2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag
;
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env
->jmp_env
, 1);
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
57 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext
*uc
= puc
;
65 /* XXX: restore cpu registers saved in host registers */
67 #if !defined(CONFIG_SOFTMMU)
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
73 longjmp(env
->jmp_env
, 1);
77 static TranslationBlock
*tb_find_slow(target_ulong pc
,
81 TranslationBlock
*tb
, **ptb1
;
84 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
89 tb_invalidated_flag
= 0;
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93 /* find translated block using physical mappings */
94 phys_pc
= get_phys_addr_code(env
, pc
);
95 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
97 h
= tb_phys_hash_func(phys_pc
);
98 ptb1
= &tb_phys_hash
[h
];
104 tb
->page_addr
[0] == phys_page1
&&
105 tb
->cs_base
== cs_base
&&
106 tb
->flags
== flags
) {
107 /* check next page if needed */
108 if (tb
->page_addr
[1] != -1) {
109 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
111 phys_page2
= get_phys_addr_code(env
, virt_page2
);
112 if (tb
->page_addr
[1] == phys_page2
)
118 ptb1
= &tb
->phys_hash_next
;
121 /* if no translated code available, then translate it now */
124 /* flush must be done */
126 /* cannot fail at this point */
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag
= 1;
131 tc_ptr
= code_gen_ptr
;
133 tb
->cs_base
= cs_base
;
135 cpu_gen_code(env
, tb
, CODE_GEN_MAX_SIZE
, &code_gen_size
);
136 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
138 /* check next page if needed */
139 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
141 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
142 phys_page2
= get_phys_addr_code(env
, virt_page2
);
144 tb_link_phys(tb
, phys_pc
, phys_page2
);
147 /* we add the TB in the virtual pc hash table */
148 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
149 spin_unlock(&tb_lock
);
153 static inline TranslationBlock
*tb_find_fast(void)
155 TranslationBlock
*tb
;
156 target_ulong cs_base
, pc
;
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
162 #if defined(TARGET_I386)
164 flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
165 cs_base
= env
->segs
[R_CS
].base
;
166 pc
= cs_base
+ env
->eip
;
167 #elif defined(TARGET_ARM)
168 flags
= env
->thumb
| (env
->vfp
.vec_len
<< 1)
169 | (env
->vfp
.vec_stride
<< 4);
170 if ((env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
)
174 #elif defined(TARGET_SPARC)
175 #ifdef TARGET_SPARC64
176 flags
= (env
->pstate
<< 2) | ((env
->lsu
& (DMMU_E
| IMMU_E
)) >> 2);
178 flags
= env
->psrs
| ((env
->mmuregs
[0] & (MMU_E
| MMU_NF
)) << 1);
182 #elif defined(TARGET_PPC)
183 flags
= (msr_pr
<< MSR_PR
) | (msr_fp
<< MSR_FP
) |
184 (msr_se
<< MSR_SE
) | (msr_le
<< MSR_LE
);
187 #elif defined(TARGET_MIPS)
188 flags
= env
->hflags
& (MIPS_HFLAGS_TMASK
| MIPS_HFLAG_BMASK
);
192 #error unsupported CPU
194 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
195 if (__builtin_expect(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
196 tb
->flags
!= flags
, 0)) {
197 tb
= tb_find_slow(pc
, cs_base
, flags
);
198 /* Note: we do it here to avoid a gcc bug on Mac OS X when
199 doing it in tb_find_slow */
200 if (tb_invalidated_flag
) {
201 /* as some TB could have been invalidated because
202 of memory exceptions while generating the code, we
203 must recompute the hash index here */
211 /* main execution loop */
213 int cpu_exec(CPUState
*env1
)
215 int saved_T0
, saved_T1
;
220 #if defined(TARGET_I386)
245 #elif defined(TARGET_SPARC)
246 #if defined(reg_REGWPTR)
247 uint32_t *saved_regwptr
;
251 int saved_i7
, tmp_T0
;
253 int ret
, interrupt_request
;
254 void (*gen_func
)(void);
255 TranslationBlock
*tb
;
258 #if defined(TARGET_I386)
259 /* handle exit of HALTED state */
260 if (env1
->hflags
& HF_HALTED_MASK
) {
261 /* disable halt condition */
262 if ((env1
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
263 (env1
->eflags
& IF_MASK
)) {
264 env1
->hflags
&= ~HF_HALTED_MASK
;
