kvm: Rework VCPU reset
[qemu/mdroth.git] / kvm-all.c
blobc9f09c7e180a5a27247696ac2b0a268b77a4e36f
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 int broken_set_mem_region;
62 int migration_log;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65 #endif
68 static KVMState *kvm_state;
70 static KVMSlot *kvm_alloc_slot(KVMState *s)
72 int i;
74 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
75 /* KVM private memory slots */
76 if (i >= 8 && i < 12)
77 continue;
78 if (s->slots[i].memory_size == 0)
79 return &s->slots[i];
82 fprintf(stderr, "%s: no free slot available\n", __func__);
83 abort();
86 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
87 target_phys_addr_t start_addr,
88 target_phys_addr_t end_addr)
90 int i;
92 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
93 KVMSlot *mem = &s->slots[i];
95 if (start_addr == mem->start_addr &&
96 end_addr == mem->start_addr + mem->memory_size) {
97 return mem;
101 return NULL;
105 * Find overlapping slot with lowest start address
107 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
108 target_phys_addr_t start_addr,
109 target_phys_addr_t end_addr)
111 KVMSlot *found = NULL;
112 int i;
114 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115 KVMSlot *mem = &s->slots[i];
117 if (mem->memory_size == 0 ||
118 (found && found->start_addr < mem->start_addr)) {
119 continue;
122 if (end_addr > mem->start_addr &&
123 start_addr < mem->start_addr + mem->memory_size) {
124 found = mem;
128 return found;
131 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
133 struct kvm_userspace_memory_region mem;
135 mem.slot = slot->slot;
136 mem.guest_phys_addr = slot->start_addr;
137 mem.memory_size = slot->memory_size;
138 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
139 mem.flags = slot->flags;
140 if (s->migration_log) {
141 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
143 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
147 int kvm_init_vcpu(CPUState *env)
149 KVMState *s = kvm_state;
150 long mmap_size;
151 int ret;
153 dprintf("kvm_init_vcpu\n");
155 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
156 if (ret < 0) {
157 dprintf("kvm_create_vcpu failed\n");
158 goto err;
161 env->kvm_fd = ret;
162 env->kvm_state = s;
164 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
165 if (mmap_size < 0) {
166 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
167 goto err;
170 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
171 env->kvm_fd, 0);
172 if (env->kvm_run == MAP_FAILED) {
173 ret = -errno;
174 dprintf("mmap'ing vcpu state failed\n");
175 goto err;
178 ret = kvm_arch_init_vcpu(env);
180 err:
181 return ret;
184 int kvm_sync_vcpus(void)
186 CPUState *env;
188 for (env = first_cpu; env != NULL; env = env->next_cpu) {
189 int ret;
191 ret = kvm_arch_put_registers(env);
192 if (ret)
193 return ret;
196 return 0;
200 * dirty pages logging control
202 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
203 ram_addr_t size, int flags, int mask)
205 KVMState *s = kvm_state;
206 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
207 int old_flags;
209 if (mem == NULL) {
210 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
211 TARGET_FMT_plx "\n", __func__, phys_addr,
212 phys_addr + size - 1);
213 return -EINVAL;
216 old_flags = mem->flags;
218 flags = (mem->flags & ~mask) | flags;
219 mem->flags = flags;
221 /* If nothing changed effectively, no need to issue ioctl */
222 if (s->migration_log) {
223 flags |= KVM_MEM_LOG_DIRTY_PAGES;
225 if (flags == old_flags) {
226 return 0;
229 return kvm_set_user_memory_region(s, mem);
232 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
234 return kvm_dirty_pages_log_change(phys_addr, size,
235 KVM_MEM_LOG_DIRTY_PAGES,
236 KVM_MEM_LOG_DIRTY_PAGES);
239 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
241 return kvm_dirty_pages_log_change(phys_addr, size,
243 KVM_MEM_LOG_DIRTY_PAGES);
246 int kvm_set_migration_log(int enable)
248 KVMState *s = kvm_state;
249 KVMSlot *mem;
250 int i, err;
252 s->migration_log = enable;
254 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
255 mem = &s->slots[i];
257 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
258 continue;
260 err = kvm_set_user_memory_region(s, mem);
261 if (err) {
262 return err;
265 return 0;
269 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
270 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
271 * This means all bits are set to dirty.
273 * @start_add: start of logged region.
274 * @end_addr: end of logged region.
