt(env->exception_index,
378 env->exception_is_int,
379 env->error_code,
380 env->exception_next_eip, 0);
381 /* successfully delivered */
382 env->old_exception = -1;
383 #elif defined(TARGET_PPC)
384 do_interrupt(env);
385 #elif defined(TARGET_MIPS)
386 do_interrupt(env);
387 #elif defined(TARGET_SPARC)
388 do_interrupt(env->exception_index);
389 #elif defined(TARGET_ARM)
390 do_interrupt(env);
391 #elif defined(TARGET_SH4)
392 do_interrupt(env);
393 #elif defined(TARGET_ALPHA)
394 do_interrupt(env);
395 #elif defined(TARGET_M68K)
396 do_interrupt(0);
397 #endif
399 env->exception_index = -1;
401 #ifdef USE_KQEMU
402 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
403 int ret;
404 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
405 ret = kqemu_cpu_exec(env);
406 /* put eflags in CPU temporary format */
407 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
408 DF = 1 - (2 * ((env->eflags >> 10) & 1));
409 CC_OP = CC_OP_EFLAGS;
410 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
411 if (ret == 1) {
412 /* exception */
413 longjmp(env->jmp_env, 1);
414 } else if (ret == 2) {
415 /* softmmu execution needed */
416 } else {
417 if (env->interrupt_request != 0) {
418 /* hardware interrupt will be executed just after */
419 } else {
420 /* otherwise, we restart */
421 longjmp(env->jmp_env, 1);
425 #endif
427 T0 = 0; /* force lookup of first TB */
428 for(;;) {
429 #if defined(__sparc__) && !defined(HOST_SOLARIS)
430 /* g1 can be modified by some libc? functions */
431 tmp_T0 = T0;
432 #endif
433 interrupt_request = env->interrupt_request;
434 if (__builtin_expect(interrupt_request, 0)) {
435 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
436 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
437 env->exception_index = EXCP_DEBUG;
438 cpu_loop_exit();
440 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
441 defined(TARGET_PPC) || defined(TARGET_ALPHA)
442 if (interrupt_request & CPU_INTERRUPT_HALT) {
443 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
444 env->halted = 1;
445 env->exception_index = EXCP_HLT;
446 cpu_loop_exit();
448 #endif
449 #if defined(TARGET_I386)
450 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
451 !(env->hflags & HF_SMM_MASK)) {
452 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
453 do_smm_enter();
454 #if defined(__sparc__) && !defined(HOST_SOLARIS)
455 tmp_T0 = 0;
456 #else
457 T0 = 0;
458 #endif
459 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
460 (env->eflags & IF_MASK) &&
461 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
462 int intno;
463 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
464 intno = cpu_get_pic_interrupt(env);
465 if (loglevel & CPU_LOG_TB_IN_ASM) {
466 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
468 do_interrupt(intno, 0, 0, 0, 1);
469 /* ensure that no TB jump will be modified as
470 the program flow was changed */
471 #if defined(__sparc__) && !defined(HOST_SOLARIS)
472 tmp_T0 = 0;
473 #else
474 T0 = 0;
475 #endif
477 #elif defined(TARGET_PPC)
478 #if 0
479 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
480 cpu_ppc_reset(env);
482 #endif
483 if (interrupt_request & CPU_INTERRUPT_HARD) {
484 ppc_hw_interrupt(env);
485 if (env->pending_interrupts == 0)
486 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
487 #if defined(__sparc__) && !defined(HOST_SOLARIS)
488 tmp_T0 = 0;
489 #else
490 T0 = 0;
491 #endif
493 #elif defined(TARGET_MIPS)
494 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
495 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
496 (env->CP0_Status & (1 << CP0St_IE)) &&
497 !(env->CP0_Status & (1 << CP0St_EXL)) &&
498 !(env->CP0_Status & (1 << CP0St_ERL)) &&
499 !(env->hflags & MIPS_HFLAG_DM)) {
500 /* Raise it */
501 env->exception_index = EXCP_EXT_INTERRUPT;
502 env->error_code = 0;
503 do_interrupt(env);
504 #if defined(__sparc__) && !defined(HOST_SOLARIS)
505 tmp_T0 = 0;
506 #else
507 T0 = 0;
508 #endif
510 #elif defined(TARGET_SPARC)
511 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
512 (env->psret != 0)) {
513 int pil = env->interrupt_index & 15;
514 int type = env->interrupt_index & 0xf0;
516 if (((type == TT_EXTINT) &&
517 (pil == 15 || pil > env->psrpil)) ||
518 type != TT_EXTINT) {
519 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
520 do_interrupt(env->interrupt_index);
