Correctly initialize Arm CPU for Thumb entry points.
[qemu/mini2440.git] / cpu-exec.c
blob1ec49c2d6a3faec83718ece3cbabc9a41dd65564
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
49 #endif
50 #ifndef TARGET_SPARC
51 #define reg_T2
52 #endif
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
57 void cpu_resume_from_signal(CPUState *env1, void *puc)
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61 #endif
63 env = env1;
65 /* XXX: restore cpu registers saved in host registers */
67 #if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72 #endif
73 longjmp(env->jmp_env, 1);
77 static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
87 spin_lock(&tb_lock);
89 tb_invalidated_flag = 0;
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
118 ptb1 = &tb->phys_hash_next;
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag = 1;
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
144 tb_link_phys(tb, phys_pc, phys_page2);
146 found:
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
153 static inline TranslationBlock *tb_find_fast(void)
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162 #if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167 #elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
172 cs_base = 0;
173 pc = env->regs[15];
174 #elif defined(TARGET_SPARC)
175 #ifdef TARGET_SPARC64
176 flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
177 #else
178 flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
179 #endif
180 cs_base = env->npc;
181 pc = env->pc;
182 #elif defined(TARGET_PPC)
183 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
184 (msr_se << MSR_SE) | (msr_le << MSR_LE);
185 cs_base = 0;
186 pc = env->nip;
187 #elif defined(TARGET_MIPS)
188 flags = env->hflags & (MIPS_HFLAGS_TMASK | MIPS_HFLAG_BMASK);
189 cs_base = 0;
190 pc = env->PC;
191 #else
192 #error unsupported CPU
193 #endif
194 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
195 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
196 tb->flags != flags, 0)) {
197 tb = tb_find_slow(pc, cs_base, flags);
198 /* Note: we do it here to avoid a gcc bug on Mac OS X when
199 doing it in tb_find_slow */
200 if (tb_invalidated_flag) {
201 /* as some TB could have been invalidated because
202 of memory exceptions while generating the code, we
203 must recompute the hash index here */
204 T0 = 0;
207 return tb;
211 /* main execution loop */
213 int cpu_exec(CPUState *env1)
215 int saved_T0, saved_T1;
216 #if defined(reg_T2)
217 int saved_T2;
218 #endif
219 CPUState *saved_env;
220 #if defined(TARGET_I386)
221 #ifdef reg_EAX
222 int saved_EAX;
223 #endif
224 #ifdef reg_ECX
225 int saved_ECX;
226 #endif
227 #ifdef reg_EDX
228 int saved_EDX;
229 #endif
230 #ifdef reg_EBX
231 int saved_EBX;
232 #endif
233 #ifdef reg_ESP
234 int saved_ESP;
235 #endif
236 #ifdef reg_EBP
237 int saved_EBP;
238 #endif
239 #ifdef reg_ESI
240 int saved_ESI;
241 #endif
242 #ifdef reg_EDI
243 int saved_EDI;
244 #endif
245 #elif defined(TARGET_SPARC)
246 #if defined(reg_REGWPTR)
247 uint32_t *saved_regwptr;
248 #endif
249 #endif
250 #ifdef __sparc__
251 int saved_i7, tmp_T0;
252 #endif
253 int ret, interrupt_request;
254 void (*gen_func)(void);
255 TranslationBlock *tb;
256 uint8_t *tc_ptr;
258 #if defined(TARGET_I386)
259 /* handle exit of HALTED state */
260 if (env1->hflags & HF_HALTED_MASK) {
261 /* disable halt condition */
262 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
263 (env1->eflags & IF_MASK)) {
264 env1->hflags &= ~HF_HALTED_MASK;
265 } else {
266 return EXCP_HALTED;
269 #elif defined(TARGET_PPC)
270 if (env1->halted) {
271 if (env1->msr[MSR_EE] &&
272 (env1->interrupt_request &
273 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
274 env1->halted = 0;
275 } else {
276 return EXCP_HALTED;
279 #elif defined(TARGET_SPARC)
280 if (env1->halted) {
281 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
282 (env1->psret != 0)) {
283 env1->halted = 0;
284 } else {
285 return EXCP_HALTED;
288 #elif defined(TARGET_ARM)
289 if (env1->halted) {
290 /* An interrupt wakes the CPU even if the I and F CPSR bits are
291 set. */
292 if (env1->interrupt_request
293 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
294 env1->halted = 0;
295 } else {
296 return EXCP_HALTED;
299 #elif defined(TARGET_MIPS)
300 if (env1->halted) {
301 if (env1->interrupt_request &