276 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
277 target_phys_addr_t end_addr)
279 KVMState *s = kvm_state;
280 unsigned long size, allocated_size = 0;
281 target_phys_addr_t phys_addr;
282 ram_addr_t addr;
283 KVMDirtyLog d;
284 KVMSlot *mem;
285 int ret = 0;
287 d.dirty_bitmap = NULL;
288 while (start_addr < end_addr) {
289 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
290 if (mem == NULL) {
291 break;
294 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
295 if (!d.dirty_bitmap) {
296 d.dirty_bitmap = qemu_malloc(size);
297 } else if (size > allocated_size) {
298 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
300 allocated_size = size;
301 memset(d.dirty_bitmap, 0, allocated_size);
303 d.slot = mem->slot;
305 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
306 dprintf("ioctl failed %d\n", errno);
307 ret = -1;
308 break;
311 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
312 phys_addr < mem->start_addr + mem->memory_size;
313 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
314 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
315 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
316 unsigned word = nr / (sizeof(*bitmap) * 8);
317 unsigned bit = nr % (sizeof(*bitmap) * 8);
319 if ((bitmap[word] >> bit) & 1) {
320 cpu_physical_memory_set_dirty(addr);
323 start_addr = phys_addr;
325 qemu_free(d.dirty_bitmap);
327 return ret;
330 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
332 int ret = -ENOSYS;
333 #ifdef KVM_CAP_COALESCED_MMIO
334 KVMState *s = kvm_state;
336 if (s->coalesced_mmio) {
337 struct kvm_coalesced_mmio_zone zone;
339 zone.addr = start;
340 zone.size = size;
342 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
344 #endif
346 return ret;
349 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
351 int ret = -ENOSYS;
352 #ifdef KVM_CAP_COALESCED_MMIO
353 KVMState *s = kvm_state;
355 if (s->coalesced_mmio) {
356 struct kvm_coalesced_mmio_zone zone;
358 zone.addr = start;
359 zone.size = size;
361 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
363 #endif
365 return ret;
368 int kvm_check_extension(KVMState *s, unsigned int extension)
370 int ret;
372 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
373 if (ret < 0) {
374 ret = 0;
377 return ret;
380 static void kvm_reset_vcpus(void *opaque)
382 kvm_sync_vcpus();
385 int kvm_init(int smp_cpus)
387 KVMState *s;
388 int ret;
389 int i;
391 if (smp_cpus > 1) {
392 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
393 return -EINVAL;
396 s = qemu_mallocz(sizeof(KVMState));
398 #ifdef KVM_CAP_SET_GUEST_DEBUG
399 TAILQ_INIT(&s->kvm_sw_breakpoints);
400 #endif
401 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
402 s->slots[i].slot = i;
404 s->vmfd = -1;
405 s->fd = open("/dev/kvm", O_RDWR);
406 if (s->fd == -1) {
407 fprintf(stderr, "Could not access KVM kernel module: %m\n");
408 ret = -errno;
409 goto err;
412 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
413 if (ret < KVM_API_VERSION) {
414 if (ret > 0)
415 ret = -EINVAL;
416 fprintf(stderr, "kvm version too old\n");
417 goto err;
420 if (ret > KVM_API_VERSION) {
421 ret = -EINVAL;
422 fprintf(stderr, "kvm version not supported\n");
423 goto err;
426 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
427 if (s->vmfd < 0)
428 goto err;
430 /* initially, KVM allocated its own memory and we had to jump through
431 * hooks to make phys_ram_base point to this. Modern versions of KVM
432 * just use a user allocated buffer so we can use regular pages
433 * unmodified. Make sure we have a sufficiently modern version of KVM.