521 env->interrupt_index = 0;
522 #if defined(__sparc__) && !defined(HOST_SOLARIS)
523 tmp_T0 = 0;
524 #else
525 T0 = 0;
526 #endif
528 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
529 //do_interrupt(0, 0, 0, 0, 0);
530 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
532 #elif defined(TARGET_ARM)
533 if (interrupt_request & CPU_INTERRUPT_FIQ
534 && !(env->uncached_cpsr & CPSR_F)) {
535 env->exception_index = EXCP_FIQ;
536 do_interrupt(env);
538 if (interrupt_request & CPU_INTERRUPT_HARD
539 && !(env->uncached_cpsr & CPSR_I)) {
540 env->exception_index = EXCP_IRQ;
541 do_interrupt(env);
543 #elif defined(TARGET_SH4)
544 /* XXXXX */
545 #elif defined(TARGET_ALPHA)
546 if (interrupt_request & CPU_INTERRUPT_HARD) {
547 do_interrupt(env);
549 #elif defined(TARGET_M68K)
550 if (interrupt_request & CPU_INTERRUPT_HARD
551 && ((env->sr & SR_I) >> SR_I_SHIFT)
552 < env->pending_level) {
553 /* Real hardware gets the interrupt vector via an
554 IACK cycle at this point. Current emulated
555 hardware doesn't rely on this, so we
556 provide/save the vector when the interrupt is
557 first signalled. */
558 env->exception_index = env->pending_vector;
559 do_interrupt(1);
561 #endif
562 /* Don't use the cached interupt_request value,
563 do_interrupt may have updated the EXITTB flag. */
564 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
565 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
566 /* ensure that no TB jump will be modified as
567 the program flow was changed */
568 #if defined(__sparc__) && !defined(HOST_SOLARIS)
569 tmp_T0 = 0;
570 #else
571 T0 = 0;
572 #endif
574 if (interrupt_request & CPU_INTERRUPT_EXIT) {
575 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
576 env->exception_index = EXCP_INTERRUPT;
577 cpu_loop_exit();
580 #ifdef DEBUG_EXEC
581 if ((loglevel & CPU_LOG_TB_CPU)) {
582 #if defined(TARGET_I386)
583 /* restore flags in standard format */
584 #ifdef reg_EAX
585 env->regs[R_EAX] = EAX;
586 #endif
587 #ifdef reg_EBX
588 env->regs[R_EBX] = EBX;
589 #endif
590 #ifdef reg_ECX
591 env->regs[R_ECX] = ECX;
592 #endif
593 #ifdef reg_EDX
594 env->regs[R_EDX] = EDX;
595 #endif
596 #ifdef reg_ESI
597 env->regs[R_ESI] = ESI;
598 #endif
599 #ifdef reg_EDI
600 env->regs[R_EDI] = EDI;
601 #endif
602 #ifdef reg_EBP
603 env->regs[R_EBP] = EBP;
604 #endif
605 #ifdef reg_ESP
606 env->regs[R_ESP] = ESP;
607 #endif
608 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
609 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
610 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
611 #elif defined(TARGET_ARM)
612 cpu_dump_state(env, logfile, fprintf, 0);
613 #elif defined(TARGET_SPARC)
614 REGWPTR = env->regbase + (env->cwp * 16);
615 env->regwptr = REGWPTR;
616 cpu_dump_state(env, logfile, fprintf, 0);
617 #elif defined(TARGET_PPC)
618 cpu_dump_state(env, logfile, fprintf, 0);
619 #elif defined(TARGET_M68K)
620 cpu_m68k_flush_flags(env, env->cc_op);
621 env->cc_op = CC_OP_FLAGS;
622 env->sr = (env->sr & 0xffe0)
623 | env->cc_dest | (env->cc_x << 4);
624 cpu_dump_state(env, logfile, fprintf, 0);
625 #elif defined(TARGET_MIPS)
626 cpu_dump_state(env, logfile, fprintf, 0);
627 #elif defined(TARGET_SH4)
628 cpu_dump_state(env, logfile, fprintf, 0);
629 #elif defined(TARGET_ALPHA)
630 cpu_dump_state(env, logfile, fprintf, 0);
631 #else
632 #error unsupported target CPU
633 #endif
635 #endif
636 tb = tb_find_fast();
637 #ifdef DEBUG_EXEC
638 if ((loglevel & CPU_LOG_EXEC)) {
639 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
640 (long)tb->tc_ptr, tb->pc,
641 lookup_symbol(tb->pc));
643 #endif
644 #if defined(__sparc__) && !defined(HOST_SOLARIS)
645 T0 = tmp_T0;
646 #endif
647 /* see if we can patch the calling TB. When the TB
648 spans two pages, we cannot safely do a direct
649 jump. */
651 if (T0 != 0 &&
652 #if USE_KQEMU
653 (env->kqemu_enabled != 2) &&
654 #endif
655 tb->page_addr[1] == -1
656 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
657 && (tb->cflags & CF_CODE_COPY) ==
658 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
659 #endif
661 spin_lock(&tb_lock);
662 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
663 #if defined(USE_CODE_COPY)
664 /* propagates the FP use info */
665 ((TranslationBlock *)(T0 & ~3))->cflags |=
666 (tb->cflags & CF_FP_USED);
667 #endif
668 spin_unlock(&tb_lock);
