Use glib memory allocation and free functions
[qemu/mdroth.git] / memory.c
blob24439f3868c8d1ec3e206f95814fa8162faf719a
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #include "memory.h"
15 #include "exec-memory.h"
16 #include "ioport.h"
17 #include "bitops.h"
18 #include "kvm.h"
19 #include <assert.h>
21 unsigned memory_region_transaction_depth = 0;
23 typedef struct AddrRange AddrRange;
26 * Note using signed integers limits us to physical addresses at most
27 * 63 bits wide. They are needed for negative offsetting in aliases
28 * (large MemoryRegion::alias_offset).
30 struct AddrRange {
31 int64_t start;
32 int64_t size;
35 static AddrRange addrrange_make(int64_t start, int64_t size)
37 return (AddrRange) { start, size };
40 static bool addrrange_equal(AddrRange r1, AddrRange r2)
42 return r1.start == r2.start && r1.size == r2.size;
45 static int64_t addrrange_end(AddrRange r)
47 return r.start + r.size;
50 static AddrRange addrrange_shift(AddrRange range, int64_t delta)
52 range.start += delta;
53 return range;
56 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
58 return (r1.start >= r2.start && r1.start < r2.start + r2.size)
59 || (r2.start >= r1.start && r2.start < r1.start + r1.size);
62 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
64 int64_t start = MAX(r1.start, r2.start);
65 /* off-by-one arithmetic to prevent overflow */
66 int64_t end = MIN(addrrange_end(r1) - 1, addrrange_end(r2) - 1);
67 return addrrange_make(start, end - start + 1);
70 struct CoalescedMemoryRange {
71 AddrRange addr;
72 QTAILQ_ENTRY(CoalescedMemoryRange) link;
75 struct MemoryRegionIoeventfd {
76 AddrRange addr;
77 bool match_data;
78 uint64_t data;
79 int fd;
82 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
83 MemoryRegionIoeventfd b)
85 if (a.addr.start < b.addr.start) {
86 return true;
87 } else if (a.addr.start > b.addr.start) {
88 return false;
89 } else if (a.addr.size < b.addr.size) {
90 return true;
91 } else if (a.addr.size > b.addr.size) {
92 return false;
93 } else if (a.match_data < b.match_data) {
94 return true;
95 } else if (a.match_data > b.match_data) {
96 return false;
97 } else if (a.match_data) {
98 if (a.data < b.data) {
99 return true;
100 } else if (a.data > b.data) {
101 return false;
104 if (a.fd < b.fd) {
105 return true;
106 } else if (a.fd > b.fd) {
107 return false;
109 return false;
112 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
113 MemoryRegionIoeventfd b)
115 return !memory_region_ioeventfd_before(a, b)
116 && !memory_region_ioeventfd_before(b, a);
119 typedef struct FlatRange FlatRange;
120 typedef struct FlatView FlatView;
122 /* Range of memory in the global map. Addresses are absolute. */
123 struct FlatRange {
124 MemoryRegion *mr;
125 target_phys_addr_t offset_in_region;
126 AddrRange addr;
127 uint8_t dirty_log_mask;
128 bool readable;
131 /* Flattened global view of current active memory hierarchy. Kept in sorted
132 * order.
