OHCI USB host emulation.
[qemu/mini2440.git] / hw / slavio_timer.c
blobd75a76a636f6f1b0670c639c56a2be279b31e160
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 //#define DEBUG_TIMER
28 #ifdef DEBUG_TIMER
29 #define DPRINTF(fmt, args...) \
30 do { printf("TIMER: " fmt , ##args); } while (0)
31 #else
32 #define DPRINTF(fmt, args...)
33 #endif
36 * Registers of hardware timer in sun4m.
38 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43 * are zero. Bit 31 is 1 when count has been reached.
45 * Per-CPU timers interrupt local CPU, system timer uses normal
46 * interrupt routing.
50 typedef struct SLAVIO_TIMERState {
51 uint32_t limit, count, counthigh;
52 int64_t count_load_time;
53 int64_t expire_time;
54 int64_t stop_time, tick_offset;
55 QEMUTimer *irq_timer;
56 int irq;
57 int reached, stopped;
58 int mode; // 0 = processor, 1 = user, 2 = system
59 unsigned int cpu;
60 } SLAVIO_TIMERState;
62 #define TIMER_MAXADDR 0x1f
63 #define CNT_FREQ 2000000
65 // Update count, set irq, update expire_time
66 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
68 int out;
69 int64_t diff, ticks, count;
70 uint32_t limit;
72 // There are three clock tick units: CPU ticks, register units
73 // (nanoseconds), and counter ticks (500 ns).
74 if (s->mode == 1 && s->stopped)
75 ticks = s->stop_time;
76 else
77 ticks = qemu_get_clock(vm_clock) - s->tick_offset;
79 out = (ticks > s->expire_time);
80 if (out)
81 s->reached = 0x80000000;
82 if (!s->limit)
83 limit = 0x7fffffff;
84 else
85 limit = s->limit;
87 // Convert register units to counter ticks
88 limit = limit >> 9;
90 // Convert cpu ticks to counter ticks
91 diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
93 // Calculate what the counter should be, convert to register
94 // units
95 count = diff % limit;
96 s->count = count << 9;
97 s->counthigh = count >> 22;
99 // Expire time: CPU ticks left to next interrupt
100 // Convert remaining counter ticks to CPU ticks
101 s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
103 DPRINTF("irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
105 if (s->mode != 1)
106 pic_set_irq_cpu(s->irq, out, s->cpu);
109 // timer callback
110 static void slavio_timer_irq(void *opaque)
112 SLAVIO_TIMERState *s = opaque;
114 if (!s->irq_timer)
115 return;
116 slavio_timer_get_out(s);
117 if (s->mode != 1)
118 qemu_mod_timer(s->irq_timer, s->expire_time);
121 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
123 SLAVIO_TIMERState *s = opaque;
124 uint32_t saddr;
126 saddr = (addr & TIMER_MAXADDR) >> 2;
127 switch (saddr) {
128 case 0:
129 // read limit (system counter mode) or read most signifying
130 // part of counter (user mode)
131 if (s->mode != 1) {
132 // clear irq
133 pic_set_irq_cpu(s->irq, 0, s->cpu);
134 s->count_load_time = qemu_get_clock(vm_clock);
135 s->reached = 0;
136 return s->limit;
138 else {
139 slavio_timer_get_out(s);
140 return s->counthigh & 0x7fffffff;
142 case 1:
143 // read counter and reached bit (system mode) or read lsbits
144 // of counter (user mode)
145 slavio_timer_get_out(s);
146 if (s->mode != 1)
147 return (s->count & 0x7fffffff) | s->reached;
148 else
149 return s->count;
150 case 3:
151 // read start/stop status
152 return s->stopped;
153 case 4:
154 // read user/system mode
155 return s->mode & 1;
156 default:
157 return 0;
161 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
163 SLAVIO_TIMERState *s = opaque;
164 uint32_t saddr;
166 saddr = (addr & TIMER_MAXADDR) >> 2;
167 switch (saddr) {
168 case 0:
169 // set limit, reset counter
170 s->count_load_time = qemu_get_clock(vm_clock);
171 // fall through
172 case 2:
173 // set limit without resetting counter
174 if (!val)
175 s->limit = 0x7fffffff;
176 else
177 s->limit = val & 0x7fffffff;
178 slavio_timer_irq(s);
179 break;
180 case 3:
181 // start/stop user counter
182 if (s->mode == 1) {
183 if (val & 1) {
184 s->stop_time = qemu_get_clock(vm_clock);
185 s->stopped = 1;
187 else {
188 if (s->stopped)
189 s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
190 s->stopped = 0;
193 break;
194 case 4:
195 // bit 0: user (1) or system (0) counter mode
196 if (s->mode == 0 || s->mode == 1)
197 s->mode = val & 1;
198 break;
199 default:
200 break;
204 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
205 slavio_timer_mem_readl,
206 slavio_timer_mem_readl,
207 slavio_timer_mem_readl,
210 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
211 slavio_timer_mem_writel,
212 slavio_timer_mem_writel,
213 slavio_timer_mem_writel,
216 static void slavio_timer_save(QEMUFile *f, void *opaque)
218 SLAVIO_TIMERState *s = opaque;
220 qemu_put_be32s(f, &s->limit);
221 qemu_put_be32s(f, &s->count);
222 qemu_put_be32s(f, &s->counthigh);
223 qemu_put_be64s(f, &s->count_load_time);
224 qemu_put_be64s(f, &s->expire_time);
225 qemu_put_be64s(f, &s->stop_time);
226 qemu_put_be64s(f, &s->tick_offset);
227 qemu_put_be32s(f, &s->irq);
228 qemu_put_be32s(f, &s->reached);
229 qemu_put_be32s(f, &s->stopped);
230 qemu_put_be32s(f, &s->mode);
233 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
235 SLAVIO_TIMERState *s = opaque;
237 if (version_id != 1)
238 return -EINVAL;
240 qemu_get_be32s(f, &s->limit);
241 qemu_get_be32s(f, &s->count);
242 qemu_get_be32s(f, &s->counthigh);
243 qemu_get_be64s(f, &s->count_load_time);
244 qemu_get_be64s(f, &s->expire_time);
245 qemu_get_be64s(f, &s->stop_time);
246 qemu_get_be64s(f, &s->tick_offset);
247 qemu_get_be32s(f, &s->irq);
248 qemu_get_be32s(f, &s->reached);
249 qemu_get_be32s(f, &s->stopped);
250 qemu_get_be32s(f, &s->mode);
251 return 0;
254 static void slavio_timer_reset(void *opaque)
256 SLAVIO_TIMERState *s = opaque;
258 s->limit = 0;
259 s->count = 0;
260 s->count_load_time = qemu_get_clock(vm_clock);;
261 s->stop_time = s->count_load_time;
262 s->tick_offset = 0;
263 s->reached = 0;
264 s->mode &= 2;
265 s->stopped = 1;
266 slavio_timer_get_out(s);
269 void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu)
271 int slavio_timer_io_memory;
272 SLAVIO_TIMERState *s;
274 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
275 if (!s)
276 return;
277 s->irq = irq;
278 s->mode = mode;
279 s->cpu = cpu;
280 s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
282 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
283 slavio_timer_mem_write, s);
284 cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
285 register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
286 qemu_register_reset(slavio_timer_reset, s);
287 slavio_timer_reset(s);