671 tc_ptr = tb->tc_ptr;
672 env->current_tb = tb;
673 /* execute the generated code */
674 gen_func = (void *)tc_ptr;
675 #if defined(__sparc__)
676 __asm__ __volatile__("call %0\n\t"
677 "mov %%o7,%%i0"
678 : /* no outputs */
679 : "r" (gen_func)
680 : "i0", "i1", "i2", "i3", "i4", "i5",
681 "o0", "o1", "o2", "o3", "o4", "o5",
682 "l0", "l1", "l2", "l3", "l4", "l5",
683 "l6", "l7");
684 #elif defined(__arm__)
685 asm volatile ("mov pc, %0\n\t"
686 ".global exec_loop\n\t"
687 "exec_loop:\n\t"
688 : /* no outputs */
689 : "r" (gen_func)
690 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
691 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
693 if (!(tb->cflags & CF_CODE_COPY)) {
694 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
695 save_native_fp_state(env);
697 gen_func();
698 } else {
699 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
700 restore_native_fp_state(env);
702 /* we work with native eflags */
703 CC_SRC = cc_table[CC_OP].compute_all();
704 CC_OP = CC_OP_EFLAGS;
705 asm(".globl exec_loop\n"
706 "\n"
707 "debug1:\n"
708 " pushl %%ebp\n"
709 " fs movl %10, %9\n"
710 " fs movl %11, %%eax\n"
711 " andl $0x400, %%eax\n"
712 " fs orl %8, %%eax\n"
713 " pushl %%eax\n"
714 " popf\n"
715 " fs movl %%esp, %12\n"
716 " fs movl %0, %%eax\n"
717 " fs movl %1, %%ecx\n"
718 " fs movl %2, %%edx\n"
719 " fs movl %3, %%ebx\n"
720 " fs movl %4, %%esp\n"
721 " fs movl %5, %%ebp\n"
722 " fs movl %6, %%esi\n"
723 " fs movl %7, %%edi\n"
724 " fs jmp *%9\n"
725 "exec_loop:\n"
726 " fs movl %%esp, %4\n"
727 " fs movl %12, %%esp\n"
728 " fs movl %%eax, %0\n"
729 " fs movl %%ecx, %1\n"
730 " fs movl %%edx, %2\n"
731 " fs movl %%ebx, %3\n"
732 " fs movl %%ebp, %5\n"
733 " fs movl %%esi, %6\n"
734 " fs movl %%edi, %7\n"
735 " pushf\n"
736 " popl %%eax\n"
737 " movl %%eax, %%ecx\n"
738 " andl $0x400, %%ecx\n"
739 " shrl $9, %%ecx\n"
740 " andl $0x8d5, %%eax\n"
741 " fs movl %%eax, %8\n"
742 " movl $1, %%eax\n"
743 " subl %%ecx, %%eax\n"
744 " fs movl %%eax, %11\n"
745 " fs movl %9, %%ebx\n" /* get T0 value */
746 " popl %%ebp\n"
748 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
749 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
750 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
751 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
752 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
753 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
754 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
755 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
756 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
757 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
758 "a" (gen_func),
759 "m" (*(uint8_t *)offsetof(CPUState, df)),
760 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
761 : "%ecx", "%edx"
765 #elif defined(__ia64)
766 struct fptr {
767 void *ip;
768 void *gp;
769 } fp;
771 fp.ip = tc_ptr;
772 fp.gp = code_gen_buffer + 2 * (1 << 20);
773 (*(void (*)(void)) &fp)();
774 #else
775 gen_func();
776 #endif
777 env->current_tb = NULL;
778 /* reset soft MMU for next block (it can currently
779 only be set by a memory fault) */
780 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
781 if (env->hflags & HF_SOFTMMU_MASK) {
782 env->hflags &= ~HF_SOFTMMU_MASK;
783 /* do not allow linking to another block */
784 T0 = 0;
786 #endif
787 #if defined(USE_KQEMU)
788 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
789 if (kqemu_is_ok(env) &&
790 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
791 cpu_loop_exit();
793 #endif
795 } else {
796 env_to_regs();
798 } /* for(;;) */
801 #if defined(TARGET_I386)
802 #if defined(USE_CODE_COPY)
803 if (env->native_fp_regs) {
804 save_native_fp_state(env);
806 #endif
807 /* restore flags in standard format */
808 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
809 #elif defined(TARGET_ARM)
810 /* XXX: Save/restore host fpu exception state?. */
811 #elif defined(TARGET_SPARC)
812 #if defined(reg_REGWPTR)
813 REGWPTR = saved_regwptr;
814 #endif
815 #elif defined(TARGET_PPC)
816 #elif defined(TARGET_M68K)
817 cpu_m68k_flush_flags(env, env->cc_op);
818 env->cc_op = CC_OP_FLAGS;
819 env->sr = (env->sr & 0xffe0)
820 | env->cc_dest | (env->cc_x << 4);
821 #elif defined(TARGET_MIPS)
822 #elif defined(TARGET_SH4)
823 #elif defined(TARGET_ALPHA)
824 /* XXXXX */