134 struct FlatView {
135 FlatRange *ranges;
136 unsigned nr;
137 unsigned nr_allocated;
140 typedef struct AddressSpace AddressSpace;
141 typedef struct AddressSpaceOps AddressSpaceOps;
143 /* A system address space - I/O, memory, etc. */
144 struct AddressSpace {
145 const AddressSpaceOps *ops;
146 MemoryRegion *root;
147 FlatView current_map;
148 int ioeventfd_nb;
149 MemoryRegionIoeventfd *ioeventfds;
152 struct AddressSpaceOps {
153 void (*range_add)(AddressSpace *as, FlatRange *fr);
154 void (*range_del)(AddressSpace *as, FlatRange *fr);
155 void (*log_start)(AddressSpace *as, FlatRange *fr);
156 void (*log_stop)(AddressSpace *as, FlatRange *fr);
157 void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd);
158 void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd);
161 #define FOR_EACH_FLAT_RANGE(var, view) \
162 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
164 static bool flatrange_equal(FlatRange *a, FlatRange *b)
166 return a->mr == b->mr
167 && addrrange_equal(a->addr, b->addr)
168 && a->offset_in_region == b->offset_in_region
169 && a->readable == b->readable;
172 static void flatview_init(FlatView *view)
174 view->ranges = NULL;
175 view->nr = 0;
176 view->nr_allocated = 0;
179 /* Insert a range into a given position. Caller is responsible for maintaining
180 * sorting order.
182 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
184 if (view->nr == view->nr_allocated) {
185 view->nr_allocated = MAX(2 * view->nr, 10);
186 view->ranges = g_realloc(view->ranges,
187 view->nr_allocated * sizeof(*view->ranges));
189 memmove(view->ranges + pos + 1, view->ranges + pos,
190 (view->nr - pos) * sizeof(FlatRange));
191 view->ranges[pos] = *range;
192 ++view->nr;
195 static void flatview_destroy(FlatView *view)
197 g_free(view->ranges);
200 static bool can_merge(FlatRange *r1, FlatRange *r2)
202 return addrrange_end(r1->addr) == r2->addr.start
203 && r1->mr == r2->mr
204 && r1->offset_in_region + r1->addr.size == r2->offset_in_region
205 && r1->dirty_log_mask == r2->dirty_log_mask
206 && r1->readable == r2->readable;
209 /* Attempt to simplify a view by merging ajacent ranges */
210 static void flatview_simplify(FlatView *view)
212 unsigned i, j;
214 i = 0;
215 while (i < view->nr) {
216 j = i + 1;
217 while (j < view->nr
218 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
219 view->ranges[i].addr.size += view->ranges[j].addr.size;
220 ++j;
222 ++i;
223 memmove(&view->ranges[i], &view->ranges[j],
224 (view->nr - j) * sizeof(view->ranges[j]));
225 view->nr -= j - i;
229 static void memory_region_prepare_ram_addr(MemoryRegion *mr);
231 static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
233 ram_addr_t phys_offset, region_offset;
235 memory_region_prepare_ram_addr(fr->mr);
237 phys_offset = fr->mr->ram_addr;
238 region_offset = fr->offset_in_region;
239 /* cpu_register_physical_memory_log() wants region_offset for
240 * mmio, but prefers offseting phys_offset for RAM. Humour it.
242 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
243 phys_offset += region_offset;
244 region_offset = 0;
247 if (!fr->readable) {
248 phys_offset &= TARGET_PAGE_MASK;
251 cpu_register_physical_memory_log(fr->addr.start,
252 fr->addr.size,
253 phys_offset,
254 region_offset,
255 fr->dirty_log_mask);
258 static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
260 if (fr->dirty_log_mask) {
261 cpu_physical_sync_dirty_bitmap(fr->addr.start,
262 fr->addr.start + fr->addr.size);
264 cpu_register_physical_memory(fr->addr.start, fr->addr.size,
265 IO_MEM_UNASSIGNED);
