4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
61 int broken_set_mem_region
;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
68 static KVMState
*kvm_state
;
70 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
74 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
75 /* KVM private memory slots */
78 if (s
->slots
[i
].memory_size
== 0)
82 fprintf(stderr
, "%s: no free slot available\n", __func__
);
86 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
87 target_phys_addr_t start_addr
,
88 target_phys_addr_t end_addr
)
92 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
93 KVMSlot
*mem
= &s
->slots
[i
];
95 if (start_addr
== mem
->start_addr
&&
96 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
105 * Find overlapping slot with lowest start address
107 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
108 target_phys_addr_t start_addr
,
109 target_phys_addr_t end_addr
)
111 KVMSlot
*found
= NULL
;
114 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
115 KVMSlot
*mem
= &s
->slots
[i
];
117 if (mem
->memory_size
== 0 ||
118 (found
&& found
->start_addr
< mem
->start_addr
)) {
122 if (end_addr
> mem
->start_addr
&&
123 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
131 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
133 struct kvm_userspace_memory_region mem
;
135 mem
.slot
= slot
->slot
;
136 mem
.guest_phys_addr
= slot
->start_addr
;
137 mem
.memory_size
= slot
->memory_size
;
138 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
139 mem
.flags
= slot
->flags
;
140 if (s
->migration_log
) {
141 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
143 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
147 int kvm_init_vcpu(CPUState
*env
)
149 KVMState
*s
= kvm_state
;
153 dprintf("kvm_init_vcpu\n");
155 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
157 dprintf("kvm_create_vcpu failed\n");
164 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
166 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
170 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
172 if (env
->kvm_run
== MAP_FAILED
) {
174 dprintf("mmap'ing vcpu state failed\n");
178 ret
= kvm_arch_init_vcpu(env
);
184 int kvm_sync_vcpus(void)
188 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
191 ret
= kvm_arch_put_registers(env
);
200 * dirty pages logging control
202 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
203 ram_addr_t size
, int flags
, int mask
)
205 KVMState
*s
= kvm_state
;
206 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
210 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
211 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
212 phys_addr
+ size
- 1);
216 old_flags
= mem
->flags
;
218 flags
= (mem
->flags
& ~mask
) | flags
;
221 /* If nothing changed effectively, no need to issue ioctl */
222 if (s
->migration_log
) {
223 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
225 if (flags
== old_flags
) {
229 return kvm_set_user_memory_region(s
, mem
);
232 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
234 return kvm_dirty_pages_log_change(phys_addr
, size
,
235 KVM_MEM_LOG_DIRTY_PAGES
,
236 KVM_MEM_LOG_DIRTY_PAGES
);
239 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
241 return kvm_dirty_pages_log_change(phys_addr
, size
,
243 KVM_MEM_LOG_DIRTY_PAGES
);
246 int kvm_set_migration_log(int enable
)
248 KVMState
*s
= kvm_state
;
252 s
->migration_log
= enable
;
254 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
257 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
260 err
= kvm_set_user_memory_region(s
, mem
);
269 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
270 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
271 * This means all bits are set to dirty.
273 * @start_add: start of logged region.
274 * @end_addr: end of logged region.