302 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
303 env1->halted = 0;
304 } else {
305 return EXCP_HALTED;
308 #endif
310 cpu_single_env = env1;
312 /* first we save global registers */
313 saved_env = env;
314 env = env1;
315 saved_T0 = T0;
316 saved_T1 = T1;
317 #if defined(reg_T2)
318 saved_T2 = T2;
319 #endif
320 #ifdef __sparc__
321 /* we also save i7 because longjmp may not restore it */
322 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
323 #endif
325 #if defined(TARGET_I386)
326 #ifdef reg_EAX
327 saved_EAX = EAX;
328 #endif
329 #ifdef reg_ECX
330 saved_ECX = ECX;
331 #endif
332 #ifdef reg_EDX
333 saved_EDX = EDX;
334 #endif
335 #ifdef reg_EBX
336 saved_EBX = EBX;
337 #endif
338 #ifdef reg_ESP
339 saved_ESP = ESP;
340 #endif
341 #ifdef reg_EBP
342 saved_EBP = EBP;
343 #endif
344 #ifdef reg_ESI
345 saved_ESI = ESI;
346 #endif
347 #ifdef reg_EDI
348 saved_EDI = EDI;
349 #endif
351 env_to_regs();
352 /* put eflags in CPU temporary format */
353 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
354 DF = 1 - (2 * ((env->eflags >> 10) & 1));
355 CC_OP = CC_OP_EFLAGS;
356 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
357 #elif defined(TARGET_ARM)
358 #elif defined(TARGET_SPARC)
359 #if defined(reg_REGWPTR)
360 saved_regwptr = REGWPTR;
361 #endif
362 #elif defined(TARGET_PPC)
363 #elif defined(TARGET_MIPS)
364 #else
365 #error unsupported target CPU
366 #endif
367 env->exception_index = -1;
369 /* prepare setjmp context for exception handling */
370 for(;;) {
371 if (setjmp(env->jmp_env) == 0) {
372 env->current_tb = NULL;
373 /* if an exception is pending, we execute it here */
374 if (env->exception_index >= 0) {
375 if (env->exception_index >= EXCP_INTERRUPT) {
376 /* exit request from the cpu execution loop */
377 ret = env->exception_index;
378 break;
379 } else if (env->user_mode_only) {
380 /* if user mode only, we simulate a fake exception
381 which will be hanlded outside the cpu execution
382 loop */
383 #if defined(TARGET_I386)
384 do_interrupt_user(env->exception_index,
385 env->exception_is_int,
386 env->error_code,
387 env->exception_next_eip);
388 #endif
389 ret = env->exception_index;
390 break;
391 } else {
392 #if defined(TARGET_I386)
393 /* simulate a real cpu exception. On i386, it can
394 trigger new exceptions, but we do not handle
395 double or triple faults yet. */
396 do_interrupt(env->exception_index,
397 env->exception_is_int,
398 env->error_code,
399 env->exception_next_eip, 0);
400 #elif defined(TARGET_PPC)
401 do_interrupt(env);
402 #elif defined(TARGET_MIPS)
403 do_interrupt(env);
404 #elif defined(TARGET_SPARC)
405 do_interrupt(env->exception_index);
406 #elif defined(TARGET_ARM)
407 do_interrupt(env);
408 #endif
410 env->exception_index = -1;
412 #ifdef USE_KQEMU
413 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
414 int ret;
415 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
416 ret = kqemu_cpu_exec(env);
417 /* put eflags in CPU temporary format */
418 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
419 DF = 1 - (2 * ((env->eflags >> 10) & 1));
420 CC_OP = CC_OP_EFLAGS;
421 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
422 if (ret == 1) {
423 /* exception */
424 longjmp(env->jmp_env, 1);
425 } else if (ret == 2) {
426 /* softmmu execution needed */
427 } else {
428 if (env->interrupt_request != 0) {
429 /* hardware interrupt will be executed just after */
430 } else {
431 /* otherwise, we restart */
432 longjmp(env->jmp_env, 1);
436 #endif
438 T0 = 0; /* force lookup of first TB */
439 for(;;) {
440 #ifdef __sparc__
441 /* g1 can be modified by some libc? functions */
442 tmp_T0 = T0;
443 #endif
444 interrupt_request = env->interrupt_request;
445 if (__builtin_expect(interrupt_request, 0)) {
446 #if defined(TARGET_I386)
447 /* if hardware interrupt pending, we execute it */
448 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
449 (env->eflags & IF_MASK) &&
450 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
451 int intno;
452 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
453 intno = cpu_get_pic_interrupt(env);
454 if (loglevel & CPU_LOG_TB_IN_ASM) {
455 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
457 do_interrupt(intno, 0, 0, 0, 1);
458 /* ensure that no TB jump will be modified as
459 the program flow was changed */
460 #ifdef __sparc__
461 tmp_T0 = 0;