268 static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
270 cpu_physical_log_start(fr->addr.start, fr->addr.size);
273 static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
275 cpu_physical_log_stop(fr->addr.start, fr->addr.size);
278 static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
280 int r;
282 assert(fd->match_data && fd->addr.size == 4);
284 r = kvm_set_ioeventfd_mmio_long(fd->fd, fd->addr.start, fd->data, true);
285 if (r < 0) {
286 abort();
290 static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
292 int r;
294 r = kvm_set_ioeventfd_mmio_long(fd->fd, fd->addr.start, fd->data, false);
295 if (r < 0) {
296 abort();
300 static const AddressSpaceOps address_space_ops_memory = {
301 .range_add = as_memory_range_add,
302 .range_del = as_memory_range_del,
303 .log_start = as_memory_log_start,
304 .log_stop = as_memory_log_stop,
305 .ioeventfd_add = as_memory_ioeventfd_add,
306 .ioeventfd_del = as_memory_ioeventfd_del,
309 static AddressSpace address_space_memory = {
310 .ops = &address_space_ops_memory,
313 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
314 unsigned width, bool write)
316 const MemoryRegionPortio *mrp;
318 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
319 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
320 && width == mrp->size
321 && (write ? (bool)mrp->write : (bool)mrp->read)) {
322 return mrp;
325 return NULL;
328 static void memory_region_iorange_read(IORange *iorange,
329 uint64_t offset,
330 unsigned width,
331 uint64_t *data)
333 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
335 if (mr->ops->old_portio) {
336 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
338 *data = ((uint64_t)1 << (width * 8)) - 1;
339 if (mrp) {
340 *data = mrp->read(mr->opaque, offset - mrp->offset);
342 return;
344 *data = mr->ops->read(mr->opaque, offset, width);
347 static void memory_region_iorange_write(IORange *iorange,
348 uint64_t offset,
349 unsigned width,
350 uint64_t data)
352 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
354 if (mr->ops->old_portio) {
355 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
357 if (mrp) {
358 mrp->write(mr->opaque, offset - mrp->offset, data);
360 return;
362 mr->ops->write(mr->opaque, offset, data, width);
365 static const IORangeOps memory_region_iorange_ops = {
366 .read = memory_region_iorange_read,
367 .write = memory_region_iorange_write,
370 static void as_io_range_add(AddressSpace *as, FlatRange *fr)
372 iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
373 fr->addr.start,fr->addr.size);
374 ioport_register(&fr->mr->iorange);
377 static void as_io_range_del(AddressSpace *as, FlatRange *fr)
379 isa_unassign_ioport(fr->addr.start, fr->addr.size);
382 static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
384 int r;
386 assert(fd->match_data && fd->addr.size == 2);
388 r = kvm_set_ioeventfd_pio_word(fd->fd, fd->addr.start, fd->data, true);
389 if (r < 0) {
390 abort();
394 static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
396 int r;
398 r = kvm_set_ioeventfd_pio_word(fd->fd, fd->addr.start, fd->data, false);
399 if (r < 0) {
400 abort();
404 static const AddressSpaceOps address_space_ops_io = {
405 .range_add = as_io_range_add,
406 .range_del = as_io_range_del,
407 .ioeventfd_add = as_io_ioeventfd_add,
408 .ioeventfd_del = as_io_ioeventfd_del,
411 static AddressSpace address_space_io = {
412 .ops = &address_space_ops_io,
415 /* Render a memory region into the global view. Ranges in @view obscure
416 * ranges in @mr.