269 #elif defined(TARGET_PPC)
271 if (env1
->msr
[MSR_EE
] &&
272 (env1
->interrupt_request
&
273 (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_TIMER
))) {
279 #elif defined(TARGET_SPARC)
281 if ((env1
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
282 (env1
->psret
!= 0)) {
288 #elif defined(TARGET_ARM)
290 /* An interrupt wakes the CPU even if the I and F CPSR bits are
292 if (env1
->interrupt_request
293 & (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
)) {
299 #elif defined(TARGET_MIPS)
301 if (env1
->interrupt_request
&
302 (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_TIMER
)) {
310 cpu_single_env
= env1
;
312 /* first we save global registers */
321 /* we also save i7 because longjmp may not restore it */
322 asm volatile ("mov %%i7, %0" : "=r" (saved_i7
));
325 #if defined(TARGET_I386)
352 /* put eflags in CPU temporary format */
353 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
354 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
355 CC_OP
= CC_OP_EFLAGS
;
356 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
357 #elif defined(TARGET_ARM)
358 #elif defined(TARGET_SPARC)
359 #if defined(reg_REGWPTR)
360 saved_regwptr
= REGWPTR
;
362 #elif defined(TARGET_PPC)
363 #elif defined(TARGET_MIPS)
365 #error unsupported target CPU
367 env
->exception_index
= -1;
369 /* prepare setjmp context for exception handling */
371 if (setjmp(env
->jmp_env
) == 0) {
372 env
->current_tb
= NULL
;
373 /* if an exception is pending, we execute it here */
374 if (env
->exception_index
>= 0) {
375 if (env
->exception_index
>= EXCP_INTERRUPT
) {
376 /* exit request from the cpu execution loop */
377 ret
= env
->exception_index
;
379 } else if (env
->user_mode_only
) {
380 /* if user mode only, we simulate a fake exception
381 which will be hanlded outside the cpu execution
383 #if defined(TARGET_I386)
384 do_interrupt_user(env
->exception_index
,
385 env
->exception_is_int
,
387 env
->exception_next_eip
);
389 ret
= env
->exception_index
;
392 #if defined(TARGET_I386)
393 /* simulate a real cpu exception. On i386, it can
394 trigger new exceptions, but we do not handle
395 double or triple faults yet. */
396 do_interrupt(env
->exception_index
,
397 env
->exception_is_int
,
399 env
->exception_next_eip
, 0);
400 #elif defined(TARGET_PPC)
402 #elif defined(TARGET_MIPS)
404 #elif defined(TARGET_SPARC)
405 do_interrupt(env
->exception_index
);
406 #elif defined(TARGET_ARM)
410 env
->exception_index
= -1;
413 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
415 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
416 ret
= kqemu_cpu_exec(env
);
417 /* put eflags in CPU temporary format */
418 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
419 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
420 CC_OP
= CC_OP_EFLAGS
;
421 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
424 longjmp(env
->jmp_env
, 1);
425 } else if (ret
== 2) {
426 /* softmmu execution needed */
428 if (env
->interrupt_request
!= 0) {
429 /* hardware interrupt will be executed just after */
431 /* otherwise, we restart */
432 longjmp(env
->jmp_env
, 1);
438 T0
= 0; /* force lookup of first TB */
441 /* g1 can be modified by some libc? functions */
444 interrupt_request
= env
->interrupt_request
;
445 if (__builtin_expect(interrupt_request
, 0)) {
446 #if defined(TARGET_I386)
447 /* if hardware interrupt pending, we execute it */
448 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
449 (env
->eflags
& IF_MASK
) &&
450 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
452 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
453 intno
= cpu_get_pic_interrupt(env
);
454 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
455 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
457 do_interrupt(intno
, 0, 0, 0, 1);
458 /* ensure that no TB jump will be modified as
459 the program flow was changed */
466 #elif defined(TARGET_PPC)
468 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
473 if ((interrupt_request
& CPU_INTERRUPT_HARD
)) {
475 env
->exception_index
= EXCP_EXTERNAL
;
478 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