825 #else
826 #error unsupported target CPU
827 #endif
829 /* restore global registers */
830 #if defined(__sparc__) && !defined(HOST_SOLARIS)
831 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
832 #endif
833 #include "hostregs_helper.h"
835 /* fail safe : never use cpu_single_env outside cpu_exec() */
836 cpu_single_env = NULL;
837 return ret;
840 /* must only be called from the generated code as an exception can be
841 generated */
842 void tb_invalidate_page_range(target_ulong start, target_ulong end)
844 /* XXX: cannot enable it yet because it yields to MMU exception
845 where NIP != read address on PowerPC */
846 #if 0
847 target_ulong phys_addr;
848 phys_addr = get_phys_addr_code(env, start);
849 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
850 #endif
853 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
855 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
857 CPUX86State *saved_env;
859 saved_env = env;
860 env = s;
861 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
862 selector &= 0xffff;
863 cpu_x86_load_seg_cache(env, seg_reg, selector,
864 (selector << 4), 0xffff, 0);
865 } else {
866 load_seg(seg_reg, selector);
868 env = saved_env;
871 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
873 CPUX86State *saved_env;
875 saved_env = env;
876 env = s;
878 helper_fsave((target_ulong)ptr, data32);
880 env = saved_env;
883 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
885 CPUX86State *saved_env;
887 saved_env = env;
888 env = s;
890 helper_frstor((target_ulong)ptr, data32);
892 env = saved_env;
895 #endif /* TARGET_I386 */
897 #if !defined(CONFIG_SOFTMMU)
899 #if defined(TARGET_I386)
901 /* 'pc' is the host PC at which the exception was raised. 'address' is
902 the effective address of the memory exception. 'is_write' is 1 if a
903 write caused the exception and otherwise 0'. 'old_set' is the
904 signal set which should be restored */
905 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
906 int is_write, sigset_t *old_set,
907 void *puc)
909 TranslationBlock *tb;
910 int ret;
912 if (cpu_single_env)
913 env = cpu_single_env; /* XXX: find a correct solution for multithread */
914 #if defined(DEBUG_SIGNAL)
915 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
916 pc, address, is_write, *(unsigned long *)old_set);
917 #endif
918 /* XXX: locking issue */
919 if (is_write && page_unprotect(h2g(address), pc, puc)) {
920 return 1;
923 /* see if it is an MMU fault */
924 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
925 ((env->hflags & HF_CPL_MASK) == 3), 0);
926 if (ret < 0)
927 return 0; /* not an MMU fault */
928 if (ret == 0)
929 return 1; /* the MMU fault was handled without causing real CPU fault */
930 /* now we have a real cpu fault */
931 tb = tb_find_pc(pc);
932 if (tb) {
933 /* the PC is inside the translated code. It means that we have
934 a virtual CPU fault */
935 cpu_restore_state(tb, env, pc, puc);
937 if (ret == 1) {
938 #if 0
939 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
940 env->eip, env->cr[2], env->error_code);
941 #endif
942 /* we restore the process signal mask as the sigreturn should
943 do it (XXX: use sigsetjmp) */
944 sigprocmask(SIG_SETMASK, old_set, NULL);
945 raise_exception_err(env->exception_index, env->error_code);
946 } else {
947 /* activate soft MMU for this block */
948 env->hflags |= HF_SOFTMMU_MASK;
949 cpu_resume_from_signal(env, puc);
951 /* never comes here */
952 return 1;
955 #elif defined(TARGET_ARM)
956 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
957 int is_write, sigset_t *old_set,
958 void *puc)
960 TranslationBlock *tb;
961 int ret;
963 if (cpu_single_env)
964 env = cpu_single_env; /* XXX: find a correct solution for multithread */
965 #if defined(DEBUG_SIGNAL)
966 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
967 pc, address, is_write, *(unsigned long *)old_set);
968 #endif
969 /* XXX: locking issue */
970 if (is_write && page_unprotect(h2g(address), pc, puc)) {
971 return 1;
973 /* see if it is an MMU fault */
974 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
975 if (ret < 0)
976 return 0; /* not an MMU fault */
977 if (ret == 0)
978 return 1; /* the MMU fault was handled without causing real CPU fault */
979 /* now we have a real cpu fault */
980 tb = tb_find_pc(pc);
981 if (tb) {
