Correct alarm deadline computation
[qemu/mdroth.git] / qemu-timer.c
blob69e71d73edd2fa4e760490b3ed6e2cb9ae6f7406
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "sysemu.h"
26 #include "net.h"
27 #include "monitor.h"
28 #include "console.h"
30 #include "hw/hw.h"
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <time.h>
35 #include <errno.h>
36 #include <sys/time.h>
37 #include <signal.h>
38 #ifdef __FreeBSD__
39 #include <sys/param.h>
40 #endif
42 #ifdef __linux__
43 #include <sys/ioctl.h>
44 #include <linux/rtc.h>
45 /* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47 /* #include <linux/hpet.h> */
48 #include "hpet.h"
49 #endif
51 #ifdef _WIN32
52 #include <windows.h>
53 #include <mmsystem.h>
54 #endif
56 #include "qemu-timer.h"
58 /* Conversion factor from emulated instructions to virtual clock ticks. */
59 int icount_time_shift;
60 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61 #define MAX_ICOUNT_SHIFT 10
62 /* Compensate for varying guest execution speed. */
63 int64_t qemu_icount_bias;
64 static QEMUTimer *icount_rt_timer;
65 static QEMUTimer *icount_vm_timer;
67 /***********************************************************/
68 /* guest cycle counter */
70 typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76 } TimersState;
78 TimersState timers_state;
80 /* return the host CPU cycle counter and handle stop/restart */
81 int64_t cpu_get_ticks(void)
83 if (use_icount) {
84 return cpu_get_icount();
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
101 /* return the host CPU monotonic timer and handle stop/restart */
102 static int64_t cpu_get_clock(void)
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
113 static int64_t qemu_icount_delta(void)
115 if (!use_icount) {
116 return 5000 * (int64_t) 1000000;
117 } else if (use_icount == 1) {
118 /* When not using an adaptive execution frequency
119 we tend to get badly out of sync with real time,
120 so just delay for a reasonable amount of time. */
121 return 0;
122 } else {
123 return cpu_get_icount() - cpu_get_clock();
127 /* enable cpu_get_ticks() */
128 void cpu_enable_ticks(void)
130 if (!timers_state.cpu_ticks_enabled) {
131 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
132 timers_state.cpu_clock_offset -= get_clock();
133 timers_state.cpu_ticks_enabled = 1;
137 /* disable cpu_get_ticks() : the clock is stopped. You must not call
138 cpu_get_ticks() after that. */
139 void cpu_disable_ticks(void)
141 if (timers_state.cpu_ticks_enabled) {
142 timers_state.cpu_ticks_offset = cpu_get_ticks();
143 timers_state.cpu_clock_offset = cpu_get_clock();
144 timers_state.cpu_ticks_enabled = 0;
148 /***********************************************************/
149 /* timers */
151 #define QEMU_CLOCK_REALTIME 0
152 #define QEMU_CLOCK_VIRTUAL 1
153 #define QEMU_CLOCK_HOST 2
155 struct QEMUClock {
156 int type;
157 int enabled;
158 /* XXX: add frequency */
161 struct QEMUTimer {
162 QEMUClock *clock;
163 int64_t expire_time;
164 QEMUTimerCB *cb;
165 void *opaque;
166 struct QEMUTimer *next;
169 struct qemu_alarm_timer {
170 char const *name;
171 int (*start)(struct qemu_alarm_timer *t);
172 void (*stop)(struct qemu_alarm_timer *t);
173 void (*rearm)(struct qemu_alarm_timer *t);
174 void *priv;
176 char expired;
177 char pending;
180 static struct qemu_alarm_timer *alarm_timer;
182 int qemu_alarm_pending(void)
184 return alarm_timer->pending;
187 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
189 return !!t->rearm;
192 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
194 if (!alarm_has_dynticks(t))
195 return;