276 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
277 target_phys_addr_t end_addr
)
279 KVMState
*s
= kvm_state
;
280 unsigned long size
, allocated_size
= 0;
281 target_phys_addr_t phys_addr
;
287 d
.dirty_bitmap
= NULL
;
288 while (start_addr
< end_addr
) {
289 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
294 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
295 if (!d
.dirty_bitmap
) {
296 d
.dirty_bitmap
= qemu_malloc(size
);
297 } else if (size
> allocated_size
) {
298 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
300 allocated_size
= size
;
301 memset(d
.dirty_bitmap
, 0, allocated_size
);
305 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
306 dprintf("ioctl failed %d\n", errno
);
311 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
312 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
313 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
314 unsigned long *bitmap
= (unsigned long *)d
.dirty_bitmap
;
315 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
316 unsigned word
= nr
/ (sizeof(*bitmap
) * 8);
317 unsigned bit
= nr
% (sizeof(*bitmap
) * 8);
319 if ((bitmap
[word
] >> bit
) & 1) {
320 cpu_physical_memory_set_dirty(addr
);
323 start_addr
= phys_addr
;
325 qemu_free(d
.dirty_bitmap
);
330 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
333 #ifdef KVM_CAP_COALESCED_MMIO
334 KVMState
*s
= kvm_state
;
336 if (s
->coalesced_mmio
) {
337 struct kvm_coalesced_mmio_zone zone
;
342 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
349 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
352 #ifdef KVM_CAP_COALESCED_MMIO
353 KVMState
*s
= kvm_state
;
355 if (s
->coalesced_mmio
) {
356 struct kvm_coalesced_mmio_zone zone
;
361 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
368 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
372 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
380 static void kvm_reset_vcpus(void *opaque
)
385 int kvm_init(int smp_cpus
)
392 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
396 s
= qemu_mallocz(sizeof(KVMState
));
398 #ifdef KVM_CAP_SET_GUEST_DEBUG
399 TAILQ_INIT(&s
->kvm_sw_breakpoints
);
401 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
402 s
->slots
[i
].slot
= i
;
405 s
->fd
= open("/dev/kvm", O_RDWR
);
407 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
412 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
413 if (ret
< KVM_API_VERSION
) {
416 fprintf(stderr
, "kvm version too old\n");
420 if (ret
> KVM_API_VERSION
) {
422 fprintf(stderr
, "kvm version not supported\n");
426 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
430 /* initially, KVM allocated its own memory and we had to jump through
431 * hooks to make phys_ram_base point to this. Modern versions of KVM
432 * just use a user allocated buffer so we can use regular pages
433 * unmodified. Make sure we have a sufficiently modern version of KVM.
435 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
437 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n");
441 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
442 * destroyed properly. Since we rely on this capability, refuse to work
443 * with any kernel without this capability. */
444 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
448 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
449 "Please upgrade to at least kvm-81.\n");
453 #ifdef KVM_CAP_COALESCED_MMIO
454 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
456 s
->coalesced_mmio
= 0;
459 s
->broken_set_mem_region
= 1;
460 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
461 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
463 s
->broken_set_mem_region
= 0;
467 ret
= kvm_arch_init(s
, smp_cpus
);
471 qemu_register_reset(kvm_reset_vcpus
, INT_MAX
, NULL
);
489 static int kvm_handle_io(CPUState
*env
