2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
30 #include "hpet_emul.h"
34 #define RTC_REINJECT_ON_ACK_COUNT 20
37 #define RTC_SECONDS_ALARM 1
39 #define RTC_MINUTES_ALARM 3
41 #define RTC_HOURS_ALARM 5
42 #define RTC_ALARM_DONT_CARE 0xC0
44 #define RTC_DAY_OF_WEEK 6
45 #define RTC_DAY_OF_MONTH 7
54 #define REG_A_UIP 0x80
56 #define REG_B_SET 0x80
57 #define REG_B_PIE 0x40
58 #define REG_B_AIE 0x20
59 #define REG_B_UIE 0x10
60 #define REG_B_SQWE 0x08
64 #define REG_C_IRQF 0x80
70 uint8_t cmos_data
[128];
78 QEMUTimer
*periodic_timer
;
79 int64_t next_periodic_time
;
81 int64_t next_second_time
;
82 uint16_t irq_reinject_on_ack_count
;
83 uint32_t irq_coalesced
;
85 QEMUTimer
*coalesced_timer
;
86 QEMUTimer
*second_timer
;
87 QEMUTimer
*second_timer2
;
90 static void rtc_irq_raise(qemu_irq irq
)
92 /* When HPET is operating in legacy mode, RTC interrupts are disabled
93 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
94 * mode is established while interrupt is raised. We want it to
95 * be lowered in any case
97 #if defined TARGET_I386
98 if (!hpet_in_legacy_mode())
103 static void rtc_set_time(RTCState
*s
);
104 static void rtc_copy_date(RTCState
*s
);
107 static void rtc_coalesced_timer_update(RTCState
*s
)
109 if (s
->irq_coalesced
== 0) {
110 qemu_del_timer(s
->coalesced_timer
);
112 /* divide each RTC interval to 2 - 8 smaller intervals */
113 int c
= MIN(s
->irq_coalesced
, 7) + 1;
114 int64_t next_clock
= qemu_get_clock(rtc_clock
) +
115 muldiv64(s
->period
/ c
, get_ticks_per_sec(), 32768);
116 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
120 static void rtc_coalesced_timer(void *opaque
)
122 RTCState
*s
= opaque
;
124 if (s
->irq_coalesced
!= 0) {
125 apic_reset_irq_delivered();
126 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
127 rtc_irq_raise(s
->irq
);
128 if (apic_get_irq_delivered()) {
133 rtc_coalesced_timer_update(s
);
137 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
139 int period_code
, period
;
140 int64_t cur_clock
, next_irq_clock
;
143 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
144 #if defined TARGET_I386
145 /* disable periodic timer if hpet is in legacy mode, since interrupts are
148 enable_pie
= !hpet_in_legacy_mode();
153 && (((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) && enable_pie
)
154 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
155 if (period_code
<= 2)
157 /* period in 32 Khz cycles */
158 period
= 1 << (period_code
- 1);
160 if(period
!= s
->period
)
161 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
164 /* compute 32 khz clock */
165 cur_clock
= muldiv64(current_time
, 32768, get_ticks_per_sec());
166 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
167 s
->next_periodic_time
=
168 muldiv64(next_irq_clock
, get_ticks_per_sec(), 32768) + 1;
169 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
172 s
->irq_coalesced
= 0;
174 qemu_del_timer(s
->periodic_timer
);
178 static void rtc_periodic_timer(void *opaque
)
180 RTCState
*s
= opaque
;
182 rtc_timer_update(s
, s
->next_periodic_time
);
183 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
184 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
187 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
188 s
->irq_reinject_on_ack_count
= 0;
189 apic_reset_irq_delivered();
190 rtc_irq_raise(s
->irq
);
191 if (!apic_get_irq_delivered()) {
193 rtc_coalesced_timer_update(s
);
197 rtc_irq_raise(s
->irq
);
199 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
200 /* Not square wave at all but we don't want 2048Hz interrupts!