197 t->rearm(t);
200 /* TODO: MIN_TIMER_REARM_NS should be optimized */
201 #define MIN_TIMER_REARM_NS 250000
203 #ifdef _WIN32
205 struct qemu_alarm_win32 {
206 MMRESULT timerId;
207 unsigned int period;
208 } alarm_win32_data = {0, 0};
210 static int win32_start_timer(struct qemu_alarm_timer *t);
211 static void win32_stop_timer(struct qemu_alarm_timer *t);
212 static void win32_rearm_timer(struct qemu_alarm_timer *t);
214 #else
216 static int unix_start_timer(struct qemu_alarm_timer *t);
217 static void unix_stop_timer(struct qemu_alarm_timer *t);
219 #ifdef __linux__
221 static int dynticks_start_timer(struct qemu_alarm_timer *t);
222 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
223 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
225 static int hpet_start_timer(struct qemu_alarm_timer *t);
226 static void hpet_stop_timer(struct qemu_alarm_timer *t);
228 static int rtc_start_timer(struct qemu_alarm_timer *t);
229 static void rtc_stop_timer(struct qemu_alarm_timer *t);
231 #endif /* __linux__ */
233 #endif /* _WIN32 */
235 /* Correlation between real and virtual time is always going to be
236 fairly approximate, so ignore small variation.
237 When the guest is idle real and virtual time will be aligned in
238 the IO wait loop. */
239 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
241 static void icount_adjust(void)
243 int64_t cur_time;
244 int64_t cur_icount;
245 int64_t delta;
246 static int64_t last_delta;
247 /* If the VM is not running, then do nothing. */
248 if (!vm_running)
249 return;
251 cur_time = cpu_get_clock();
252 cur_icount = qemu_get_clock(vm_clock);
253 delta = cur_icount - cur_time;
254 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
255 if (delta > 0
256 && last_delta + ICOUNT_WOBBLE < delta * 2
257 && icount_time_shift > 0) {
258 /* The guest is getting too far ahead. Slow time down. */
259 icount_time_shift--;
261 if (delta < 0
262 && last_delta - ICOUNT_WOBBLE > delta * 2
263 && icount_time_shift < MAX_ICOUNT_SHIFT) {
264 /* The guest is getting too far behind. Speed time up. */
265 icount_time_shift++;
267 last_delta = delta;
268 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
271 static void icount_adjust_rt(void * opaque)
273 qemu_mod_timer(icount_rt_timer,
274 qemu_get_clock(rt_clock) + 1000);
275 icount_adjust();
278 static void icount_adjust_vm(void * opaque)
280 qemu_mod_timer(icount_vm_timer,
281 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
282 icount_adjust();
285 int64_t qemu_icount_round(int64_t count)
287 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
290 static struct qemu_alarm_timer alarm_timers[] = {
291 #ifndef _WIN32
292 #ifdef __linux__
293 {"dynticks", dynticks_start_timer,
294 dynticks_stop_timer, dynticks_rearm_timer, NULL},
295 /* HPET - if available - is preferred */
296 {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
297 /* ...otherwise try RTC */
298 {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
299 #endif
300 {"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
301 #else
302 {"dynticks", win32_start_timer,
303 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
304 {"win32", win32_start_timer,
305 win32_stop_timer, NULL, &alarm_win32_data},
306 #endif
307 {NULL, }
310 static void show_available_alarms(void)
312 int i;
314 printf("Available alarm timers, in order of precedence:\n");
315 for (i = 0; alarm_timers[i].name; i++)
316 printf("%s\n", alarm_timers[i].name);
319 void configure_alarms(char const *opt)
321 int i;
322 int cur = 0;
323 int count = ARRAY_SIZE(alarm_timers) - 1;
324 char *arg;