435 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
436 ret = -EINVAL;
437 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
438 goto err;
441 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
442 * destroyed properly. Since we rely on this capability, refuse to work
443 * with any kernel without this capability. */
444 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
445 ret = -EINVAL;
447 fprintf(stderr,
448 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
449 "Please upgrade to at least kvm-81.\n");
450 goto err;
453 #ifdef KVM_CAP_COALESCED_MMIO
454 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
455 #else
456 s->coalesced_mmio = 0;
457 #endif
459 s->broken_set_mem_region = 1;
460 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
461 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
462 if (ret > 0) {
463 s->broken_set_mem_region = 0;
465 #endif
467 ret = kvm_arch_init(s, smp_cpus);
468 if (ret < 0)
469 goto err;
471 qemu_register_reset(kvm_reset_vcpus, INT_MAX, NULL);
473 kvm_state = s;
475 return 0;
477 err:
478 if (s) {
479 if (s->vmfd != -1)
480 close(s->vmfd);
481 if (s->fd != -1)
482 close(s->fd);
484 qemu_free(s);
486 return ret;
489 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
490 int direction, int size, uint32_t count)
492 int i;
493 uint8_t *ptr = data;
495 for (i = 0; i < count; i++) {
496 if (direction == KVM_EXIT_IO_IN) {
497 switch (size) {
498 case 1:
499 stb_p(ptr, cpu_inb(env, port));
500 break;
501 case 2:
502 stw_p(ptr, cpu_inw(env, port));
503 break;
504 case 4:
505 stl_p(ptr, cpu_inl(env, port));
506 break;
508 } else {
509 switch (size) {
510 case 1:
511 cpu_outb(env, port, ldub_p(ptr));
512 break;
513 case 2:
514 cpu_outw(env, port, lduw_p(ptr));
515 break;
516 case 4:
517 cpu_outl(env, port, ldl_p(ptr));
518 break;
522 ptr += size;
525 return 1;
528 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
530 #ifdef KVM_CAP_COALESCED_MMIO
531 KVMState *s = kvm_state;
532 if (s->coalesced_mmio) {
533 struct kvm_coalesced_mmio_ring *ring;
535 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
536 while (ring->first != ring->last) {
537 struct kvm_coalesced_mmio *ent;
539 ent = &ring->coalesced_mmio[ring->first];
541 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
542 /* FIXME smp_wmb() */
543 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
546 #endif
549 int kvm_cpu_exec(CPUState *env)
551 struct kvm_run *run = env->kvm_run;
552 int ret;
554 dprintf("kvm_cpu_exec()\n");
556 do {
557 kvm_arch_pre_run(env, run);
559 if (env->exit_request) {
560 dprintf("interrupt exit requested\n");
561 ret = 0;
562 break;
565 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
566 kvm_arch_post_run(env, run);
568 if (ret == -EINTR || ret == -EAGAIN) {
569 dprintf("io window exit\n");
570 ret = 0;
571 break;
574 if (ret < 0) {
575 dprintf("kvm run failed %s\n", strerror(-ret));
576 abort();
579 kvm_run_coalesced_mmio(env, run);
581 ret = 0; /* exit loop */
582 switch (run->exit_reason) {
583 case KVM_EXIT_IO:
584 dprintf("handle_io\n");
585 ret = kvm_handle_io(env, run->io.port,
586 (uint8_t *)run + run->io.data_offset,
587 run->io.direction,
588 run->io.size,
589 run->io.count);
590 break;
591 case KVM_EXIT_MMIO:
592 dprintf("handle_mmio\n");
593 cpu_physical_memory_rw(run->mmio.phys_addr,
594 run->mmio.data,
595 run->mmio.len,
596 run->mmio.is_write);
597 ret = 1;
598 break;
599 case KVM_EXIT_IRQ_WINDOW_OPEN:
600 dprintf("irq_window_open\n");
601 break;
602 case KVM_EXIT_SHUTDOWN:
603 dprintf("shutdown\n");
604 qemu_system_reset_request();
605 ret = 1;
606 break;
607 case KVM_EXIT_UNKNOWN:
608 dprintf("kvm_exit_unknown\n");
609 break;
610 case KVM_EXIT_FAIL_ENTRY:
611 dprintf("kvm_exit_fail_entry\n");
612 break;
613 case KVM_EXIT_EXCEPTION:
614 dprintf("kvm_exit_exception\n");
615 break;
616 case KVM_EXIT_DEBUG:
617 dprintf("kvm_exit_debug\n");
618 #ifdef KVM_CAP_SET_GUEST_DEBUG
619 if (kvm_arch_debug(&run->debug.arch)) {
620 gdb_set_stop_cpu(env);
621 vm_stop(EXCP_DEBUG);
622 env->exception_index = EXCP_DEBUG;
623 return 0;
625 /* re-enter, this exception was guest-internal */
626 ret = 1;
627 #endif /* KVM_CAP_SET_GUEST_DEBUG */
628 break;
629 default:
630 dprintf("kvm_arch_handle_exit\n");