462 #else
463 T0 = 0;
464 #endif
466 #elif defined(TARGET_PPC)
467 #if 0
468 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
469 cpu_ppc_reset(env);
471 #endif
472 if (msr_ee != 0) {
473 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
474 /* Raise it */
475 env->exception_index = EXCP_EXTERNAL;
476 env->error_code = 0;
477 do_interrupt(env);
478 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
479 #ifdef __sparc__
480 tmp_T0 = 0;
481 #else
482 T0 = 0;
483 #endif
484 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
485 /* Raise it */
486 env->exception_index = EXCP_DECR;
487 env->error_code = 0;
488 do_interrupt(env);
489 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
490 #ifdef __sparc__
491 tmp_T0 = 0;
492 #else
493 T0 = 0;
494 #endif
497 #elif defined(TARGET_MIPS)
498 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
499 (env->CP0_Status & (1 << CP0St_IE)) &&
500 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
501 !(env->hflags & MIPS_HFLAG_EXL) &&
502 !(env->hflags & MIPS_HFLAG_ERL) &&
503 !(env->hflags & MIPS_HFLAG_DM)) {
504 /* Raise it */
505 env->exception_index = EXCP_EXT_INTERRUPT;
506 env->error_code = 0;
507 do_interrupt(env);
508 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
509 #ifdef __sparc__
510 tmp_T0 = 0;
511 #else
512 T0 = 0;
513 #endif
515 #elif defined(TARGET_SPARC)
516 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
517 (env->psret != 0)) {
518 int pil = env->interrupt_index & 15;
519 int type = env->interrupt_index & 0xf0;
521 if (((type == TT_EXTINT) &&
522 (pil == 15 || pil > env->psrpil)) ||
523 type != TT_EXTINT) {
524 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
525 do_interrupt(env->interrupt_index);
526 env->interrupt_index = 0;
527 #ifdef __sparc__
528 tmp_T0 = 0;
529 #else
530 T0 = 0;
531 #endif
533 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
534 //do_interrupt(0, 0, 0, 0, 0);
535 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
536 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
537 env1->halted = 1;
538 return EXCP_HALTED;
540 #elif defined(TARGET_ARM)
541 if (interrupt_request & CPU_INTERRUPT_FIQ
542 && !(env->uncached_cpsr & CPSR_F)) {
543 env->exception_index = EXCP_FIQ;
544 do_interrupt(env);
546 if (interrupt_request & CPU_INTERRUPT_HARD
547 && !(env->uncached_cpsr & CPSR_I)) {
548 env->exception_index = EXCP_IRQ;
549 do_interrupt(env);
551 #endif
552 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
553 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
554 /* ensure that no TB jump will be modified as
555 the program flow was changed */
556 #ifdef __sparc__
557 tmp_T0 = 0;
558 #else
559 T0 = 0;
560 #endif
562 if (interrupt_request & CPU_INTERRUPT_EXIT) {
563 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
564 env->exception_index = EXCP_INTERRUPT;
565 cpu_loop_exit();
568 #ifdef DEBUG_EXEC
569 if ((loglevel & CPU_LOG_TB_CPU)) {
570 #if defined(TARGET_I386)
571 /* restore flags in standard format */
572 #ifdef reg_EAX
573 env->regs[R_EAX] = EAX;
574 #endif
575 #ifdef reg_EBX
576 env->regs[R_EBX] = EBX;
577 #endif
578 #ifdef reg_ECX
579 env->regs[R_ECX] = ECX;
580 #endif
581 #ifdef reg_EDX
582 env->regs[R_EDX] = EDX;
583 #endif
584 #ifdef reg_ESI
585 env->regs[R_ESI] = ESI;
586 #endif
587 #ifdef reg_EDI
588 env->regs[R_EDI] = EDI;
589 #endif
590 #ifdef reg_EBP
591 env->regs[R_EBP] = EBP;
592 #endif
593 #ifdef reg_ESP
594 env->regs[R_ESP] = ESP;
595 #endif
596 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
597 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
598 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
599 #elif defined(TARGET_ARM)
600 cpu_dump_state(env, logfile, fprintf, 0);
601 #elif defined(TARGET_SPARC)
602 REGWPTR = env->regbase + (env->cwp * 16);
603 env->regwptr = REGWPTR;
604 cpu_dump_state(env, logfile, fprintf, 0);
605 #elif defined(TARGET_PPC)
606 cpu_dump_state(env, logfile, fprintf, 0);
607 #elif defined(TARGET_MIPS)
608 cpu_dump_state(env, logfile, fprintf, 0);
609 #else
610 #error unsupported target CPU
611 #endif
613 #endif
614 tb = tb_find_fast();
615 #ifdef DEBUG_EXEC
616 if ((loglevel & CPU_LOG_EXEC)) {
617 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
618 (long)tb->tc_ptr, tb->pc,
619 lookup_symbol(tb->pc));
621 #endif
622 #ifdef __sparc__
623 T0 = tmp_T0;
624 #endif