418 static void render_memory_region(FlatView *view,
419 MemoryRegion *mr,
420 target_phys_addr_t base,
421 AddrRange clip)
423 MemoryRegion *subregion;
424 unsigned i;
425 target_phys_addr_t offset_in_region;
426 int64_t remain;
427 int64_t now;
428 FlatRange fr;
429 AddrRange tmp;
431 base += mr->addr;
433 tmp = addrrange_make(base, mr->size);
435 if (!addrrange_intersects(tmp, clip)) {
436 return;
439 clip = addrrange_intersection(tmp, clip);
441 if (mr->alias) {
442 base -= mr->alias->addr;
443 base -= mr->alias_offset;
444 render_memory_region(view, mr->alias, base, clip);
445 return;
448 /* Render subregions in priority order. */
449 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
450 render_memory_region(view, subregion, base, clip);
453 if (!mr->terminates) {
454 return;
457 offset_in_region = clip.start - base;
458 base = clip.start;
459 remain = clip.size;
461 /* Render the region itself into any gaps left by the current view. */
462 for (i = 0; i < view->nr && remain; ++i) {
463 if (base >= addrrange_end(view->ranges[i].addr)) {
464 continue;
466 if (base < view->ranges[i].addr.start) {
467 now = MIN(remain, view->ranges[i].addr.start - base);
468 fr.mr = mr;
469 fr.offset_in_region = offset_in_region;
470 fr.addr = addrrange_make(base, now);
471 fr.dirty_log_mask = mr->dirty_log_mask;
472 fr.readable = mr->readable;
473 flatview_insert(view, i, &fr);
474 ++i;
475 base += now;
476 offset_in_region += now;
477 remain -= now;
479 if (base == view->ranges[i].addr.start) {
480 now = MIN(remain, view->ranges[i].addr.size);
481 base += now;
482 offset_in_region += now;
483 remain -= now;
486 if (remain) {
487 fr.mr = mr;
488 fr.offset_in_region = offset_in_region;
489 fr.addr = addrrange_make(base, remain);
490 fr.dirty_log_mask = mr->dirty_log_mask;
491 fr.readable = mr->readable;
492 flatview_insert(view, i, &fr);
496 /* Render a memory topology into a list of disjoint absolute ranges. */
497 static FlatView generate_memory_topology(MemoryRegion *mr)
499 FlatView view;
501 flatview_init(&view);
503 render_memory_region(&view, mr, 0, addrrange_make(0, INT64_MAX));
504 flatview_simplify(&view);
506 return view;
509 static void address_space_add_del_ioeventfds(AddressSpace *as,
510 MemoryRegionIoeventfd *fds_new,
511 unsigned fds_new_nb,
512 MemoryRegionIoeventfd *fds_old,
513 unsigned fds_old_nb)
515 unsigned iold, inew;
517 /* Generate a symmetric difference of the old and new fd sets, adding
518 * and deleting as necessary.
521 iold = inew = 0;
522 while (iold < fds_old_nb || inew < fds_new_nb) {
523 if (iold < fds_old_nb
524 && (inew == fds_new_nb
525 || memory_region_ioeventfd_before(fds_old[iold],
526 fds_new[inew]))) {
527 as->ops->ioeventfd_del(as, &fds_old[iold]);
528 ++iold;
529 } else if (inew < fds_new_nb
530 && (iold == fds_old_nb
531 || memory_region_ioeventfd_before(fds_new[inew],
532 fds_old[iold]))) {
533 as->ops->ioeventfd_add(as, &fds_new[inew]);
534 ++inew;
535 } else {
536 ++iold;
537 ++inew;
542 static void address_space_update_ioeventfds(AddressSpace *as)
544 FlatRange *fr;
545 unsigned ioeventfd_nb = 0;
546 MemoryRegionIoeventfd *ioeventfds = NULL;
547 AddrRange tmp;
548 unsigned i;
550 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
551 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
552 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
553 fr->addr.start - fr->offset_in_region);
554 if (addrrange_intersects(fr->addr, tmp)) {
555 ++ioeventfd_nb;
556 ioeventfds = g_realloc(ioeventfds,
557 ioeventfd_nb * sizeof(*ioeventfds));
558 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
559 ioeventfds[ioeventfd_nb-1].addr = tmp;
564 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
565 as->ioeventfds, as->ioeventfd_nb);
567 g_free(as->ioeventfds);
568 as->ioeventfds = ioeventfds;
569 as->ioeventfd_nb = ioeventfd_nb;
572 static void address_space_update_topology_pass(AddressSpace *as,
573 FlatView old_view,
574 FlatView new_view,
575 bool adding)
577 unsigned iold, inew;
578 FlatRange *frold, *frnew;
580 /* Generate a symmetric difference of the old and new memory maps.
581 * Kill ranges in the old map, and instantiate ranges in the new map.