631 ret = kvm_arch_handle_exit(env, run);
632 break;
634 } while (ret > 0);
636 if (env->exit_request) {
637 env->exit_request = 0;
638 env->exception_index = EXCP_INTERRUPT;
641 return ret;
644 void kvm_set_phys_mem(target_phys_addr_t start_addr,
645 ram_addr_t size,
646 ram_addr_t phys_offset)
648 KVMState *s = kvm_state;
649 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
650 KVMSlot *mem, old;
651 int err;
653 if (start_addr & ~TARGET_PAGE_MASK) {
654 if (flags >= IO_MEM_UNASSIGNED) {
655 if (!kvm_lookup_overlapping_slot(s, start_addr,
656 start_addr + size)) {
657 return;
659 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
660 } else {
661 fprintf(stderr, "Only page-aligned memory slots supported\n");
663 abort();
666 /* KVM does not support read-only slots */
667 phys_offset &= ~IO_MEM_ROM;
669 while (1) {
670 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
671 if (!mem) {
672 break;
675 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
676 (start_addr + size <= mem->start_addr + mem->memory_size) &&
677 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
678 /* The new slot fits into the existing one and comes with
679 * identical parameters - nothing to be done. */
680 return;
683 old = *mem;
685 /* unregister the overlapping slot */
686 mem->memory_size = 0;
687 err = kvm_set_user_memory_region(s, mem);
688 if (err) {
689 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
690 __func__, strerror(-err));
691 abort();
694 /* Workaround for older KVM versions: we can't join slots, even not by
695 * unregistering the previous ones and then registering the larger
696 * slot. We have to maintain the existing fragmentation. Sigh.
698 * This workaround assumes that the new slot starts at the same
699 * address as the first existing one. If not or if some overlapping
700 * slot comes around later, we will fail (not seen in practice so far)
701 * - and actually require a recent KVM version. */
702 if (s->broken_set_mem_region &&
703 old.start_addr == start_addr && old.memory_size < size &&
704 flags < IO_MEM_UNASSIGNED) {
705 mem = kvm_alloc_slot(s);
706 mem->memory_size = old.memory_size;
707 mem->start_addr = old.start_addr;
708 mem->phys_offset = old.phys_offset;
709 mem->flags = 0;
711 err = kvm_set_user_memory_region(s, mem);
712 if (err) {
713 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
714 strerror(-err));
715 abort();
718 start_addr += old.memory_size;
719 phys_offset += old.memory_size;
720 size -= old.memory_size;
721 continue;
724 /* register prefix slot */
725 if (old.start_addr < start_addr) {
726 mem = kvm_alloc_slot(s);
727 mem->memory_size = start_addr - old.start_addr;
728 mem->start_addr = old.start_addr;
729 mem->phys_offset = old.phys_offset;
730 mem->flags = 0;
732 err = kvm_set_user_memory_region(s, mem);
733 if (err) {
734 fprintf(stderr, "%s: error registering prefix slot: %s\n",
735 __func__, strerror(-err));
736 abort();
740 /* register suffix slot */
741 if (old.start_addr + old.memory_size > start_addr + size) {
742 ram_addr_t size_delta;
744 mem = kvm_alloc_slot(s);
745 mem->start_addr = start_addr + size;
746 size_delta = mem->start_addr - old.start_addr;
747 mem->memory_size = old.memory_size - size_delta;
748 mem->phys_offset = old.phys_offset + size_delta;
749 mem->flags = 0;
751 err = kvm_set_user_memory_region(s, mem);
752 if (err) {
753 fprintf(stderr, "%s: error registering suffix slot: %s\n",
754 __func__, strerror(-err));
755 abort();
760 /* in case the KVM bug workaround already "consumed" the new slot */
761 if (!size)
762 return;
764 /* KVM does not need to know about this memory */
765 if (flags >= IO_MEM_UNASSIGNED)
766 return;
768 mem = kvm_alloc_slot(s);
769 mem->memory_size = size;
770 mem->start_addr = start_addr;
771 mem->phys_offset = phys_offset;
772 mem->flags = 0;
774 err = kvm_set_user_memory_region(s, mem);
775 if (err) {
776 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
777 strerror(-err));
778 abort();
782 int kvm_ioctl(KVMState *s, int type, ...)
784 int ret;
785 void *arg;
786 va_list ap;
788 va_start(ap, type);
789 arg = va_arg(ap, void *);
790 va_end(ap);
792 ret = ioctl(s->fd, type, arg);
793 if (ret == -1)
794 ret = -errno;
796 return ret;
799 int kvm_vm_ioctl(KVMState *s, int type, ...)