625 /* see if we can patch the calling TB. When the TB
626 spans two pages, we cannot safely do a direct
627 jump. */
629 if (T0 != 0 &&
630 tb->page_addr[1] == -1
631 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
632 && (tb->cflags & CF_CODE_COPY) ==
633 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
634 #endif
636 spin_lock(&tb_lock);
637 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
638 #if defined(USE_CODE_COPY)
639 /* propagates the FP use info */
640 ((TranslationBlock *)(T0 & ~3))->cflags |=
641 (tb->cflags & CF_FP_USED);
642 #endif
643 spin_unlock(&tb_lock);
646 tc_ptr = tb->tc_ptr;
647 env->current_tb = tb;
648 /* execute the generated code */
649 gen_func = (void *)tc_ptr;
650 #if defined(__sparc__)
651 __asm__ __volatile__("call %0\n\t"
652 "mov %%o7,%%i0"
653 : /* no outputs */
654 : "r" (gen_func)
655 : "i0", "i1", "i2", "i3", "i4", "i5");
656 #elif defined(__arm__)
657 asm volatile ("mov pc, %0\n\t"
658 ".global exec_loop\n\t"
659 "exec_loop:\n\t"
660 : /* no outputs */
661 : "r" (gen_func)
662 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
663 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
665 if (!(tb->cflags & CF_CODE_COPY)) {
666 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
667 save_native_fp_state(env);
669 gen_func();
670 } else {
671 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
672 restore_native_fp_state(env);
674 /* we work with native eflags */
675 CC_SRC = cc_table[CC_OP].compute_all();
676 CC_OP = CC_OP_EFLAGS;
677 asm(".globl exec_loop\n"
678 "\n"
679 "debug1:\n"
680 " pushl %%ebp\n"
681 " fs movl %10, %9\n"
682 " fs movl %11, %%eax\n"
683 " andl $0x400, %%eax\n"
684 " fs orl %8, %%eax\n"
685 " pushl %%eax\n"
686 " popf\n"
687 " fs movl %%esp, %12\n"
688 " fs movl %0, %%eax\n"
689 " fs movl %1, %%ecx\n"
690 " fs movl %2, %%edx\n"
691 " fs movl %3, %%ebx\n"
692 " fs movl %4, %%esp\n"
693 " fs movl %5, %%ebp\n"
694 " fs movl %6, %%esi\n"
695 " fs movl %7, %%edi\n"
696 " fs jmp *%9\n"
697 "exec_loop:\n"
698 " fs movl %%esp, %4\n"
699 " fs movl %12, %%esp\n"
700 " fs movl %%eax, %0\n"
701 " fs movl %%ecx, %1\n"
702 " fs movl %%edx, %2\n"
703 " fs movl %%ebx, %3\n"
704 " fs movl %%ebp, %5\n"
705 " fs movl %%esi, %6\n"
706 " fs movl %%edi, %7\n"
707 " pushf\n"
708 " popl %%eax\n"
709 " movl %%eax, %%ecx\n"
710 " andl $0x400, %%ecx\n"
711 " shrl $9, %%ecx\n"
712 " andl $0x8d5, %%eax\n"
713 " fs movl %%eax, %8\n"
714 " movl $1, %%eax\n"
715 " subl %%ecx, %%eax\n"
716 " fs movl %%eax, %11\n"
717 " fs movl %9, %%ebx\n" /* get T0 value */
718 " popl %%ebp\n"
720 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
721 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
722 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
723 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
724 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
725 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
726 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
727 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
728 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
729 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
730 "a" (gen_func),
731 "m" (*(uint8_t *)offsetof(CPUState, df)),
732 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
733 : "%ecx", "%edx"
737 #elif defined(__ia64)
738 struct fptr {
739 void *ip;
740 void *gp;
741 } fp;
743 fp.ip = tc_ptr;
744 fp.gp = code_gen_buffer + 2 * (1 << 20);
745 (*(void (*)(void)) &fp)();
746 #else
747 gen_func();
748 #endif
749 env->current_tb = NULL;
750 /* reset soft MMU for next block (it can currently
751 only be set by a memory fault) */
752 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
753 if (env->hflags & HF_SOFTMMU_MASK) {
754 env->hflags &= ~HF_SOFTMMU_MASK;
755 /* do not allow linking to another block */
756 T0 = 0;
758 #endif
760 } else {
761 env_to_regs();
763 } /* for(;;) */
766 #if defined(TARGET_I386)
767 #if defined(USE_CODE_COPY)
768 if (env->native_fp_regs) {
769 save_native_fp_state(env);
771 #endif
772 /* restore flags in standard format */
773 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
775 /* restore global registers */
776 #ifdef reg_EAX
777 EAX = saved_EAX;
778 #endif
779 #ifdef reg_ECX
780 ECX = saved_ECX;
781 #endif
782 #ifdef reg_EDX
783 EDX = saved_EDX;
784 #endif
785 #ifdef reg_EBX
786 EBX = saved_EBX;