583 iold = inew = 0;
584 while (iold < old_view.nr || inew < new_view.nr) {
585 if (iold < old_view.nr) {
586 frold = &old_view.ranges[iold];
587 } else {
588 frold = NULL;
590 if (inew < new_view.nr) {
591 frnew = &new_view.ranges[inew];
592 } else {
593 frnew = NULL;
596 if (frold
597 && (!frnew
598 || frold->addr.start < frnew->addr.start
599 || (frold->addr.start == frnew->addr.start
600 && !flatrange_equal(frold, frnew)))) {
601 /* In old, but (not in new, or in new but attributes changed). */
603 if (!adding) {
604 as->ops->range_del(as, frold);
607 ++iold;
608 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
609 /* In both (logging may have changed) */
611 if (adding) {
612 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
613 as->ops->log_stop(as, frnew);
614 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
615 as->ops->log_start(as, frnew);
619 ++iold;
620 ++inew;
621 } else {
622 /* In new */
624 if (adding) {
625 as->ops->range_add(as, frnew);
628 ++inew;
634 static void address_space_update_topology(AddressSpace *as)
636 FlatView old_view = as->current_map;
637 FlatView new_view = generate_memory_topology(as->root);
639 address_space_update_topology_pass(as, old_view, new_view, false);
640 address_space_update_topology_pass(as, old_view, new_view, true);
642 as->current_map = new_view;
643 flatview_destroy(&old_view);
644 address_space_update_ioeventfds(as);
647 static void memory_region_update_topology(void)
649 if (memory_region_transaction_depth) {
650 return;
653 if (address_space_memory.root) {
654 address_space_update_topology(&address_space_memory);
656 if (address_space_io.root) {
657 address_space_update_topology(&address_space_io);
661 void memory_region_transaction_begin(void)
663 ++memory_region_transaction_depth;
666 void memory_region_transaction_commit(void)
668 assert(memory_region_transaction_depth);
669 --memory_region_transaction_depth;
670 memory_region_update_topology();
673 static void memory_region_destructor_none(MemoryRegion *mr)
677 static void memory_region_destructor_ram(MemoryRegion *mr)
679 qemu_ram_free(mr->ram_addr);
682 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
684 qemu_ram_free_from_ptr(mr->ram_addr);
687 static void memory_region_destructor_iomem(MemoryRegion *mr)
689 cpu_unregister_io_memory(mr->ram_addr);
692 static void memory_region_destructor_rom_device(MemoryRegion *mr)
694 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
695 cpu_unregister_io_memory(mr->ram_addr & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
698 void memory_region_init(MemoryRegion *mr,
699 const char *name,
700 uint64_t size)
702 mr->ops = NULL;
703 mr->parent = NULL;
704 mr->size = size;
705 mr->addr = 0;
706 mr->offset = 0;
707 mr->terminates = false;
708 mr->readable = true;
709 mr->destructor = memory_region_destructor_none;
710 mr->priority = 0;
711 mr->may_overlap = false;
712 mr->alias = NULL;
713 QTAILQ_INIT(&mr->subregions);
714 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
715 QTAILQ_INIT(&mr->coalesced);
716 mr->name = g_strdup(name);
717 mr->dirty_log_mask = 0;
718 mr->ioeventfd_nb = 0;
719 mr->ioeventfds = NULL;
722 static bool memory_region_access_valid(MemoryRegion *mr,
723 target_phys_addr_t addr,
724 unsigned size)
726 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
727 return false;
730 /* Treat zero as compatibility all valid */
731 if (!mr->ops->valid.max_access_size) {
732 return true;
735 if (size > mr->ops->valid.max_access_size
736 || size < mr->ops->valid.min_access_size) {
737 return false;
739 return true;
742 static uint32_t memory_region_read_thunk_n(void *_mr,
743 target_phys_addr_t addr,
744 unsigned size)
746 MemoryRegion *mr = _mr;
747 unsigned access_size, access_size_min, access_size_max;
748 uint64_t access_mask;
749 uint32_t data = 0, tmp;
750 unsigned i;
752 if (!memory_region_access_valid(mr, addr, size)) {