484 } else if ((interrupt_request
& CPU_INTERRUPT_TIMER
)) {
486 env
->exception_index
= EXCP_DECR
;
489 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
497 #elif defined(TARGET_MIPS)
498 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
499 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
500 (env
->CP0_Status
& env
->CP0_Cause
& 0x0000FF00) &&
501 !(env
->hflags
& MIPS_HFLAG_EXL
) &&
502 !(env
->hflags
& MIPS_HFLAG_ERL
) &&
503 !(env
->hflags
& MIPS_HFLAG_DM
)) {
505 env
->exception_index
= EXCP_EXT_INTERRUPT
;
508 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
515 #elif defined(TARGET_SPARC)
516 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
518 int pil
= env
->interrupt_index
& 15;
519 int type
= env
->interrupt_index
& 0xf0;
521 if (((type
== TT_EXTINT
) &&
522 (pil
== 15 || pil
> env
->psrpil
)) ||
524 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
525 do_interrupt(env
->interrupt_index
);
526 env
->interrupt_index
= 0;
533 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
534 //do_interrupt(0, 0, 0, 0, 0);
535 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
536 } else if (interrupt_request
& CPU_INTERRUPT_HALT
) {
540 #elif defined(TARGET_ARM)
541 if (interrupt_request
& CPU_INTERRUPT_FIQ
542 && !(env
->uncached_cpsr
& CPSR_F
)) {
543 env
->exception_index
= EXCP_FIQ
;
546 if (interrupt_request
& CPU_INTERRUPT_HARD
547 && !(env
->uncached_cpsr
& CPSR_I
)) {
548 env
->exception_index
= EXCP_IRQ
;
552 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
553 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
554 /* ensure that no TB jump will be modified as
555 the program flow was changed */
562 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
563 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
564 env
->exception_index
= EXCP_INTERRUPT
;
569 if ((loglevel
& CPU_LOG_TB_CPU
)) {
570 #if defined(TARGET_I386)
571 /* restore flags in standard format */
573 env
->regs
[R_EAX
] = EAX
;
576 env
->regs
[R_EBX
] = EBX
;
579 env
->regs
[R_ECX
] = ECX
;
582 env
->regs
[R_EDX
] = EDX
;
585 env
->regs
[R_ESI
] = ESI
;
588 env
->regs
[R_EDI
] = EDI
;
591 env
->regs
[R_EBP
] = EBP
;
594 env
->regs
[R_ESP
] = ESP
;
596 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
597 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
598 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
599 #elif defined(TARGET_ARM)
600 cpu_dump_state(env
, logfile
, fprintf
, 0);
601 #elif defined(TARGET_SPARC)
602 REGWPTR
= env
->regbase
+ (env
->cwp
* 16);
603 env
->regwptr
= REGWPTR
;
604 cpu_dump_state(env
, logfile
, fprintf
, 0);
605 #elif defined(TARGET_PPC)
606 cpu_dump_state(env
, logfile
, fprintf
, 0);
607 #elif defined(TARGET_MIPS)
608 cpu_dump_state(env
, logfile
, fprintf
, 0);
610 #error unsupported target CPU
616 if ((loglevel
& CPU_LOG_EXEC
)) {
617 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
618 (long)tb
->tc_ptr
, tb
->pc
,
619 lookup_symbol(tb
->pc
));
625 /* see if we can patch the calling TB. When the TB
626 spans two pages, we cannot safely do a direct
630 tb
->page_addr
[1] == -1
631 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
632 && (tb
->cflags
& CF_CODE_COPY
) ==
633 (((TranslationBlock
*)(T0
& ~3))->cflags
& CF_CODE_COPY
)
637 tb_add_jump((TranslationBlock
*)(long)(T0
& ~3), T0
& 3, tb
);
638 #if defined(USE_CODE_COPY)
639 /* propagates the FP use info */
640 ((TranslationBlock
*)(T0
& ~3))->cflags
|=
641 (tb
->cflags
& CF_FP_USED
);
643 spin_unlock(&tb_lock
);
647 env
->current_tb
= tb
;
648 /* execute the generated code */
649 gen_func
= (void *)tc_ptr
;
650 #if defined(__sparc__)
651 __asm__
__volatile__("call %0\n\t"
655 : "i0", "i1", "i2", "i3", "i4", "i5");
656 #elif defined(__arm__)
657 asm volatile ("mov pc, %0\n\t"
658 ".global exec_loop\n\t"
662 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
663 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
665 if (!(tb
->cflags
& CF_CODE_COPY
)) {
666 if ((tb
->cflags
& CF_FP_USED
) && env
->native_fp_regs
) {
667 save_native_fp_state(env
);
671 if ((tb
->cflags
& CF_FP_USED
) && !env