325 char *name;
326 struct qemu_alarm_timer tmp;
328 if (!strcmp(opt, "?")) {
329 show_available_alarms();
330 exit(0);
333 arg = qemu_strdup(opt);
335 /* Reorder the array */
336 name = strtok(arg, ",");
337 while (name) {
338 for (i = 0; i < count && alarm_timers[i].name; i++) {
339 if (!strcmp(alarm_timers[i].name, name))
340 break;
343 if (i == count) {
344 fprintf(stderr, "Unknown clock %s\n", name);
345 goto next;
348 if (i < cur)
349 /* Ignore */
350 goto next;
352 /* Swap */
353 tmp = alarm_timers[i];
354 alarm_timers[i] = alarm_timers[cur];
355 alarm_timers[cur] = tmp;
357 cur++;
358 next:
359 name = strtok(NULL, ",");
362 qemu_free(arg);
364 if (cur) {
365 /* Disable remaining timers */
366 for (i = cur; i < count; i++)
367 alarm_timers[i].name = NULL;
368 } else {
369 show_available_alarms();
370 exit(1);
374 #define QEMU_NUM_CLOCKS 3
376 QEMUClock *rt_clock;
377 QEMUClock *vm_clock;
378 QEMUClock *host_clock;
380 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
382 static QEMUClock *qemu_new_clock(int type)
384 QEMUClock *clock;
385 clock = qemu_mallocz(sizeof(QEMUClock));
386 clock->type = type;
387 clock->enabled = 1;
388 return clock;
391 void qemu_clock_enable(QEMUClock *clock, int enabled)
393 clock->enabled = enabled;
396 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
398 QEMUTimer *ts;
400 ts = qemu_mallocz(sizeof(QEMUTimer));
401 ts->clock = clock;
402 ts->cb = cb;
403 ts->opaque = opaque;
404 return ts;
407 void qemu_free_timer(QEMUTimer *ts)
409 qemu_free(ts);
412 /* stop a timer, but do not dealloc it */
413 void qemu_del_timer(QEMUTimer *ts)
415 QEMUTimer **pt, *t;
417 /* NOTE: this code must be signal safe because
418 qemu_timer_expired() can be called from a signal. */
419 pt = &active_timers[ts->clock->type];
420 for(;;) {
421 t = *pt;
422 if (!t)
423 break;
424 if (t == ts) {
425 *pt = t->next;
426 break;
428 pt = &t->next;
432 /* modify the current timer so that it will be fired when current_time
433 >= expire_time. The corresponding callback will be called. */
434 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
436 QEMUTimer **pt, *t;
438 qemu_del_timer(ts);
440 /* add the timer in the sorted list */
441 /* NOTE: this code must be signal safe because
442 qemu_timer_expired() can be called from a signal. */
443 pt = &active_timers[ts->clock->type];
444 for(;;) {
445 t = *pt;
446 if (!t)
447 break;
448 if (t->expire_time > expire_time)
449 break;
450 pt = &t->next;
452 ts->expire_time = expire_time;
453 ts->next = *pt;
454 *pt = ts;
456 /* Rearm if necessary */
457 if (pt == &active_timers[ts->clock->type]) {
458 if (!alarm_timer->pending) {
459 qemu_rearm_alarm_timer(alarm_timer);
461 /* Interrupt execution to force deadline recalculation. */
462 if (use_icount)
463 qemu_notify_event();
467 int qemu_timer_pending(QEMUTimer *ts)
469 QEMUTimer *t;
470 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
471 if (t == ts)
472 return 1;
474 return 0;
477 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
479 if (!timer_head)
480 return 0;
481 return (timer_head->expire_time <= current_time);
484 static void qemu_run_timers(QEMUClock *clock)
486 QEMUTimer **ptimer_head, *ts;
487 int64_t current_time;
489 if (!clock->enabled)
490 return;
492 current_time = qemu_get_clock (clock);
493 ptimer_head = &active_timers[clock->type];
494 for(;;) {
495 ts = *ptimer_head;
496 if (!ts || ts->expire_time > current_time)
497 break;
498 /* remove timer from the list before calling the callback */
499 *ptimer_head = ts->next;
500 ts->next = NULL;
502 /* run the callback (the timer list can be modified) */