753 return -1U; /* FIXME: better signalling */
756 if (!mr->ops->read) {
757 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
760 /* FIXME: support unaligned access */
762 access_size_min = mr->ops->impl.min_access_size;
763 if (!access_size_min) {
764 access_size_min = 1;
766 access_size_max = mr->ops->impl.max_access_size;
767 if (!access_size_max) {
768 access_size_max = 4;
770 access_size = MAX(MIN(size, access_size_max), access_size_min);
771 access_mask = -1ULL >> (64 - access_size * 8);
772 addr += mr->offset;
773 for (i = 0; i < size; i += access_size) {
774 /* FIXME: big-endian support */
775 tmp = mr->ops->read(mr->opaque, addr + i, access_size);
776 data |= (tmp & access_mask) << (i * 8);
779 return data;
782 static void memory_region_write_thunk_n(void *_mr,
783 target_phys_addr_t addr,
784 unsigned size,
785 uint64_t data)
787 MemoryRegion *mr = _mr;
788 unsigned access_size, access_size_min, access_size_max;
789 uint64_t access_mask;
790 unsigned i;
792 if (!memory_region_access_valid(mr, addr, size)) {
793 return; /* FIXME: better signalling */
796 if (!mr->ops->write) {
797 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
798 return;
801 /* FIXME: support unaligned access */
803 access_size_min = mr->ops->impl.min_access_size;
804 if (!access_size_min) {
805 access_size_min = 1;
807 access_size_max = mr->ops->impl.max_access_size;
808 if (!access_size_max) {
809 access_size_max = 4;
811 access_size = MAX(MIN(size, access_size_max), access_size_min);
812 access_mask = -1ULL >> (64 - access_size * 8);
813 addr += mr->offset;
814 for (i = 0; i < size; i += access_size) {
815 /* FIXME: big-endian support */
816 mr->ops->write(mr->opaque, addr + i, (data >> (i * 8)) & access_mask,
817 access_size);
821 static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr)
823 return memory_region_read_thunk_n(mr, addr, 1);
826 static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr)
828 return memory_region_read_thunk_n(mr, addr, 2);
831 static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr)
833 return memory_region_read_thunk_n(mr, addr, 4);
836 static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr,
837 uint32_t data)
839 memory_region_write_thunk_n(mr, addr, 1, data);
842 static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr,
843 uint32_t data)
845 memory_region_write_thunk_n(mr, addr, 2, data);
848 static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr,
849 uint32_t data)
851 memory_region_write_thunk_n(mr, addr, 4, data);
854 static CPUReadMemoryFunc * const memory_region_read_thunk[] = {
855 memory_region_read_thunk_b,
856 memory_region_read_thunk_w,
857 memory_region_read_thunk_l,
860 static CPUWriteMemoryFunc * const memory_region_write_thunk[] = {
861 memory_region_write_thunk_b,
862 memory_region_write_thunk_w,
863 memory_region_write_thunk_l,
866 static void memory_region_prepare_ram_addr(MemoryRegion *mr)
868 if (mr->backend_registered) {
869 return;
872 mr->destructor = memory_region_destructor_iomem;
873 mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk,
874 memory_region_write_thunk,
876 mr->ops->endianness);
877 mr->backend_registered = true;
880 void memory_region_init_io(MemoryRegion *mr,
881 const MemoryRegionOps *ops,
882 void *opaque,
883 const char *name,
884 uint64_t size)
886 memory_region_init(mr, name, size);
887 mr->ops = ops;
888 mr->opaque = opaque;
889 mr->terminates = true;
890 mr->backend_registered = false;
893 void memory_region_init_ram(MemoryRegion *mr,
894 DeviceState *dev,
895 const char *name,
896 uint64_t size)
898 memory_region_init(mr, name, size);
899 mr->terminates = true;
900 mr->destructor = memory_region_destructor_ram;
901 mr->ram_addr = qemu_ram_alloc(dev, name, size);
902 mr->backend_registered = true;
905 void memory_region_init_ram_ptr(MemoryRegion *mr,
906 DeviceState *dev,
907 const char *name,
908 uint64_t size,