->native_fp_regs
) {
672 restore_native_fp_state(env
);
674 /* we work with native eflags */
675 CC_SRC
= cc_table
[CC_OP
].compute_all();
676 CC_OP
= CC_OP_EFLAGS
;
677 asm(".globl exec_loop\n"
682 " fs movl %11, %%eax\n"
683 " andl $0x400, %%eax\n"
684 " fs orl %8, %%eax\n"
687 " fs movl %%esp, %12\n"
688 " fs movl %0, %%eax\n"
689 " fs movl %1, %%ecx\n"
690 " fs movl %2, %%edx\n"
691 " fs movl %3, %%ebx\n"
692 " fs movl %4, %%esp\n"
693 " fs movl %5, %%ebp\n"
694 " fs movl %6, %%esi\n"
695 " fs movl %7, %%edi\n"
698 " fs movl %%esp, %4\n"
699 " fs movl %12, %%esp\n"
700 " fs movl %%eax, %0\n"
701 " fs movl %%ecx, %1\n"
702 " fs movl %%edx, %2\n"
703 " fs movl %%ebx, %3\n"
704 " fs movl %%ebp, %5\n"
705 " fs movl %%esi, %6\n"
706 " fs movl %%edi, %7\n"
709 " movl %%eax, %%ecx\n"
710 " andl $0x400, %%ecx\n"
712 " andl $0x8d5, %%eax\n"
713 " fs movl %%eax, %8\n"
715 " subl %%ecx, %%eax\n"
716 " fs movl %%eax, %11\n"
717 " fs movl %9, %%ebx\n" /* get T0 value */
720 : "m" (*(uint8_t *)offsetof(CPUState
, regs
[0])),
721 "m" (*(uint8_t *)offsetof(CPUState
, regs
[1])),
722 "m" (*(uint8_t *)offsetof(CPUState
, regs
[2])),
723 "m" (*(uint8_t *)offsetof(CPUState
, regs
[3])),
724 "m" (*(uint8_t *)offsetof(CPUState
, regs
[4])),
725 "m" (*(uint8_t *)offsetof(CPUState
, regs
[5])),
726 "m" (*(uint8_t *)offsetof(CPUState
, regs
[6])),
727 "m" (*(uint8_t *)offsetof(CPUState
, regs
[7])),
728 "m" (*(uint8_t *)offsetof(CPUState
, cc_src
)),
729 "m" (*(uint8_t *)offsetof(CPUState
, tmp0
)),
731 "m" (*(uint8_t *)offsetof(CPUState
, df
)),
732 "m" (*(uint8_t *)offsetof(CPUState
, saved_esp
))
737 #elif defined(__ia64)
744 fp
.gp
= code_gen_buffer
+ 2 * (1 << 20);
745 (*(void (*)(void)) &fp
)();
749 env
->current_tb
= NULL
;
750 /* reset soft MMU for next block (it can currently
751 only be set by a memory fault) */
752 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
753 if (env
->hflags
& HF_SOFTMMU_MASK
) {
754 env
->hflags
&= ~HF_SOFTMMU_MASK
;
755 /* do not allow linking to another block */
766 #if defined(TARGET_I386)
767 #if defined(USE_CODE_COPY)
768 if (env
->native_fp_regs
) {
769 save_native_fp_state(env
);
772 /* restore flags in standard format */
773 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
775 /* restore global registers */
800 #elif defined(TARGET_ARM)
801 /* XXX: Save/restore host fpu exception state?. */
802 #elif defined(TARGET_SPARC)
803 #if defined(reg_REGWPTR)
804 REGWPTR
= saved_regwptr
;
806 #elif defined(TARGET_PPC)
807 #elif defined(TARGET_MIPS)
809 #error unsupported target CPU
812 asm volatile ("mov %0, %%i7" : : "r" (saved_i7
));
820 /* fail safe : never use cpu_single_env outside cpu_exec() */
821 cpu_single_env
= NULL
;
825 /* must only be called from the generated code as an exception can be
827 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
829 /* XXX: cannot enable it yet because it yields to MMU exception
830 where NIP != read address on PowerPC */
832 target_ulong phys_addr
;
833 phys_addr
= get_phys_addr_code(env
, start
);
834 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
838 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
840 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
842 CPUX86State
*saved_env
;
846 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
848 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
849 (selector
<< 4), 0xffff, 0);
851 load_seg(seg_reg
, selector
);
856 void cpu_x86_fsave(CPUX86State
*s
, uint8_t *ptr
, int data32
)
858 CPUX86State
*saved_env
;
863 helper_fsave((target_ulong
)ptr
, data32
);
868 void cpu_x86_frstor(CPUX86State
*s
, uint8_t *ptr
, int data32
)
870 CPUX86State
*saved_env
;
875 helper_frstor((target_ulong
)ptr
, data32
);
880 #endif /* TARGET_I386 */
882 #if !defined(CONFIG_SOFTMMU)
884 #if defined(TARGET_I386)
886 /* 'pc' is the host PC at which the exception was raised. 'address' is
887 the effective address of the memory exception. 'is_write' is 1 if a
888 write caused the exception and otherwise 0'. 'old_set' is the
889 signal set which should be restored */
890 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
891 int is_write