982 /* the PC is inside the translated code. It means that we have
983 a virtual CPU fault */
984 cpu_restore_state(tb, env, pc, puc);
986 /* we restore the process signal mask as the sigreturn should
987 do it (XXX: use sigsetjmp) */
988 sigprocmask(SIG_SETMASK, old_set, NULL);
989 cpu_loop_exit();
991 #elif defined(TARGET_SPARC)
992 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
993 int is_write, sigset_t *old_set,
994 void *puc)
996 TranslationBlock *tb;
997 int ret;
999 if (cpu_single_env)
1000 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1001 #if defined(DEBUG_SIGNAL)
1002 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1003 pc, address, is_write, *(unsigned long *)old_set);
1004 #endif
1005 /* XXX: locking issue */
1006 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1007 return 1;
1009 /* see if it is an MMU fault */
1010 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1011 if (ret < 0)
1012 return 0; /* not an MMU fault */
1013 if (ret == 0)
1014 return 1; /* the MMU fault was handled without causing real CPU fault */
1015 /* now we have a real cpu fault */
1016 tb = tb_find_pc(pc);
1017 if (tb) {
1018 /* the PC is inside the translated code. It means that we have
1019 a virtual CPU fault */
1020 cpu_restore_state(tb, env, pc, puc);
1022 /* we restore the process signal mask as the sigreturn should
1023 do it (XXX: use sigsetjmp) */
1024 sigprocmask(SIG_SETMASK, old_set, NULL);
1025 cpu_loop_exit();
1027 #elif defined (TARGET_PPC)
1028 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1029 int is_write, sigset_t *old_set,
1030 void *puc)
1032 TranslationBlock *tb;
1033 int ret;
1035 if (cpu_single_env)
1036 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1037 #if defined(DEBUG_SIGNAL)
1038 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1039 pc, address, is_write, *(unsigned long *)old_set);
1040 #endif
1041 /* XXX: locking issue */
1042 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1043 return 1;
1046 /* see if it is an MMU fault */
1047 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1048 if (ret < 0)
1049 return 0; /* not an MMU fault */
1050 if (ret == 0)
1051 return 1; /* the MMU fault was handled without causing real CPU fault */
1053 /* now we have a real cpu fault */
1054 tb = tb_find_pc(pc);
1055 if (tb) {
1056 /* the PC is inside the translated code. It means that we have
1057 a virtual CPU fault */
1058 cpu_restore_state(tb, env, pc, puc);
1060 if (ret == 1) {
1061 #if 0
1062 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1063 env->nip, env->error_code, tb);
1064 #endif
1065 /* we restore the process signal mask as the sigreturn should
1066 do it (XXX: use sigsetjmp) */
1067 sigprocmask(SIG_SETMASK, old_set, NULL);
1068 do_raise_exception_err(env->exception_index, env->error_code);
1069 } else {
1070 /* activate soft MMU for this block */
1071 cpu_resume_from_signal(env, puc);
1073 /* never comes here */
1074 return 1;
1077 #elif defined(TARGET_M68K)
1078 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1079 int is_write, sigset_t *old_set,
1080 void *puc)
1082 TranslationBlock *tb;
1083 int ret;
1085 if (cpu_single_env)
1086 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1087 #if defined(DEBUG_SIGNAL)
1088 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1089 pc, address, is_write, *(unsigned long *)old_set);
1090 #endif
1091 /* XXX: locking issue */
1092 if (is_write && page_unprotect(address, pc, puc)) {
1093 return 1;
1095 /* see if it is an MMU fault */
1096 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1097 if (ret < 0)
1098 return 0; /* not an MMU fault */
1099 if (ret == 0)
1100 return 1; /* the MMU fault was handled without causing real CPU fault */
1101 /* now we have a real cpu fault */
1102 tb = tb_find_pc(pc);
1103 if (tb) {
1104 /* the PC is inside the translated code. It means that we have
1105 a virtual CPU fault */
1106 cpu_restore_state(tb, env, pc, puc);
1108 /* we restore the process signal mask as the sigreturn should
1109 do it (XXX: use sigsetjmp) */
1110 sigprocmask(SIG_SETMASK, old_set, NULL);
1111 cpu_loop_exit();
1112 /* never comes here */
1113 return 1;
1116 #elif defined (TARGET_MIPS)
1117 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1118 int is_write, sigset_t *old_set,
1119 void *puc)
1121 TranslationBlock *tb;
1122 int ret;