503 ts->cb(ts->opaque);
507 int64_t qemu_get_clock(QEMUClock *clock)
509 switch(clock->type) {
510 case QEMU_CLOCK_REALTIME:
511 return get_clock() / 1000000;
512 default:
513 case QEMU_CLOCK_VIRTUAL:
514 if (use_icount) {
515 return cpu_get_icount();
516 } else {
517 return cpu_get_clock();
519 case QEMU_CLOCK_HOST:
520 return get_clock_realtime();
524 int64_t qemu_get_clock_ns(QEMUClock *clock)
526 switch(clock->type) {
527 case QEMU_CLOCK_REALTIME:
528 return get_clock();
529 default:
530 case QEMU_CLOCK_VIRTUAL:
531 if (use_icount) {
532 return cpu_get_icount();
533 } else {
534 return cpu_get_clock();
536 case QEMU_CLOCK_HOST:
537 return get_clock_realtime();
541 void init_clocks(void)
543 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
544 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
545 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
547 rtc_clock = host_clock;
550 /* save a timer */
551 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
553 uint64_t expire_time;
555 if (qemu_timer_pending(ts)) {
556 expire_time = ts->expire_time;
557 } else {
558 expire_time = -1;
560 qemu_put_be64(f, expire_time);
563 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
565 uint64_t expire_time;
567 expire_time = qemu_get_be64(f);
568 if (expire_time != -1) {
569 qemu_mod_timer(ts, expire_time);
570 } else {
571 qemu_del_timer(ts);
575 static const VMStateDescription vmstate_timers = {
576 .name = "timer",
577 .version_id = 2,
578 .minimum_version_id = 1,
579 .minimum_version_id_old = 1,
580 .fields = (VMStateField []) {
581 VMSTATE_INT64(cpu_ticks_offset, TimersState),
582 VMSTATE_INT64(dummy, TimersState),
583 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
584 VMSTATE_END_OF_LIST()
588 void configure_icount(const char *option)
590 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
591 if (!option)
592 return;
594 if (strcmp(option, "auto") != 0) {
595 icount_time_shift = strtol(option, NULL, 0);
596 use_icount = 1;
597 return;
600 use_icount = 2;
602 /* 125MIPS seems a reasonable initial guess at the guest speed.
603 It will be corrected fairly quickly anyway. */
604 icount_time_shift = 3;
606 /* Have both realtime and virtual time triggers for speed adjustment.
607 The realtime trigger catches emulated time passing too slowly,
608 the virtual time trigger catches emulated time passing too fast.
609 Realtime triggers occur even when idle, so use them less frequently
610 than VM triggers. */
611 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
612 qemu_mod_timer(icount_rt_timer,
613 qemu_get_clock(rt_clock) + 1000);
614 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
615 qemu_mod_timer(icount_vm_timer,
616 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
619 void qemu_run_all_timers(void)
621 alarm_timer->pending = 0;
623 /* rearm timer, if not periodic */
624 if (alarm_timer->expired) {
625 alarm_timer->expired = 0;
626 qemu_rearm_alarm_timer(alarm_timer);
629 /* vm time timers */
630 if (vm_running) {
631 qemu_run_timers(vm_clock);
634 qemu_run_timers(rt_clock);
635 qemu_run_timers(host_clock);
638 #ifdef _WIN32
639 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
640 DWORD_PTR dwUser, DWORD_PTR dw1,
641 DWORD_PTR dw2)
642 #else
643 static void host_alarm_handler(int host_signum)
644 #endif
646 struct qemu_alarm_timer *t = alarm_timer;
647 if (!t)
648 return;
650 #if 0
651 #define DISP_FREQ 1000
653 static int64_t delta_min = INT64_MAX;
654 static int64_t delta_max, delta_cum, last_clock, delta, ti;
655 static int count;