, sigset_t
*old_set
,
894 TranslationBlock
*tb
;
898 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
899 #if defined(DEBUG_SIGNAL)
900 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
901 pc
, address
, is_write
, *(unsigned long *)old_set
);
903 /* XXX: locking issue */
904 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
908 /* see if it is an MMU fault */
909 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
,
910 ((env
->hflags
& HF_CPL_MASK
) == 3), 0);
912 return 0; /* not an MMU fault */
914 return 1; /* the MMU fault was handled without causing real CPU fault */
915 /* now we have a real cpu fault */
918 /* the PC is inside the translated code. It means that we have
919 a virtual CPU fault */
920 cpu_restore_state(tb
, env
, pc
, puc
);
924 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
925 env
->eip
, env
->cr
[2], env
->error_code
);
927 /* we restore the process signal mask as the sigreturn should
928 do it (XXX: use sigsetjmp) */
929 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
930 raise_exception_err(env
->exception_index
, env
->error_code
);
932 /* activate soft MMU for this block */
933 env
->hflags
|= HF_SOFTMMU_MASK
;
934 cpu_resume_from_signal(env
, puc
);
936 /* never comes here */
940 #elif defined(TARGET_ARM)
941 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
942 int is_write
, sigset_t
*old_set
,
945 TranslationBlock
*tb
;
949 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
950 #if defined(DEBUG_SIGNAL)
951 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
952 pc
, address
, is_write
, *(unsigned long *)old_set
);
954 /* XXX: locking issue */
955 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
958 /* see if it is an MMU fault */
959 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, 1, 0);
961 return 0; /* not an MMU fault */
963 return 1; /* the MMU fault was handled without causing real CPU fault */
964 /* now we have a real cpu fault */
967 /* the PC is inside the translated code. It means that we have
968 a virtual CPU fault */
969 cpu_restore_state(tb
, env
, pc
, puc
);
971 /* we restore the process signal mask as the sigreturn should
972 do it (XXX: use sigsetjmp) */
973 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
976 #elif defined(TARGET_SPARC)
977 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
978 int is_write
, sigset_t
*old_set
,
981 TranslationBlock
*tb
;
985 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
986 #if defined(DEBUG_SIGNAL)
987 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
988 pc
, address
, is_write
, *(unsigned long *)old_set
);
990 /* XXX: locking issue */
991 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
994 /* see if it is an MMU fault */
995 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, 1, 0);
997 return 0; /* not an MMU fault */
999 return 1; /* the MMU fault was handled without causing real CPU fault */
1000 /* now we have a real cpu fault */
1001 tb
= tb_find_pc(pc
);
1003 /* the PC is inside the translated code. It means that we have
1004 a virtual CPU fault */
1005 cpu_restore_state(tb
, env
, pc
, puc
);
1007 /* we restore the process signal mask as the sigreturn should
1008 do it (XXX: use sigsetjmp) */
1009 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1012 #elif defined (TARGET_PPC)
1013 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1014 int is_write
, sigset_t
*old_set
,
1017 TranslationBlock
*tb
;
1021 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1022 #if defined(DEBUG_SIGNAL)
1023 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1024 pc
, address
, is_write
, *(unsigned long *)old_set
);
1026 /* XXX: locking issue */
1027 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
1031 /* see if it is an MMU fault */
1032 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, msr_pr
, 0);
1034 return 0; /* not an MMU fault */
1036 return 1; /* the MMU fault was handled without causing real CPU fault */
1038 /* now we have a real cpu fault */
1039 tb
= tb_find_pc(pc
);
1041 /* the PC is inside the translated code. It means that we have