787 #endif
788 #ifdef reg_ESP
789 ESP = saved_ESP;
790 #endif
791 #ifdef reg_EBP
792 EBP = saved_EBP;
793 #endif
794 #ifdef reg_ESI
795 ESI = saved_ESI;
796 #endif
797 #ifdef reg_EDI
798 EDI = saved_EDI;
799 #endif
800 #elif defined(TARGET_ARM)
801 /* XXX: Save/restore host fpu exception state?. */
802 #elif defined(TARGET_SPARC)
803 #if defined(reg_REGWPTR)
804 REGWPTR = saved_regwptr;
805 #endif
806 #elif defined(TARGET_PPC)
807 #elif defined(TARGET_MIPS)
808 #else
809 #error unsupported target CPU
810 #endif
811 #ifdef __sparc__
812 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
813 #endif
814 T0 = saved_T0;
815 T1 = saved_T1;
816 #if defined(reg_T2)
817 T2 = saved_T2;
818 #endif
819 env = saved_env;
820 /* fail safe : never use cpu_single_env outside cpu_exec() */
821 cpu_single_env = NULL;
822 return ret;
825 /* must only be called from the generated code as an exception can be
826 generated */
827 void tb_invalidate_page_range(target_ulong start, target_ulong end)
829 /* XXX: cannot enable it yet because it yields to MMU exception
830 where NIP != read address on PowerPC */
831 #if 0
832 target_ulong phys_addr;
833 phys_addr = get_phys_addr_code(env, start);
834 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
835 #endif
838 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
840 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
842 CPUX86State *saved_env;
844 saved_env = env;
845 env = s;
846 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
847 selector &= 0xffff;
848 cpu_x86_load_seg_cache(env, seg_reg, selector,
849 (selector << 4), 0xffff, 0);
850 } else {
851 load_seg(seg_reg, selector);
853 env = saved_env;
856 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
858 CPUX86State *saved_env;
860 saved_env = env;
861 env = s;
863 helper_fsave((target_ulong)ptr, data32);
865 env = saved_env;
868 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
870 CPUX86State *saved_env;
872 saved_env = env;
873 env = s;
875 helper_frstor((target_ulong)ptr, data32);
877 env = saved_env;
880 #endif /* TARGET_I386 */
882 #if !defined(CONFIG_SOFTMMU)
884 #if defined(TARGET_I386)
886 /* 'pc' is the host PC at which the exception was raised. 'address' is
887 the effective address of the memory exception. 'is_write' is 1 if a
888 write caused the exception and otherwise 0'. 'old_set' is the
889 signal set which should be restored */
890 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
891 int is_write, sigset_t *old_set,
892 void *puc)
894 TranslationBlock *tb;
895 int ret;
897 if (cpu_single_env)
898 env = cpu_single_env; /* XXX: find a correct solution for multithread */
899 #if defined(DEBUG_SIGNAL)
900 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
901 pc, address, is_write, *(unsigned long *)old_set);
902 #endif
903 /* XXX: locking issue */
904 if (is_write && page_unprotect(address, pc, puc)) {
905 return 1;
908 /* see if it is an MMU fault */
909 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
910 ((env->hflags & HF_CPL_MASK) == 3), 0);
911 if (ret < 0)
912 return 0; /* not an MMU fault */
913 if (ret == 0)
914 return 1; /* the MMU fault was handled without causing real CPU fault */
915 /* now we have a real cpu fault */
916 tb = tb_find_pc(pc);
917 if (tb) {
918 /* the PC is inside the translated code. It means that we have
919 a virtual CPU fault */
920 cpu_restore_state(tb, env, pc, puc);
922 if (ret == 1) {
923 #if 0
924 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
925 env->eip, env->cr[2], env->error_code);
926 #endif
927 /* we restore the process signal mask as the sigreturn should
928 do it (XXX: use sigsetjmp) */
929 sigprocmask(SIG_SETMASK, old_set, NULL);
930 raise_exception_err(env->exception_index, env->error_code);
931 } else {
932 /* activate soft MMU for this block */
933 env->hflags |= HF_SOFTMMU_MASK;
934 cpu_resume_from_signal(env, puc);
936 /* never comes here */
937 return 1;
940 #elif defined(TARGET_ARM)
941 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
942 int is_write, sigset_t *old_set,
943 void *puc)
945 TranslationBlock *tb;
946 int ret;
948 if (cpu_single_env)
949 env = cpu_single_env; /* XXX: find a correct solution for multithread */
950 #if defined(DEBUG_SIGNAL)
951 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
952 pc, address, is_write, *(unsigned long *)old_set);
953 #endif