656 ti = qemu_get_clock(vm_clock);
657 if (last_clock != 0) {
658 delta = ti - last_clock;
659 if (delta < delta_min)
660 delta_min = delta;
661 if (delta > delta_max)
662 delta_max = delta;
663 delta_cum += delta;
664 if (++count == DISP_FREQ) {
665 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
666 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
667 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
668 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
669 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
670 count = 0;
671 delta_min = INT64_MAX;
672 delta_max = 0;
673 delta_cum = 0;
676 last_clock = ti;
678 #endif
679 if (alarm_has_dynticks(t) ||
680 (!use_icount &&
681 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
682 qemu_get_clock(vm_clock))) ||
683 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
684 qemu_get_clock(rt_clock)) ||
685 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
686 qemu_get_clock(host_clock))) {
688 t->expired = alarm_has_dynticks(t);
689 t->pending = 1;
690 qemu_notify_event();
694 int64_t qemu_next_deadline(void)
696 /* To avoid problems with overflow limit this to 2^32. */
697 int64_t delta = INT32_MAX;
699 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
700 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
701 qemu_get_clock_ns(vm_clock);
703 if (active_timers[QEMU_CLOCK_HOST]) {
704 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
705 qemu_get_clock_ns(host_clock);
706 if (hdelta < delta)
707 delta = hdelta;
710 if (delta < 0)
711 delta = 0;
713 return delta;
716 #ifndef _WIN32
718 #if defined(__linux__)
720 #define RTC_FREQ 1024
722 static uint64_t qemu_next_deadline_dyntick(void)
724 int64_t delta;
725 int64_t rtdelta;
727 if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
728 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
729 qemu_get_clock(vm_clock);
730 } else {
731 delta = INT32_MAX;
733 if (active_timers[QEMU_CLOCK_HOST]) {
734 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
735 qemu_get_clock_ns(host_clock);
736 if (hdelta < delta)
737 delta = hdelta;
739 if (active_timers[QEMU_CLOCK_REALTIME]) {
740 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time * 1000000 -
741 qemu_get_clock_ns(rt_clock));
742 if (rtdelta < delta)
743 delta = rtdelta;
746 if (delta < MIN_TIMER_REARM_NS)
747 delta = MIN_TIMER_REARM_NS;
749 return delta;
752 static void enable_sigio_timer(int fd)
754 struct sigaction act;
756 /* timer signal */
757 sigfillset(&act.sa_mask);
758 act.sa_flags = 0;
759 act.sa_handler = host_alarm_handler;
761 sigaction(SIGIO, &act, NULL);
762 fcntl_setfl(fd, O_ASYNC);
763 fcntl(fd, F_SETOWN, getpid());
766 static int hpet_start_timer(struct qemu_alarm_timer *t)
768 struct hpet_info info;
769 int r, fd;
771 fd = qemu_open("/dev/hpet", O_RDONLY);
772 if (fd < 0)
773 return -1;
775 /* Set frequency */
776 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
777 if (r < 0) {
778 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
779 "error, but for better emulation accuracy type:\n"
780 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
781 goto fail;
784 /* Check capabilities */
785 r = ioctl(fd, HPET_INFO, &info);
786 if (r < 0)
787 goto fail;
789 /* Enable periodic mode */
790 r = ioctl(fd, HPET_EPI, 0);
791 if (info.hi_flags && (r < 0))
792 goto fail;
794 /* Enable interrupt */
795 r = ioctl(fd, HPET_IE_ON, 0);
796 if (r < 0)
797 goto fail;
799 enable_sigio_timer(fd);
800 t->priv = (void *)(long)fd;
802 return 0;
803 fail:
804 close(fd);
805 return -1;
808 static void hpet_stop_timer(struct qemu_alarm_timer *t)