1042 a virtual CPU fault */
1043 cpu_restore_state(tb
, env
, pc
, puc
);
1047 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1048 env
->nip
, env
->error_code
, tb
);
1050 /* we restore the process signal mask as the sigreturn should
1051 do it (XXX: use sigsetjmp) */
1052 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1053 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1055 /* activate soft MMU for this block */
1056 cpu_resume_from_signal(env
, puc
);
1058 /* never comes here */
1062 #elif defined (TARGET_MIPS)
1063 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1064 int is_write
, sigset_t
*old_set
,
1067 TranslationBlock
*tb
;
1071 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1072 #if defined(DEBUG_SIGNAL)
1073 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1074 pc
, address
, is_write
, *(unsigned long *)old_set
);
1076 /* XXX: locking issue */
1077 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
1081 /* see if it is an MMU fault */
1082 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1084 return 0; /* not an MMU fault */
1086 return 1; /* the MMU fault was handled without causing real CPU fault */
1088 /* now we have a real cpu fault */
1089 tb
= tb_find_pc(pc
);
1091 /* the PC is inside the translated code. It means that we have
1092 a virtual CPU fault */
1093 cpu_restore_state(tb
, env
, pc
, puc
);
1097 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1098 env
->nip
, env
->error_code
, tb
);
1100 /* we restore the process signal mask as the sigreturn should
1101 do it (XXX: use sigsetjmp) */
1102 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1103 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1105 /* activate soft MMU for this block */
1106 cpu_resume_from_signal(env
, puc
);
1108 /* never comes here */
1113 #error unsupported target CPU
1116 #if defined(__i386__)
1118 #if defined(USE_CODE_COPY)
1119 static void cpu_send_trap(unsigned long pc
, int trap
,
1120 struct ucontext
*uc
)
1122 TranslationBlock
*tb
;
1125 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1126 /* now we have a real cpu fault */
1127 tb
= tb_find_pc(pc
);
1129 /* the PC is inside the translated code. It means that we have
1130 a virtual CPU fault */
1131 cpu_restore_state(tb
, env
, pc
, uc
);
1133 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
1134 raise_exception_err(trap
, env
->error_code
);
1138 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1141 struct ucontext
*uc
= puc
;
1149 #define REG_TRAPNO TRAPNO
1151 pc
= uc
->uc_mcontext
.gregs
[REG_EIP
];
1152 trapno
= uc
->uc_mcontext
.gregs
[REG_TRAPNO
];
1153 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1154 if (trapno
== 0x00 || trapno
== 0x05) {
1155 /* send division by zero or bound exception */
1156 cpu_send_trap(pc
, trapno
, uc
);
1160 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1162 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1163 &uc
->uc_sigmask
, puc
);
1166 #elif defined(__x86_64__)
1168 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1171 struct ucontext
*uc
= puc
;
1174 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1175 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1176 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1177 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1178 &uc
->uc_sigmask
, puc
);
1181 #elif defined(__powerpc__)
1183 /***********************************************************************
1184 * signal context platform-specific definitions
1188 /* All Registers access - only for local access */
1189 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1190 /* Gpr Registers access */
1191 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1192 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1193 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1194 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1195 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1196 # define LR_sig(context) REG_sig(link, context) /* Link register */
1197 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1198 /* Float Registers access */