, uint16_t port
, void *data
,
490 int direction
, int size
, uint32_t count
)
495 for (i
= 0; i
< count
; i
++) {
496 if (direction
== KVM_EXIT_IO_IN
) {
499 stb_p(ptr
, cpu_inb(env
, port
));
502 stw_p(ptr
, cpu_inw(env
, port
));
505 stl_p(ptr
, cpu_inl(env
, port
));
511 cpu_outb(env
, port
, ldub_p(ptr
));
514 cpu_outw(env
, port
, lduw_p(ptr
));
517 cpu_outl(env
, port
, ldl_p(ptr
));
528 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
530 #ifdef KVM_CAP_COALESCED_MMIO
531 KVMState
*s
= kvm_state
;
532 if (s
->coalesced_mmio
) {
533 struct kvm_coalesced_mmio_ring
*ring
;
535 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
536 while (ring
->first
!= ring
->last
) {
537 struct kvm_coalesced_mmio
*ent
;
539 ent
= &ring
->coalesced_mmio
[ring
->first
];
541 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
542 /* FIXME smp_wmb() */
543 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
549 int kvm_cpu_exec(CPUState
*env
)
551 struct kvm_run
*run
= env
->kvm_run
;
554 dprintf("kvm_cpu_exec()\n");
557 kvm_arch_pre_run(env
, run
);
559 if (env
->exit_request
) {
560 dprintf("interrupt exit requested\n");
565 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
566 kvm_arch_post_run(env
, run
);
568 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
569 dprintf("io window exit\n");
575 dprintf("kvm run failed %s\n", strerror(-ret
));
579 kvm_run_coalesced_mmio(env
, run
);
581 ret
= 0; /* exit loop */
582 switch (run
->exit_reason
) {
584 dprintf("handle_io\n");
585 ret
= kvm_handle_io(env
, run
->io
.port
,
586 (uint8_t *)run
+ run
->io
.data_offset
,
592 dprintf("handle_mmio\n");
593 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
599 case KVM_EXIT_IRQ_WINDOW_OPEN
:
600 dprintf("irq_window_open\n");
602 case KVM_EXIT_SHUTDOWN
:
603 dprintf("shutdown\n");
604 qemu_system_reset_request();
607 case KVM_EXIT_UNKNOWN
:
608 dprintf("kvm_exit_unknown\n");
610 case KVM_EXIT_FAIL_ENTRY
:
611 dprintf("kvm_exit_fail_entry\n");
613 case KVM_EXIT_EXCEPTION
:
614 dprintf("kvm_exit_exception\n");
617 dprintf("kvm_exit_debug\n");
618 #ifdef KVM_CAP_SET_GUEST_DEBUG
619 if (kvm_arch_debug(&run
->debug
.arch
)) {
620 gdb_set_stop_cpu(env
);
622 env
->exception_index
= EXCP_DEBUG
;
625 /* re-enter, this exception was guest-internal */
627 #endif /* KVM_CAP_SET_GUEST_DEBUG */
630 dprintf("kvm_arch_handle_exit\n");
631 ret
= kvm_arch_handle_exit(env
, run
);
636 if (env
->exit_request
) {
637 env
->exit_request
= 0;
638 env
->exception_index
= EXCP_INTERRUPT
;
644 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
646 ram_addr_t phys_offset
)
648 KVMState
*s
= kvm_state
;
649 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
653 if (start_addr
& ~TARGET_PAGE_MASK
) {
654 if (flags
>= IO_MEM_UNASSIGNED
) {
655 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
656 start_addr
+ size
)) {
659 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
661 fprintf(stderr
, "Only page-aligned memory slots supported\n");
666 /* KVM does not support read-only slots */
667 phys_offset
&= ~IO_MEM_ROM
;
670 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
675 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
676 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
677 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
678 /* The new slot fits into the existing one and comes with
679 * identical parameters - nothing to be done. */
685 /* unregister the overlapping slot */
686 mem
->memory_size
= 0;
687 err
= kvm_set_user_memory_region(s
, mem
);
689 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
690 __func__
, strerror(-err
));
694 /* Workaround for older KVM versions: we can't join slots, even not by
695 * unregistering the previous ones and then registering the larger
696 * slot. We have to maintain the existing fragmentation. Sigh.