801 int ret;
802 void *arg;
803 va_list ap;
805 va_start(ap, type);
806 arg = va_arg(ap, void *);
807 va_end(ap);
809 ret = ioctl(s->vmfd, type, arg);
810 if (ret == -1)
811 ret = -errno;
813 return ret;
816 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
818 int ret;
819 void *arg;
820 va_list ap;
822 va_start(ap, type);
823 arg = va_arg(ap, void *);
824 va_end(ap);
826 ret = ioctl(env->kvm_fd, type, arg);
827 if (ret == -1)
828 ret = -errno;
830 return ret;
833 int kvm_has_sync_mmu(void)
835 #ifdef KVM_CAP_SYNC_MMU
836 KVMState *s = kvm_state;
838 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
839 #else
840 return 0;
841 #endif
844 void kvm_setup_guest_memory(void *start, size_t size)
846 if (!kvm_has_sync_mmu()) {
847 #ifdef MADV_DONTFORK
848 int ret = madvise(start, size, MADV_DONTFORK);
850 if (ret) {
851 perror("madvice");
852 exit(1);
854 #else
855 fprintf(stderr,
856 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
857 exit(1);
858 #endif
862 #ifdef KVM_CAP_SET_GUEST_DEBUG
863 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
864 target_ulong pc)
866 struct kvm_sw_breakpoint *bp;
868 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
869 if (bp->pc == pc)
870 return bp;
872 return NULL;
875 int kvm_sw_breakpoints_active(CPUState *env)
877 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
880 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
882 struct kvm_guest_debug dbg;
884 dbg.control = 0;
885 if (env->singlestep_enabled)
886 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
888 kvm_arch_update_guest_debug(env, &dbg);
889 dbg.control |= reinject_trap;
891 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
894 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
895 target_ulong len, int type)
897 struct kvm_sw_breakpoint *bp;
898 CPUState *env;
899 int err;
901 if (type == GDB_BREAKPOINT_SW) {
902 bp = kvm_find_sw_breakpoint(current_env, addr);
903 if (bp) {
904 bp->use_count++;
905 return 0;
908 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
909 if (!bp)
910 return -ENOMEM;
912 bp->pc = addr;
913 bp->use_count = 1;
914 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
915 if (err) {
916 free(bp);
917 return err;
920 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
921 bp, entry);
922 } else {
923 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
924 if (err)
925 return err;
928 for (env = first_cpu; env != NULL; env = env->next_cpu) {
929 err = kvm_update_guest_debug(env, 0);
930 if (err)
931 return err;
933 return 0;
936 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
937 target_ulong len, int type)
939 struct kvm_sw_breakpoint *bp;
940 CPUState *env;
941 int err;
943 if (type == GDB_BREAKPOINT_SW) {
944 bp = kvm_find_sw_breakpoint(current_env, addr);
945 if (!bp)
946 return -ENOENT;
948 if (bp->use_count > 1) {
949 bp->use_count--;
950 return 0;
953 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
954 if (err)
955 return err;
957 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
958 qemu_free(bp);
959 } else {
960 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
961 if (err)
962 return err;
965 for (env = first_cpu; env != NULL; env = env->next_cpu) {
966 err = kvm_update_guest_debug(env, 0);
967 if (err)
968 return err;
970 return 0;
973 void kvm_remove_all_breakpoints(CPUState *current_env)
975 struct kvm_sw_breakpoint *bp, *next;
976 KVMState *s = current_env->kvm_state;
977 CPUState *env;
979 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
980 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
981 /* Try harder to find a CPU that currently sees the breakpoint. */
982 for (env = first_cpu; env != NULL; env = env->next_cpu) {
983 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
984 break;
988 kvm_arch_remove_all_hw_breakpoints();
990 for (env = first_cpu; env != NULL; env = env->next_cpu)
991 kvm_update_guest_debug(env, 0);
994 #else /* !KVM_CAP_SET_GUEST_DEBUG */
996 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
998 return -EINVAL;
1001 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1002 target_ulong len, int type)
1004 return -EINVAL;
1007 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1008 target_ulong len, int type)
1010 return -EINVAL;
1013 void kvm_remove_all_breakpoints(CPUState *current_env)
1016 #endif /* !KVM_CAP_SET_GUEST_DEBUG */