909 void *ptr)
911 memory_region_init(mr, name, size);
912 mr->terminates = true;
913 mr->destructor = memory_region_destructor_ram_from_ptr;
914 mr->ram_addr = qemu_ram_alloc_from_ptr(dev, name, size, ptr);
915 mr->backend_registered = true;
918 void memory_region_init_alias(MemoryRegion *mr,
919 const char *name,
920 MemoryRegion *orig,
921 target_phys_addr_t offset,
922 uint64_t size)
924 memory_region_init(mr, name, size);
925 mr->alias = orig;
926 mr->alias_offset = offset;
929 void memory_region_init_rom_device(MemoryRegion *mr,
930 const MemoryRegionOps *ops,
931 DeviceState *dev,
932 const char *name,
933 uint64_t size)
935 memory_region_init(mr, name, size);
936 mr->terminates = true;
937 mr->destructor = memory_region_destructor_rom_device;
938 mr->ram_addr = qemu_ram_alloc(dev, name, size);
939 mr->ram_addr |= cpu_register_io_memory(memory_region_read_thunk,
940 memory_region_write_thunk,
942 mr->ops->endianness);
943 mr->ram_addr |= IO_MEM_ROMD;
944 mr->backend_registered = true;
947 void memory_region_destroy(MemoryRegion *mr)
949 assert(QTAILQ_EMPTY(&mr->subregions));
950 mr->destructor(mr);
951 memory_region_clear_coalescing(mr);
952 g_free((char *)mr->name);
953 g_free(mr->ioeventfds);
956 uint64_t memory_region_size(MemoryRegion *mr)
958 return mr->size;
961 void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset)
963 mr->offset = offset;
966 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
968 uint8_t mask = 1 << client;
970 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
971 memory_region_update_topology();
974 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
975 unsigned client)
977 assert(mr->terminates);
978 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client);
981 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr)
983 assert(mr->terminates);
984 return cpu_physical_memory_set_dirty(mr->ram_addr + addr);
987 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
989 FlatRange *fr;
991 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
992 if (fr->mr == mr) {
993 cpu_physical_sync_dirty_bitmap(fr->addr.start,
994 fr->addr.start + fr->addr.size);
999 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1001 /* FIXME */
1004 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1006 if (mr->readable != readable) {
1007 mr->readable = readable;
1008 memory_region_update_topology();
1012 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1013 target_phys_addr_t size, unsigned client)
1015 assert(mr->terminates);
1016 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1017 mr->ram_addr + addr + size,
1018 1 << client);
1021 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1023 if (mr->alias) {
1024 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1027 assert(mr->terminates);
1029 return qemu_get_ram_ptr(mr->ram_addr);
1032 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1034 FlatRange *fr;
1035 CoalescedMemoryRange *cmr;
1036 AddrRange tmp;
1038 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1039 if (fr->mr == mr) {
1040 qemu_unregister_coalesced_mmio(fr->addr.start, fr->addr.size);
1041 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1042 tmp = addrrange_shift(cmr->addr,
1043 fr->addr.start - fr->offset_in_region);
1044 if (!addrrange_intersects(tmp, fr->addr)) {
1045 continue;
1047 tmp = addrrange_intersection(tmp, fr->addr);
1048 qemu_register_coalesced_mmio(tmp.start, tmp.size);
1054 void memory_region_set_coalescing(MemoryRegion *mr)
1056 memory_region_clear_coalescing(mr);
1057 memory_region_add_coalescing(mr, 0, mr->size);
1060 void memory_region_add_coalescing(MemoryRegion *mr,
1061 target_phys_addr_t offset,
1062 uint64_t size)
1064 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1066 cmr->addr = addrrange_make(offset, size);
1067 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1068 memory_region_update_coalesced_range(mr);