201 Must be seen as a pulse. */
202 qemu_irq_raise(s
->sqw_irq
);
206 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
208 RTCState
*s
= opaque
;
210 if ((addr
& 1) == 0) {
211 s
->cmos_index
= data
& 0x7f;
214 printf("cmos: write index=0x%02x val=0x%02x\n",
215 s
->cmos_index
, data
);
217 switch(s
->cmos_index
) {
218 case RTC_SECONDS_ALARM
:
219 case RTC_MINUTES_ALARM
:
220 case RTC_HOURS_ALARM
:
221 /* XXX: not supported */
222 s
->cmos_data
[s
->cmos_index
] = data
;
227 case RTC_DAY_OF_WEEK
:
228 case RTC_DAY_OF_MONTH
:
231 s
->cmos_data
[s
->cmos_index
] = data
;
232 /* if in set mode, do not update the time */
233 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
238 /* UIP bit is read only */
239 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
240 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
241 rtc_timer_update(s
, qemu_get_clock(rtc_clock
));
244 if (data
& REG_B_SET
) {
245 /* set mode: reset UIP mode */
246 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
249 /* if disabling set mode, update the time */
250 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
254 s
->cmos_data
[RTC_REG_B
] = data
;
255 rtc_timer_update(s
, qemu_get_clock(rtc_clock
));
259 /* cannot write to them */
262 s
->cmos_data
[s
->cmos_index
] = data
;
268 static inline int rtc_to_bcd(RTCState
*s
, int a
)
270 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
273 return ((a
/ 10) << 4) | (a
% 10);
277 static inline int rtc_from_bcd(RTCState
*s
, int a
)
279 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
282 return ((a
>> 4) * 10) + (a
& 0x0f);
286 static void rtc_set_time(RTCState
*s
)
288 struct tm
*tm
= &s
->current_tm
;
290 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
291 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
292 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
293 if (!(s
->cmos_data
[RTC_REG_B
] & 0x02) &&
294 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
297 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
298 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
299 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
300 tm
->tm_year
= rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
- 1900;
302 rtc_change_mon_event(tm
);
305 static void rtc_copy_date(RTCState
*s
)
307 const struct tm
*tm
= &s
->current_tm
;
310 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
311 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
312 if (s
->cmos_data
[RTC_REG_B
] & 0x02) {
314 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
317 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
% 12);
318 if (tm
->tm_hour
>= 12)
319 s
->cmos_data
[RTC_HOURS
] |= 0x80;
321 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
322 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
323 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
324 year
= (tm
->tm_year
- s
->base_year
) % 100;
327 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
);
330 /* month is between 0 and 11. */
331 static int get_days_in_month(int month
, int year
)
333 static const int days_tab
[12] = {
334 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
337 if ((unsigned )month
>= 12)
341 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
347 /* update 'tm' to the next second */
348 static void rtc_next_second(struct tm
*tm
)
353 if ((unsigned)tm
->tm_sec
>= 60) {
356 if ((unsigned)tm
->tm_min
>= 60) {
359 if ((unsigned)tm
->tm_hour
>= 24) {
363 if ((unsigned)tm
->tm_wday
>= 7)
365 days_in_month
= get_days_in_month(tm
->tm_mon
,
368 if (tm
->tm_mday
< 1) {
370 } else if (tm
->tm_mday
> days_in_month
) {
373 if (tm
->tm_mon
>= 12) {
384 static void rtc_update_second(void *opaque
)
386 RTCState
*s
= opaque
;
389 /* if the oscillator is not in normal operation, we do not update */
390 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
391 s
->next_second_time
+= get_ticks_per_sec();
392 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
394 rtc_next_second(&s
->current_tm
);
396 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
397 /* update in progress bit */
398 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
400 /* should be 244 us = 8 / 32768 seconds, but currently the
401 timers do not have the necessary resolution. */
402 delay
= (get_ticks_per_sec() * 1) / 100;
405 qemu_mod_timer(s
->second_timer2
,
406 s
->next_second_time
+ delay
);
410 static void rtc_update_second2(void *opaque
)
412 RTCState
*s
= opaque
;
414 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
419 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
420 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
421 s
->cmos_data
[RTC_SECONDS_ALARM
] == s
->current_tm
.tm_sec
) &&
422 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
423 s
->cmos_data
[RTC_MINUTES_ALARM
] == s
->current_tm
.tm_mon
) &&
424 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