810 int fd = (long)t->priv;
812 close(fd);
815 static int rtc_start_timer(struct qemu_alarm_timer *t)
817 int rtc_fd;
818 unsigned long current_rtc_freq = 0;
820 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
821 if (rtc_fd < 0)
822 return -1;
823 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
824 if (current_rtc_freq != RTC_FREQ &&
825 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
826 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
827 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
828 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
829 goto fail;
831 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
832 fail:
833 close(rtc_fd);
834 return -1;
837 enable_sigio_timer(rtc_fd);
839 t->priv = (void *)(long)rtc_fd;
841 return 0;
844 static void rtc_stop_timer(struct qemu_alarm_timer *t)
846 int rtc_fd = (long)t->priv;
848 close(rtc_fd);
851 static int dynticks_start_timer(struct qemu_alarm_timer *t)
853 struct sigevent ev;
854 timer_t host_timer;
855 struct sigaction act;
857 sigfillset(&act.sa_mask);
858 act.sa_flags = 0;
859 act.sa_handler = host_alarm_handler;
861 sigaction(SIGALRM, &act, NULL);
864 * Initialize ev struct to 0 to avoid valgrind complaining
865 * about uninitialized data in timer_create call
867 memset(&ev, 0, sizeof(ev));
868 ev.sigev_value.sival_int = 0;
869 ev.sigev_notify = SIGEV_SIGNAL;
870 ev.sigev_signo = SIGALRM;
872 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
873 perror("timer_create");
875 /* disable dynticks */
876 fprintf(stderr, "Dynamic Ticks disabled\n");
878 return -1;
881 t->priv = (void *)(long)host_timer;
883 return 0;
886 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
888 timer_t host_timer = (timer_t)(long)t->priv;
890 timer_delete(host_timer);
893 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
895 timer_t host_timer = (timer_t)(long)t->priv;
896 struct itimerspec timeout;
897 int64_t nearest_delta_ns = INT64_MAX;
898 int64_t current_ns;
900 assert(alarm_has_dynticks(t));
901 if (!active_timers[QEMU_CLOCK_REALTIME] &&
902 !active_timers[QEMU_CLOCK_VIRTUAL] &&
903 !active_timers[QEMU_CLOCK_HOST])
904 return;
906 nearest_delta_ns = qemu_next_deadline_dyntick();
908 /* check whether a timer is already running */
909 if (timer_gettime(host_timer, &timeout)) {
910 perror("gettime");
911 fprintf(stderr, "Internal timer error: aborting\n");
912 exit(1);
914 current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
915 if (current_ns && current_ns <= nearest_delta_ns)
916 return;
918 timeout.it_interval.tv_sec = 0;
919 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
920 timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
921 timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
922 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
923 perror("settime");
924 fprintf(stderr, "Internal timer error: aborting\n");
925 exit(1);
929 #endif /* defined(__linux__) */
931 static int unix_start_timer(struct qemu_alarm_timer *t)
933 struct sigaction act;
934 struct itimerval itv;
935 int err;
937 /* timer signal */
938 sigfillset(&act.sa_mask);
939 act.sa_flags = 0;
940 act.sa_handler = host_alarm_handler;
942 sigaction(SIGALRM, &act, NULL);
944 itv.it_interval.tv_sec = 0;
945 /* for i386 kernel 2.6 to get 1 ms */
946 itv.it_interval.tv_usec = 999;
947 itv.it_value.tv_sec = 0;
948 itv.it_value.tv_usec = 10 * 1000;
950 err = setitimer(ITIMER_REAL, &itv, NULL);
951 if (err)
952 return -1;
954 return 0;
957 static void unix_stop_timer(struct qemu_alarm_timer *t)
959 struct itimerval itv;