698 * This workaround assumes that the new slot starts at the same
699 * address as the first existing one. If not or if some overlapping
700 * slot comes around later, we will fail (not seen in practice so far)
701 * - and actually require a recent KVM version. */
702 if (s
->broken_set_mem_region
&&
703 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
704 flags
< IO_MEM_UNASSIGNED
) {
705 mem
= kvm_alloc_slot(s
);
706 mem
->memory_size
= old
.memory_size
;
707 mem
->start_addr
= old
.start_addr
;
708 mem
->phys_offset
= old
.phys_offset
;
711 err
= kvm_set_user_memory_region(s
, mem
);
713 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
718 start_addr
+= old
.memory_size
;
719 phys_offset
+= old
.memory_size
;
720 size
-= old
.memory_size
;
724 /* register prefix slot */
725 if (old
.start_addr
< start_addr
) {
726 mem
= kvm_alloc_slot(s
);
727 mem
->memory_size
= start_addr
- old
.start_addr
;
728 mem
->start_addr
= old
.start_addr
;
729 mem
->phys_offset
= old
.phys_offset
;
732 err
= kvm_set_user_memory_region(s
, mem
);
734 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
735 __func__
, strerror(-err
));
740 /* register suffix slot */
741 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
742 ram_addr_t size_delta
;
744 mem
= kvm_alloc_slot(s
);
745 mem
->start_addr
= start_addr
+ size
;
746 size_delta
= mem
->start_addr
- old
.start_addr
;
747 mem
->memory_size
= old
.memory_size
- size_delta
;
748 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
751 err
= kvm_set_user_memory_region(s
, mem
);
753 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
754 __func__
, strerror(-err
));
760 /* in case the KVM bug workaround already "consumed" the new slot */
764 /* KVM does not need to know about this memory */
765 if (flags
>= IO_MEM_UNASSIGNED
)
768 mem
= kvm_alloc_slot(s
);
769 mem
->memory_size
= size
;
770 mem
->start_addr
= start_addr
;
771 mem
->phys_offset
= phys_offset
;
774 err
= kvm_set_user_memory_region(s
, mem
);
776 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
782 int kvm_ioctl(KVMState
*s
, int type
, ...)
789 arg
= va_arg(ap
, void *);
792 ret
= ioctl(s
->fd
, type
, arg
);
799 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
806 arg
= va_arg(ap
, void *);
809 ret
= ioctl(s
->vmfd
, type
, arg
);
816 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
823 arg
= va_arg(ap
, void *);
826 ret
= ioctl(env
->kvm_fd
, type
, arg
);
833 int kvm_has_sync_mmu(void)
835 #ifdef KVM_CAP_SYNC_MMU
836 KVMState
*s
= kvm_state
;
838 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
844 void kvm_setup_guest_memory(void *start
, size_t size
)
846 if (!kvm_has_sync_mmu()) {
848 int ret
= madvise(start
, size
, MADV_DONTFORK
);
856 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
862 #ifdef KVM_CAP_SET_GUEST_DEBUG
863 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
866 struct kvm_sw_breakpoint
*bp
;
868 TAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
875 int kvm_sw_breakpoints_active(CPUState
*env
)
877 return !TAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
880 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
882 struct kvm_guest_debug dbg
;
885 if (env
->singlestep_enabled
)
886 dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
888 kvm_arch_update_guest_debug(env
, &dbg
);
889 dbg
.control
|= reinject_trap
;
891 return kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg
);
894 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
895 target_ulong len
, int type
)
897 struct kvm_sw_breakpoint
*bp
;
901 if (type
== GDB_BREAKPOINT_SW
) {
902 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
908 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
914 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
920 TAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
923 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
928 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
929 err
= kvm_update_guest_debug(env
, 0);
936 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
937 target_ulong len
, int type
)
939 struct kvm_sw_breakpoint
*bp
;
943 if (type
== GDB_BREAKPOINT_SW
) {
944 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
948 if (bp
->use_count
> 1) {
953 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
957 TAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
960 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
965 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
966 err
= kvm_update_guest_debug(env
, 0);
973 void kvm_remove_all_breakpoints(CPUState
*current_env
)
975 struct kvm_sw_breakpoint
*bp
, *next
;
976 KVMState
*s
= current_env
->kvm_state
;
979 TAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
980 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
981 /* Try harder to find a CPU that currently sees the breakpoint. */
982 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
983 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
988 kvm_arch_remove_all_hw_breakpoints();
990 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
991 kvm_update_guest_debug(env
, 0);
994 #else /* !KVM_CAP_SET_GUEST_DEBUG */
996 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1001 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1002 target_ulong len
, int type
)
1007 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1008 target_ulong len
, int type
)
1013 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1016 #endif /* !KVM_CAP_SET_GUEST_DEBUG */