425 s
->cmos_data
[RTC_HOURS_ALARM
] == s
->current_tm
.tm_hour
)) {
427 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
428 rtc_irq_raise(s
->irq
);
432 /* update ended interrupt */
433 s
->cmos_data
[RTC_REG_C
] |= REG_C_UF
;
434 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
435 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
436 rtc_irq_raise(s
->irq
);
439 /* clear update in progress bit */
440 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
442 s
->next_second_time
+= get_ticks_per_sec();
443 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
446 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
448 RTCState
*s
= opaque
;
450 if ((addr
& 1) == 0) {
453 switch(s
->cmos_index
) {
457 case RTC_DAY_OF_WEEK
:
458 case RTC_DAY_OF_MONTH
:
461 ret
= s
->cmos_data
[s
->cmos_index
];
464 ret
= s
->cmos_data
[s
->cmos_index
];
467 ret
= s
->cmos_data
[s
->cmos_index
];
468 qemu_irq_lower(s
->irq
);
470 if(s
->irq_coalesced
&&
471 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
472 s
->irq_reinject_on_ack_count
++;
473 apic_reset_irq_delivered();
474 qemu_irq_raise(s
->irq
);
475 if (apic_get_irq_delivered())
481 s
->cmos_data
[RTC_REG_C
] = 0x00;
484 ret
= s
->cmos_data
[s
->cmos_index
];
488 printf("cmos: read index=0x%02x val=0x%02x\n",
495 void rtc_set_memory(RTCState
*s
, int addr
, int val
)
497 if (addr
>= 0 && addr
<= 127)
498 s
->cmos_data
[addr
] = val
;
501 void rtc_set_date(RTCState
*s
, const struct tm
*tm
)
507 /* PC cmos mappings */
508 #define REG_IBM_CENTURY_BYTE 0x32
509 #define REG_IBM_PS2_CENTURY_BYTE 0x37
511 static void rtc_set_date_from_host(RTCState
*s
)
516 /* set the CMOS date */
517 qemu_get_timedate(&tm
, 0);
518 rtc_set_date(s
, &tm
);
520 val
= rtc_to_bcd(s
, (tm
.tm_year
/ 100) + 19);
521 rtc_set_memory(s
, REG_IBM_CENTURY_BYTE
, val
);
522 rtc_set_memory(s
, REG_IBM_PS2_CENTURY_BYTE
, val
);
525 static int rtc_post_load(void *opaque
, int version_id
)
528 RTCState
*s
= opaque
;
530 if (version_id
>= 2) {
532 rtc_coalesced_timer_update(s
);
539 static const VMStateDescription vmstate_rtc
= {
540 .name
= "mc146818rtc",
542 .minimum_version_id
= 1,
543 .minimum_version_id_old
= 1,
544 .post_load
= rtc_post_load
,
545 .fields
= (VMStateField
[]) {
546 VMSTATE_BUFFER(cmos_data
, RTCState
),
547 VMSTATE_UINT8(cmos_index
, RTCState
),
548 VMSTATE_INT32(current_tm
.tm_sec
, RTCState
),
549 VMSTATE_INT32(current_tm
.tm_min
, RTCState
),
550 VMSTATE_INT32(current_tm
.tm_hour
, RTCState
),
551 VMSTATE_INT32(current_tm
.tm_wday
, RTCState
),
552 VMSTATE_INT32(current_tm
.tm_mday
, RTCState
),
553 VMSTATE_INT32(current_tm
.tm_mon
, RTCState
),
554 VMSTATE_INT32(current_tm
.tm_year
, RTCState
),
555 VMSTATE_TIMER(periodic_timer
, RTCState
),
556 VMSTATE_INT64(next_periodic_time
, RTCState
),
557 VMSTATE_INT64(next_second_time
, RTCState
),
558 VMSTATE_TIMER(second_timer
, RTCState
),
559 VMSTATE_TIMER(second_timer2
, RTCState
),
560 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
561 VMSTATE_UINT32_V(period
, RTCState
, 2),
562 VMSTATE_END_OF_LIST()
566 static void rtc_reset(void *opaque
)
568 RTCState
*s
= opaque
;
570 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
571 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
573 qemu_irq_lower(s
->irq
);
577 s
->irq_coalesced
= 0;
581 static int rtc_initfn(ISADevice
*dev
)
583 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
587 isa_init_irq(dev
, &s
->irq
, isairq
);
589 s
->cmos_data
[RTC_REG_A
] = 0x26;
590 s
->cmos_data
[RTC_REG_B
] = 0x02;
591 s
->cmos_data
[RTC_REG_C
] = 0x00;
592 s
->cmos_data
[RTC_REG_D
] = 0x80;
594 rtc_set_date_from_host(s
);
596 s
->periodic_timer
= qemu_new_timer(rtc_clock
, rtc_periodic_timer
, s
);
600 qemu_new_timer(rtc_clock
, rtc_coalesced_timer
, s
);
602 s
->second_timer
= qemu_new_timer(rtc_clock
, rtc_update_second
, s
);
603 s
->second_timer2
= qemu_new_timer(rtc_clock
, rtc_update_second2
, s
);
605 s
->next_second_time
=
606 qemu_get_clock(rtc_clock
) + (get_ticks_per_sec() * 99) / 100;
607 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
609 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
610 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
612 vmstate_register(base
, &vmstate_rtc
, s
);
613 qemu_register_reset(rtc_reset
, s
);
617 RTCState
*rtc_init(int base_year
)
621 dev
= isa_create("mc146818rtc");
622 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
623 qdev_init_nofail(&dev
->qdev
);
624 return DO_UPCAST(RTCState
, dev
, dev
);
627 static ISADeviceInfo mc146818rtc_info
= {
628 .qdev
.name
= "mc146818rtc",
629 .qdev
.size
= sizeof(RTCState
),
632 .qdev
.props
= (Property
[]) {
633 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
634 DEFINE_PROP_END_OF_LIST(),
638 static void mc146818rtc_register(void)
640 isa_qdev_register(&mc146818rtc_info
);
642 device_init(mc146818rtc_register
)