954 /* XXX: locking issue */
955 if (is_write && page_unprotect(address, pc, puc)) {
956 return 1;
958 /* see if it is an MMU fault */
959 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
960 if (ret < 0)
961 return 0; /* not an MMU fault */
962 if (ret == 0)
963 return 1; /* the MMU fault was handled without causing real CPU fault */
964 /* now we have a real cpu fault */
965 tb = tb_find_pc(pc);
966 if (tb) {
967 /* the PC is inside the translated code. It means that we have
968 a virtual CPU fault */
969 cpu_restore_state(tb, env, pc, puc);
971 /* we restore the process signal mask as the sigreturn should
972 do it (XXX: use sigsetjmp) */
973 sigprocmask(SIG_SETMASK, old_set, NULL);
974 cpu_loop_exit();
976 #elif defined(TARGET_SPARC)
977 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
978 int is_write, sigset_t *old_set,
979 void *puc)
981 TranslationBlock *tb;
982 int ret;
984 if (cpu_single_env)
985 env = cpu_single_env; /* XXX: find a correct solution for multithread */
986 #if defined(DEBUG_SIGNAL)
987 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
988 pc, address, is_write, *(unsigned long *)old_set);
989 #endif
990 /* XXX: locking issue */
991 if (is_write && page_unprotect(address, pc, puc)) {
992 return 1;
994 /* see if it is an MMU fault */
995 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
996 if (ret < 0)
997 return 0; /* not an MMU fault */
998 if (ret == 0)
999 return 1; /* the MMU fault was handled without causing real CPU fault */
1000 /* now we have a real cpu fault */
1001 tb = tb_find_pc(pc);
1002 if (tb) {
1003 /* the PC is inside the translated code. It means that we have
1004 a virtual CPU fault */
1005 cpu_restore_state(tb, env, pc, puc);
1007 /* we restore the process signal mask as the sigreturn should
1008 do it (XXX: use sigsetjmp) */
1009 sigprocmask(SIG_SETMASK, old_set, NULL);
1010 cpu_loop_exit();
1012 #elif defined (TARGET_PPC)
1013 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1014 int is_write, sigset_t *old_set,
1015 void *puc)
1017 TranslationBlock *tb;
1018 int ret;
1020 if (cpu_single_env)
1021 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1022 #if defined(DEBUG_SIGNAL)
1023 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1024 pc, address, is_write, *(unsigned long *)old_set);
1025 #endif
1026 /* XXX: locking issue */
1027 if (is_write && page_unprotect(address, pc, puc)) {
1028 return 1;
1031 /* see if it is an MMU fault */
1032 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1033 if (ret < 0)
1034 return 0; /* not an MMU fault */
1035 if (ret == 0)
1036 return 1; /* the MMU fault was handled without causing real CPU fault */
1038 /* now we have a real cpu fault */
1039 tb = tb_find_pc(pc);
1040 if (tb) {
1041 /* the PC is inside the translated code. It means that we have
1042 a virtual CPU fault */
1043 cpu_restore_state(tb, env, pc, puc);
1045 if (ret == 1) {
1046 #if 0
1047 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1048 env->nip, env->error_code, tb);
1049 #endif
1050 /* we restore the process signal mask as the sigreturn should
1051 do it (XXX: use sigsetjmp) */
1052 sigprocmask(SIG_SETMASK, old_set, NULL);
1053 do_raise_exception_err(env->exception_index, env->error_code);
1054 } else {
1055 /* activate soft MMU for this block */
1056 cpu_resume_from_signal(env, puc);
1058 /* never comes here */
1059 return 1;
1062 #elif defined (TARGET_MIPS)
1063 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1064 int is_write, sigset_t *old_set,
1065 void *puc)
1067 TranslationBlock *tb;
1068 int ret;
1070 if (cpu_single_env)
1071 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1072 #if defined(DEBUG_SIGNAL)
1073 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1074 pc, address, is_write, *(unsigned long *)old_set);
1075 #endif
1076 /* XXX: locking issue */
1077 if (is_write && page_unprotect(address, pc, puc)) {
1078 return 1;
1081 /* see if it is an MMU fault */
1082 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1083 if (ret < 0)
1084 return 0; /* not an MMU fault */
1085 if (ret == 0)
1086 return 1; /* the MMU fault was handled without causing real CPU fault */
1088 /* now we have a real cpu fault */
1089 tb = tb_find_pc(pc);
1090 if (tb) {
1091 /* the PC is inside the translated code. It means that we have
1092 a virtual CPU fault */