1199 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1200 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1201 /* Exception Registers access */
1202 # define DAR_sig(context) REG_sig(dar, context)
1203 # define DSISR_sig(context) REG_sig(dsisr, context)
1204 # define TRAP_sig(context) REG_sig(trap, context)
1208 # include <sys/ucontext.h>
1209 typedef struct ucontext SIGCONTEXT
;
1210 /* All Registers access - only for local access */
1211 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1212 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1213 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1214 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1215 /* Gpr Registers access */
1216 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1217 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1218 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1219 # define CTR_sig(context) REG_sig(ctr, context)
1220 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1221 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1222 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1223 /* Float Registers access */
1224 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1225 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1226 /* Exception Registers access */
1227 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1228 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1229 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1230 #endif /* __APPLE__ */
1232 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1235 struct ucontext
*uc
= puc
;
1243 if (DSISR_sig(uc
) & 0x00800000)
1246 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1249 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1250 is_write
, &uc
->uc_sigmask
, puc
);
1253 #elif defined(__alpha__)
1255 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1258 struct ucontext
*uc
= puc
;
1259 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1260 uint32_t insn
= *pc
;
1263 /* XXX: need kernel patch to get write flag faster */
1264 switch (insn
>> 26) {
1279 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1280 is_write
, &uc
->uc_sigmask
, puc
);
1282 #elif defined(__sparc__)
1284 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1287 uint32_t *regs
= (uint32_t *)(info
+ 1);
1288 void *sigmask
= (regs
+ 20);
1293 /* XXX: is there a standard glibc define ? */
1295 /* XXX: need kernel patch to get write flag faster */
1297 insn
= *(uint32_t *)pc
;
1298 if ((insn
>> 30) == 3) {
1299 switch((insn
>> 19) & 0x3f) {
1311 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1312 is_write
, sigmask
, NULL
);
1315 #elif defined(__arm__)
1317 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1320 struct ucontext
*uc
= puc
;
1324 pc
= uc
->uc_mcontext
.gregs
[R15
];
1325 /* XXX: compute is_write */
1327 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1332 #elif defined(__mc68000)
1334 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1337 struct ucontext
*uc
= puc
;
1341 pc
= uc
->uc_mcontext
.gregs
[16];
1342 /* XXX: compute is_write */
1344 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1346 &uc
->uc_sigmask
, puc
);
1349 #elif defined(__ia64)
1352 /* This ought to be in <bits/siginfo.h>... */
1353 # define __ISR_VALID 1
1354 # define si_flags _sifields._sigfault._si_pad0
1357 int cpu_signal_handler(int host_signum
, struct siginfo
*info
, void *puc
)
1359 struct ucontext
*uc
= puc
;
1363 ip
= uc
->uc_mcontext
.sc_ip
;
1364 switch (host_signum
) {
1370 if (info
->si_code
&& (info
->si_flags
& __ISR_VALID
))
1371 /* ISR.W (write-access) is bit 33: */
1372 is_write
= (info
->si_isr
>> 33) & 1;
1378 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1380 &uc
->uc_sigmask
, puc
);
1383 #elif defined(__s390__)
1385 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1388 struct ucontext
*uc
= puc
;
1392 pc
= uc
->uc_mcontext
.psw
.addr
;
1393 /* XXX: compute is_write */
1395 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1397 &uc
->uc_sigmask
, puc
);
1402 #error host CPU specific signal handler needed
1406 #endif /* !defined(CONFIG_SOFTMMU) */