961 memset(&itv, 0, sizeof(itv));
962 setitimer(ITIMER_REAL, &itv, NULL);
965 #endif /* !defined(_WIN32) */
968 #ifdef _WIN32
970 static int win32_start_timer(struct qemu_alarm_timer *t)
972 TIMECAPS tc;
973 struct qemu_alarm_win32 *data = t->priv;
974 UINT flags;
976 memset(&tc, 0, sizeof(tc));
977 timeGetDevCaps(&tc, sizeof(tc));
979 data->period = tc.wPeriodMin;
980 timeBeginPeriod(data->period);
982 flags = TIME_CALLBACK_FUNCTION;
983 if (alarm_has_dynticks(t))
984 flags |= TIME_ONESHOT;
985 else
986 flags |= TIME_PERIODIC;
988 data->timerId = timeSetEvent(1, // interval (ms)
989 data->period, // resolution
990 host_alarm_handler, // function
991 (DWORD)t, // parameter
992 flags);
994 if (!data->timerId) {
995 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
996 GetLastError());
997 timeEndPeriod(data->period);
998 return -1;
1001 return 0;
1004 static void win32_stop_timer(struct qemu_alarm_timer *t)
1006 struct qemu_alarm_win32 *data = t->priv;
1008 timeKillEvent(data->timerId);
1009 timeEndPeriod(data->period);
1012 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1014 struct qemu_alarm_win32 *data = t->priv;
1016 assert(alarm_has_dynticks(t));
1017 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1018 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1019 !active_timers[QEMU_CLOCK_HOST])
1020 return;
1022 timeKillEvent(data->timerId);
1024 data->timerId = timeSetEvent(1,
1025 data->period,
1026 host_alarm_handler,
1027 (DWORD)t,
1028 TIME_ONESHOT | TIME_CALLBACK_FUNCTION);
1030 if (!data->timerId) {
1031 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1032 GetLastError());
1034 timeEndPeriod(data->period);
1035 exit(1);
1039 #endif /* _WIN32 */
1041 static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1043 if (running)
1044 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1047 int init_timer_alarm(void)
1049 struct qemu_alarm_timer *t = NULL;
1050 int i, err = -1;
1052 for (i = 0; alarm_timers[i].name; i++) {
1053 t = &alarm_timers[i];
1055 err = t->start(t);
1056 if (!err)
1057 break;
1060 if (err) {
1061 err = -ENOENT;
1062 goto fail;
1065 /* first event is at time 0 */
1066 t->pending = 1;
1067 alarm_timer = t;
1068 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1070 return 0;
1072 fail:
1073 return err;
1076 void quit_timers(void)
1078 struct qemu_alarm_timer *t = alarm_timer;
1079 alarm_timer = NULL;
1080 t->stop(t);
1083 int qemu_calculate_timeout(void)
1085 int timeout;
1087 #ifdef CONFIG_IOTHREAD
1088 /* When using icount, making forward progress with qemu_icount when the
1089 guest CPU is idle is critical. We only use the static io-thread timeout
1090 for non icount runs. */
1091 if (!use_icount) {
1092 return 1000;
1094 #endif
1096 if (!vm_running)
1097 timeout = 5000;
1098 else {
1099 /* XXX: use timeout computed from timers */
1100 int64_t add;
1101 int64_t delta;
1102 /* Advance virtual time to the next event. */
1103 delta = qemu_icount_delta();
1104 if (delta > 0) {
1105 /* If virtual time is ahead of real time then just
1106 wait for IO. */
1107 timeout = (delta + 999999) / 1000000;
1108 } else {
1109 /* Wait for either IO to occur or the next
1110 timer event. */
1111 add = qemu_next_deadline();
1112 /* We advance the timer before checking for IO.
1113 Limit the amount we advance so that early IO
1114 activity won't get the guest too far ahead. */
1115 if (add > 10000000)
1116 add = 10000000;
1117 delta += add;
1118 qemu_icount += qemu_icount_round (add);
1119 timeout = delta / 1000000;
1120 if (timeout < 0)
1121 timeout = 0;
1125 return timeout;