1071 void memory_region_clear_coalescing(MemoryRegion *mr)
1073 CoalescedMemoryRange *cmr;
1075 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1076 cmr = QTAILQ_FIRST(&mr->coalesced);
1077 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1078 g_free(cmr);
1080 memory_region_update_coalesced_range(mr);
1083 void memory_region_add_eventfd(MemoryRegion *mr,
1084 target_phys_addr_t addr,
1085 unsigned size,
1086 bool match_data,
1087 uint64_t data,
1088 int fd)
1090 MemoryRegionIoeventfd mrfd = {
1091 .addr.start = addr,
1092 .addr.size = size,
1093 .match_data = match_data,
1094 .data = data,
1095 .fd = fd,
1097 unsigned i;
1099 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1100 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1101 break;
1104 ++mr->ioeventfd_nb;
1105 mr->ioeventfds = g_realloc(mr->ioeventfds,
1106 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1107 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1108 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1109 mr->ioeventfds[i] = mrfd;
1110 memory_region_update_topology();
1113 void memory_region_del_eventfd(MemoryRegion *mr,
1114 target_phys_addr_t addr,
1115 unsigned size,
1116 bool match_data,
1117 uint64_t data,
1118 int fd)
1120 MemoryRegionIoeventfd mrfd = {
1121 .addr.start = addr,
1122 .addr.size = size,
1123 .match_data = match_data,
1124 .data = data,
1125 .fd = fd,
1127 unsigned i;
1129 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1130 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1131 break;
1134 assert(i != mr->ioeventfd_nb);
1135 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1136 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1137 --mr->ioeventfd_nb;
1138 mr->ioeventfds = g_realloc(mr->ioeventfds,
1139 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1140 memory_region_update_topology();
1143 static void memory_region_add_subregion_common(MemoryRegion *mr,
1144 target_phys_addr_t offset,
1145 MemoryRegion *subregion)
1147 MemoryRegion *other;
1149 assert(!subregion->parent);
1150 subregion->parent = mr;
1151 subregion->addr = offset;
1152 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1153 if (subregion->may_overlap || other->may_overlap) {
1154 continue;
1156 if (offset >= other->offset + other->size
1157 || offset + subregion->size <= other->offset) {
1158 continue;
1160 printf("warning: subregion collision %llx/%llx vs %llx/%llx\n",
1161 (unsigned long long)offset,
1162 (unsigned long long)subregion->size,
1163 (unsigned long long)other->offset,
1164 (unsigned long long)other->size);
1166 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1167 if (subregion->priority >= other->priority) {
1168 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1169 goto done;
1172 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1173 done:
1174 memory_region_update_topology();
1178 void memory_region_add_subregion(MemoryRegion *mr,
1179 target_phys_addr_t offset,
1180 MemoryRegion *subregion)
1182 subregion->may_overlap = false;
1183 subregion->priority = 0;
1184 memory_region_add_subregion_common(mr, offset, subregion);
1187 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1188 target_phys_addr_t offset,
1189 MemoryRegion *subregion,
1190 unsigned priority)
1192 subregion->may_overlap = true;
1193 subregion->priority = priority;
1194 memory_region_add_subregion_common(mr, offset, subregion);
1197 void memory_region_del_subregion(MemoryRegion *mr,
1198 MemoryRegion *subregion)
1200 assert(subregion->parent == mr);
1201 subregion->parent = NULL;
1202 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1203 memory_region_update_topology();
1206 void set_system_memory_map(MemoryRegion *mr)
1208 address_space_memory.root = mr;
1209 memory_region_update_topology();
1212 void set_system_io_map(MemoryRegion *mr)
1214 address_space_io.root = mr;
1215 memory_region_update_topology();