1093 cpu_restore_state(tb, env, pc, puc);
1095 if (ret == 1) {
1096 #if 0
1097 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1098 env->nip, env->error_code, tb);
1099 #endif
1100 /* we restore the process signal mask as the sigreturn should
1101 do it (XXX: use sigsetjmp) */
1102 sigprocmask(SIG_SETMASK, old_set, NULL);
1103 do_raise_exception_err(env->exception_index, env->error_code);
1104 } else {
1105 /* activate soft MMU for this block */
1106 cpu_resume_from_signal(env, puc);
1108 /* never comes here */
1109 return 1;
1112 #else
1113 #error unsupported target CPU
1114 #endif
1116 #if defined(__i386__)
1118 #if defined(USE_CODE_COPY)
1119 static void cpu_send_trap(unsigned long pc, int trap,
1120 struct ucontext *uc)
1122 TranslationBlock *tb;
1124 if (cpu_single_env)
1125 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1126 /* now we have a real cpu fault */
1127 tb = tb_find_pc(pc);
1128 if (tb) {
1129 /* the PC is inside the translated code. It means that we have
1130 a virtual CPU fault */
1131 cpu_restore_state(tb, env, pc, uc);
1133 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1134 raise_exception_err(trap, env->error_code);
1136 #endif
1138 int cpu_signal_handler(int host_signum, struct siginfo *info,
1139 void *puc)
1141 struct ucontext *uc = puc;
1142 unsigned long pc;
1143 int trapno;
1145 #ifndef REG_EIP
1146 /* for glibc 2.1 */
1147 #define REG_EIP EIP
1148 #define REG_ERR ERR
1149 #define REG_TRAPNO TRAPNO
1150 #endif
1151 pc = uc->uc_mcontext.gregs[REG_EIP];
1152 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1153 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1154 if (trapno == 0x00 || trapno == 0x05) {
1155 /* send division by zero or bound exception */
1156 cpu_send_trap(pc, trapno, uc);
1157 return 1;
1158 } else
1159 #endif
1160 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1161 trapno == 0xe ?
1162 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1163 &uc->uc_sigmask, puc);
1166 #elif defined(__x86_64__)
1168 int cpu_signal_handler(int host_signum, struct siginfo *info,
1169 void *puc)
1171 struct ucontext *uc = puc;
1172 unsigned long pc;
1174 pc = uc->uc_mcontext.gregs[REG_RIP];
1175 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1176 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1177 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1178 &uc->uc_sigmask, puc);
1181 #elif defined(__powerpc__)
1183 /***********************************************************************
1184 * signal context platform-specific definitions
1185 * From Wine
1187 #ifdef linux
1188 /* All Registers access - only for local access */
1189 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1190 /* Gpr Registers access */
1191 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1192 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1193 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1194 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1195 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1196 # define LR_sig(context) REG_sig(link, context) /* Link register */
1197 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1198 /* Float Registers access */
1199 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1200 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1201 /* Exception Registers access */
1202 # define DAR_sig(context) REG_sig(dar, context)
1203 # define DSISR_sig(context) REG_sig(dsisr, context)
1204 # define TRAP_sig(context) REG_sig(trap, context)
1205 #endif /* linux */
1207 #ifdef __APPLE__
1208 # include <sys/ucontext.h>
1209 typedef struct ucontext SIGCONTEXT;
1210 /* All Registers access - only for local access */
1211 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1212 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1213 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1214 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1215 /* Gpr Registers access */
1216 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1217 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1218 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1219 # define CTR_sig(context) REG_sig(ctr, context)
1220 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1221 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1222 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1223 /* Float Registers access */