1124 if (cpu_single_env)
1125 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1126 #if defined(DEBUG_SIGNAL)
1127 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1128 pc, address, is_write, *(unsigned long *)old_set);
1129 #endif
1130 /* XXX: locking issue */
1131 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1132 return 1;
1135 /* see if it is an MMU fault */
1136 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1137 if (ret < 0)
1138 return 0; /* not an MMU fault */
1139 if (ret == 0)
1140 return 1; /* the MMU fault was handled without causing real CPU fault */
1142 /* now we have a real cpu fault */
1143 tb = tb_find_pc(pc);
1144 if (tb) {
1145 /* the PC is inside the translated code. It means that we have
1146 a virtual CPU fault */
1147 cpu_restore_state(tb, env, pc, puc);
1149 if (ret == 1) {
1150 #if 0
1151 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1152 env->PC, env->error_code, tb);
1153 #endif
1154 /* we restore the process signal mask as the sigreturn should
1155 do it (XXX: use sigsetjmp) */
1156 sigprocmask(SIG_SETMASK, old_set, NULL);
1157 do_raise_exception_err(env->exception_index, env->error_code);
1158 } else {
1159 /* activate soft MMU for this block */
1160 cpu_resume_from_signal(env, puc);
1162 /* never comes here */
1163 return 1;
1166 #elif defined (TARGET_SH4)
1167 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1168 int is_write, sigset_t *old_set,
1169 void *puc)
1171 TranslationBlock *tb;
1172 int ret;
1174 if (cpu_single_env)
1175 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1176 #if defined(DEBUG_SIGNAL)
1177 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1178 pc, address, is_write, *(unsigned long *)old_set);
1179 #endif
1180 /* XXX: locking issue */
1181 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1182 return 1;
1185 /* see if it is an MMU fault */
1186 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1187 if (ret < 0)
1188 return 0; /* not an MMU fault */
1189 if (ret == 0)
1190 return 1; /* the MMU fault was handled without causing real CPU fault */
1192 /* now we have a real cpu fault */
1193 tb = tb_find_pc(pc);
1194 if (tb) {
1195 /* the PC is inside the translated code. It means that we have
1196 a virtual CPU fault */
1197 cpu_restore_state(tb, env, pc, puc);
1199 #if 0
1200 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1201 env->nip, env->error_code, tb);
1202 #endif
1203 /* we restore the process signal mask as the sigreturn should
1204 do it (XXX: use sigsetjmp) */
1205 sigprocmask(SIG_SETMASK, old_set, NULL);
1206 cpu_loop_exit();
1207 /* never comes here */
1208 return 1;
1211 #elif defined (TARGET_ALPHA)
1212 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1213 int is_write, sigset_t *old_set,
1214 void *puc)
1216 TranslationBlock *tb;
1217 int ret;
1219 if (cpu_single_env)
1220 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1221 #if defined(DEBUG_SIGNAL)
1222 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1223 pc, address, is_write, *(unsigned long *)old_set);
1224 #endif
1225 /* XXX: locking issue */
1226 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1227 return 1;
1230 /* see if it is an MMU fault */
1231 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1232 if (ret < 0)
1233 return 0; /* not an MMU fault */
1234 if (ret == 0)
1235 return 1; /* the MMU fault was handled without causing real CPU fault */
1237 /* now we have a real cpu fault */
1238 tb = tb_find_pc(pc);
1239 if (tb) {
1240 /* the PC is inside the translated code. It means that we have
1241 a virtual CPU fault */
1242 cpu_restore_state(tb, env, pc, puc);
1244 #if 0
1245 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1246 env->nip, env->error_code, tb);
1247 #endif
1248 /* we restore the process signal mask as the sigreturn should
1249 do it (XXX: use sigsetjmp) */
1250 sigprocmask(SIG_SETMASK, old_set, NULL);
1251 cpu_loop_exit();
1252 /* never comes here */
1253 return 1;
1255 #else
1256 #error unsupported target CPU
1257 #endif
1259 #if defined(__i386__)
1261 #if defined(__APPLE__)
1262 # include <sys/ucontext.h>
1264 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1265 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1266 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1267 #else