1224 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1225 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1226 /* Exception Registers access */
1227 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1228 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1229 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1230 #endif /* __APPLE__ */
1232 int cpu_signal_handler(int host_signum, struct siginfo *info,
1233 void *puc)
1235 struct ucontext *uc = puc;
1236 unsigned long pc;
1237 int is_write;
1239 pc = IAR_sig(uc);
1240 is_write = 0;
1241 #if 0
1242 /* ppc 4xx case */
1243 if (DSISR_sig(uc) & 0x00800000)
1244 is_write = 1;
1245 #else
1246 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1247 is_write = 1;
1248 #endif
1249 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1250 is_write, &uc->uc_sigmask, puc);
1253 #elif defined(__alpha__)
1255 int cpu_signal_handler(int host_signum, struct siginfo *info,
1256 void *puc)
1258 struct ucontext *uc = puc;
1259 uint32_t *pc = uc->uc_mcontext.sc_pc;
1260 uint32_t insn = *pc;
1261 int is_write = 0;
1263 /* XXX: need kernel patch to get write flag faster */
1264 switch (insn >> 26) {
1265 case 0x0d: // stw
1266 case 0x0e: // stb
1267 case 0x0f: // stq_u
1268 case 0x24: // stf
1269 case 0x25: // stg
1270 case 0x26: // sts
1271 case 0x27: // stt
1272 case 0x2c: // stl
1273 case 0x2d: // stq
1274 case 0x2e: // stl_c
1275 case 0x2f: // stq_c
1276 is_write = 1;
1279 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1280 is_write, &uc->uc_sigmask, puc);
1282 #elif defined(__sparc__)
1284 int cpu_signal_handler(int host_signum, struct siginfo *info,
1285 void *puc)
1287 uint32_t *regs = (uint32_t *)(info + 1);
1288 void *sigmask = (regs + 20);
1289 unsigned long pc;
1290 int is_write;
1291 uint32_t insn;
1293 /* XXX: is there a standard glibc define ? */
1294 pc = regs[1];
1295 /* XXX: need kernel patch to get write flag faster */
1296 is_write = 0;
1297 insn = *(uint32_t *)pc;
1298 if ((insn >> 30) == 3) {
1299 switch((insn >> 19) & 0x3f) {
1300 case 0x05: // stb
1301 case 0x06: // sth
1302 case 0x04: // st
1303 case 0x07: // std
1304 case 0x24: // stf
1305 case 0x27: // stdf
1306 case 0x25: // stfsr
1307 is_write = 1;
1308 break;
1311 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1312 is_write, sigmask, NULL);
1315 #elif defined(__arm__)
1317 int cpu_signal_handler(int host_signum, struct siginfo *info,
1318 void *puc)
1320 struct ucontext *uc = puc;
1321 unsigned long pc;
1322 int is_write;
1324 pc = uc->uc_mcontext.gregs[R15];
1325 /* XXX: compute is_write */
1326 is_write = 0;
1327 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1328 is_write,
1329 &uc->uc_sigmask);
1332 #elif defined(__mc68000)
1334 int cpu_signal_handler(int host_signum, struct siginfo *info,
1335 void *puc)
1337 struct ucontext *uc = puc;
1338 unsigned long pc;
1339 int is_write;
1341 pc = uc->uc_mcontext.gregs[16];
1342 /* XXX: compute is_write */
1343 is_write = 0;
1344 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1345 is_write,
1346 &uc->uc_sigmask, puc);
1349 #elif defined(__ia64)
1351 #ifndef __ISR_VALID
1352 /* This ought to be in <bits/siginfo.h>... */
1353 # define __ISR_VALID 1
1354 # define si_flags _sifields._sigfault._si_pad0
1355 #endif
1357 int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1359 struct ucontext *uc = puc;
1360 unsigned long ip;
1361 int is_write = 0;
1363 ip = uc->uc_mcontext.sc_ip;
1364 switch (host_signum) {
1365 case SIGILL:
1366 case SIGFPE:
1367 case SIGSEGV:
1368 case SIGBUS:
1369 case SIGTRAP:
1370 if (info->si_code && (info->si_flags & __ISR_VALID))
1371 /* ISR.W (write-access) is bit 33: */
1372 is_write = (info->si_isr >> 33) & 1;
1373 break;
1375 default:
1376 break;
1378 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1379 is_write,
1380 &uc->uc_sigmask, puc);
1383 #elif defined(__s390__)
1385 int cpu_signal_handler(int host_signum, struct siginfo *info,
1386 void *puc)
1388 struct ucontext *uc = puc;
1389 unsigned long pc;
1390 int is_write;
1392 pc = uc->uc_mcontext.psw.addr;
1393 /* XXX: compute is_write */
1394 is_write = 0;
1395 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1396 is_write,
1397 &uc->uc_sigmask, puc);
1400 #else
1402 #error host CPU specific signal handler needed
1404 #endif
1406 #endif /* !defined(CONFIG_SOFTMMU) */