1268 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1269 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1270 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1271 #endif
1273 #if defined(USE_CODE_COPY)
1274 static void cpu_send_trap(unsigned long pc, int trap,
1275 struct ucontext *uc)
1277 TranslationBlock *tb;
1279 if (cpu_single_env)
1280 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1281 /* now we have a real cpu fault */
1282 tb = tb_find_pc(pc);
1283 if (tb) {
1284 /* the PC is inside the translated code. It means that we have
1285 a virtual CPU fault */
1286 cpu_restore_state(tb, env, pc, uc);
1288 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1289 raise_exception_err(trap, env->error_code);
1291 #endif
1293 int cpu_signal_handler(int host_signum, void *pinfo,
1294 void *puc)
1296 siginfo_t *info = pinfo;
1297 struct ucontext *uc = puc;
1298 unsigned long pc;
1299 int trapno;
1301 #ifndef REG_EIP
1302 /* for glibc 2.1 */
1303 #define REG_EIP EIP
1304 #define REG_ERR ERR
1305 #define REG_TRAPNO TRAPNO
1306 #endif
1307 pc = EIP_sig(uc);
1308 trapno = TRAP_sig(uc);
1309 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1310 if (trapno == 0x00 || trapno == 0x05) {
1311 /* send division by zero or bound exception */
1312 cpu_send_trap(pc, trapno, uc);
1313 return 1;
1314 } else
1315 #endif
1316 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1317 trapno == 0xe ?
1318 (ERROR_sig(uc) >> 1) & 1 : 0,
1319 &uc->uc_sigmask, puc);
1322 #elif defined(__x86_64__)
1324 int cpu_signal_handler(int host_signum, void *pinfo,
1325 void *puc)
1327 siginfo_t *info = pinfo;
1328 struct ucontext *uc = puc;
1329 unsigned long pc;
1331 pc = uc->uc_mcontext.gregs[REG_RIP];
1332 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1333 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1334 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1335 &uc->uc_sigmask, puc);
1338 #elif defined(__powerpc__)
1340 /***********************************************************************
1341 * signal context platform-specific definitions
1342 * From Wine
1344 #ifdef linux
1345 /* All Registers access - only for local access */
1346 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1347 /* Gpr Registers access */
1348 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1349 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1350 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1351 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1352 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1353 # define LR_sig(context) REG_sig(link, context) /* Link register */
1354 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1355 /* Float Registers access */
1356 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1357 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1358 /* Exception Registers access */
1359 # define DAR_sig(context) REG_sig(dar, context)
1360 # define DSISR_sig(context) REG_sig(dsisr, context)
1361 # define TRAP_sig(context) REG_sig(trap, context)
1362 #endif /* linux */
1364 #ifdef __APPLE__
1365 # include <sys/ucontext.h>
1366 typedef struct ucontext SIGCONTEXT;
1367 /* All Registers access - only for local access */
1368 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1369 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1370 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1371 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1372 /* Gpr Registers access */
1373 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1374 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1375 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1376 # define CTR_sig(context) REG_sig(ctr, context)
1377 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1378 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1379 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1380 /* Float Registers access */
1381 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1382 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1383 /* Exception Registers access */
1384 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1385 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1386 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1387 #endif /* __APPLE__ */
1389 int cpu_signal_handler(int host_signum, void *pinfo,
1390 void *puc)
1392 siginfo_t *info = pinfo;
1393 struct ucontext *uc = puc;
1394 unsigned long pc;
1395 int is_write;
1397 pc = IAR_sig(uc);
1398 is_write = 0;
1399 #if 0
1400 /* ppc 4xx case */
1401 if (DSISR_sig(uc) & 0x00800000)
1402 is_write = 1;
1403 #else
1404 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1405 is_write = 1;
1406 #endif
1407 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1408 is_write, &uc->uc_sigmask, puc);
1411 #elif defined(__alpha__)
1413 int cpu_signal_handler(int host_signum, void *pinfo,
1414 void *puc)
1416 siginfo_t *info = pinfo;
1417 struct ucontext *uc = puc;
1418 uint32_t *pc = uc->uc_mcontext.sc_pc;
1419 uint32_t insn = *pc;
1420 int is_write = 0;
1422 /* XXX: need kernel patch to get write flag faster */
1423 switch (insn >> 26) {
1424 case 0x0d: // stw
1425 case 0x0e: // stb
1426 case 0x0f: // stq_u
1427 case 0x24: // stf
1428 case 0x25: // stg
1429 case 0x26: // sts
1430 case 0x27: // stt
1431 case 0x2c: // stl
1432 case 0x2d: // stq
1433 case 0x2e: // stl_c
1434 case 0x2f: // stq_c
1435 is_write = 1;
1438 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1439 is_write, &uc->uc_sigmask, puc);
1441 #elif defined(__sparc__)
1443 int cpu_signal_handler(int host_signum, void *pinfo,
1444 void *puc)
1446 siginfo_t *info = pinfo;
1447 uint32_t *regs = (uint32_t *)(info + 1);
1448 void *sigmask = (regs + 20);
1449 unsigned long pc;
1450 int is_write;
1451 uint32_t insn;
1453 /* XXX: is there a standard glibc define ? */
1454 pc = regs[1];
1455 /* XXX: need kernel patch to get write flag faster */
1456 is_write = 0;
1457 insn = *(uint32_t *)pc;
1458 if ((insn >> 30) == 3) {
1459 switch((insn >> 19) & 0x3f) {
1460 case 0x05: // stb
1461 case 0x06: // sth
1462 case 0x04: // st
1463 case 0x07: // std
1464 case 0x24: // stf
1465 case 0x27: // stdf
1466 case 0x25: // stfsr
1467 is_write = 1;
1468 break;
1471 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1472 is_write, sigmask, NULL);
1475 #elif defined(__arm__)
1477 int cpu_signal_handler(int host_signum, void *pinfo,
1478 void *puc)
1480 siginfo_t *info = pinfo;
1481 struct ucontext *uc = puc;
1482 unsigned long pc;
1483 int is_write;
1485 pc = uc->uc_mcontext.gregs[R15];
1486 /* XXX: compute is_write */
1487 is_write = 0;
1488 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1489 is_write,
1490 &uc->uc_sigmask, puc);
1493 #elif defined(__mc68000)
1495 int cpu_signal_handler(int host_signum, void *pinfo,
1496 void *puc)
1498 siginfo_t *info = pinfo;
1499 struct ucontext *uc = puc;
1500 unsigned long pc;
1501 int is_write;
1503 pc = uc->uc_mcontext.gregs[16];
1504 /* XXX: compute is_write */
1505 is_write = 0;
1506 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1507 is_write,
1508 &uc->uc_sigmask, puc);
1511 #elif defined(__ia64)
1513 #ifndef __ISR_VALID
1514 /* This ought to be in <bits/siginfo.h>... */
1515 # define __ISR_VALID 1
1516 #endif
1518 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1520 siginfo_t *info = pinfo;
1521 struct ucontext *uc = puc;
1522 unsigned long ip;
1523 int is_write = 0;
1525 ip = uc->uc_mcontext.sc_ip;
1526 switch (host_signum) {
1527 case SIGILL:
1528 case SIGFPE:
1529 case SIGSEGV:
1530 case SIGBUS:
1531 case SIGTRAP:
1532 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1533 /* ISR.W (write-access) is bit 33: */
1534 is_write = (info->si_isr >> 33) & 1;
1535 break;
1537 default:
1538 break;
1540 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1541 is_write,
1542 &uc->uc_sigmask, puc);
1545 #elif defined(__s390__)
1547 int cpu_signal_handler(int host_signum, void *pinfo,
1548 void *puc)
1550 siginfo_t *info = pinfo;
1551 struct ucontext *uc = puc;
1552 unsigned long pc;
1553 int is_write;
1555 pc = uc->uc_mcontext.psw.addr;
1556 /* XXX: compute is_write */
1557 is_write = 0;
1558 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1559 is_write, &uc->uc_sigmask, puc);
1562 #elif defined(__mips__)
1564 int cpu_signal_handler(int host_signum, void *pinfo,
1565 void *puc)
1567 siginfo_t *info = pinfo;
1568 struct ucontext *uc = puc;
1569 greg_t pc = uc->uc_mcontext.pc;
1570 int is_write;
1572 /* XXX: compute is_write */
1573 is_write = 0;
1574 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1575 is_write, &uc->uc_sigmask, puc);
1578 #else
1580 #error host CPU specific signal handler needed
1582 #endif
1584 #endif /* !defined(CONFIG_SOFTMMU) */