kvm: remove pre-entry exit_request check with iothread enabled
[qemu/mdroth.git] / kvm-all.c
blob91d3cbd43eab6ccee63a9cd2cf1c5fe92690a4f3
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 #ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
69 #endif
70 int irqchip_in_kernel;
71 int pit_in_kernel;
74 static KVMState *kvm_state;
76 static KVMSlot *kvm_alloc_slot(KVMState *s)
78 int i;
80 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
81 /* KVM private memory slots */
82 if (i >= 8 && i < 12)
83 continue;
84 if (s->slots[i].memory_size == 0)
85 return &s->slots[i];
88 fprintf(stderr, "%s: no free slot available\n", __func__);
89 abort();
92 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
93 target_phys_addr_t start_addr,
94 target_phys_addr_t end_addr)
96 int i;
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 KVMSlot *mem = &s->slots[i];
101 if (start_addr == mem->start_addr &&
102 end_addr == mem->start_addr + mem->memory_size) {
103 return mem;
107 return NULL;
111 * Find overlapping slot with lowest start address
113 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
117 KVMSlot *found = NULL;
118 int i;
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
123 if (mem->memory_size == 0 ||
124 (found && found->start_addr < mem->start_addr)) {
125 continue;
128 if (end_addr > mem->start_addr &&
129 start_addr < mem->start_addr + mem->memory_size) {
130 found = mem;
134 return found;
137 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
139 struct kvm_userspace_memory_region mem;
141 mem.slot = slot->slot;
142 mem.guest_phys_addr = slot->start_addr;
143 mem.memory_size = slot->memory_size;
144 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
145 mem.flags = slot->flags;
146 if (s->migration_log) {
147 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
149 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
152 static void kvm_reset_vcpu(void *opaque)
154 CPUState *env = opaque;
156 kvm_arch_reset_vcpu(env);
157 if (kvm_arch_put_registers(env)) {
158 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
159 abort();
163 int kvm_irqchip_in_kernel(void)
165 return kvm_state->irqchip_in_kernel;
168 int kvm_pit_in_kernel(void)
170 return kvm_state->pit_in_kernel;
174 int kvm_init_vcpu(CPUState *env)
176 KVMState *s = kvm_state;
177 long mmap_size;
178 int ret;
180 dprintf("kvm_init_vcpu\n");
182 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
183 if (ret < 0) {
184 dprintf("kvm_create_vcpu failed\n");
185 goto err;
188 env->kvm_fd = ret;
189 env->kvm_state = s;
191 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
192 if (mmap_size < 0) {
193 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
194 goto err;
197 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
198 env->kvm_fd, 0);
199 if (env->kvm_run == MAP_FAILED) {
200 ret = -errno;
201 dprintf("mmap'ing vcpu state failed\n");
202 goto err;
205 #ifdef KVM_CAP_COALESCED_MMIO
206 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
207 s->coalesced_mmio_ring = (void *) env->kvm_run +
208 s->coalesced_mmio * PAGE_SIZE;
209 #endif
211 ret = kvm_arch_init_vcpu(env);
212 if (ret == 0) {
213 qemu_register_reset(kvm_reset_vcpu, env);
214 kvm_arch_reset_vcpu(env);
215 ret = kvm_arch_put_registers(env);
217 err:
218 return ret;
222 * dirty pages logging control
224 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
225 ram_addr_t size, int flags, int mask)
227 KVMState *s = kvm_state;
228 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
229 int old_flags;
231 if (mem == NULL) {
232 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
233 TARGET_FMT_plx "\n", __func__, phys_addr,
234 (target_phys_addr_t)(phys_addr + size - 1));
235 return -EINVAL;
238 old_flags = mem->flags;
240 flags = (mem->flags & ~mask) | flags;
241 mem->flags = flags;
243 /* If nothing changed effectively, no need to issue ioctl */
244 if (s->migration_log) {
245 flags |= KVM_MEM_LOG_DIRTY_PAGES;
247 if (flags == old_flags) {
248 return 0;
251 return kvm_set_user_memory_region(s, mem);
254 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
256 return kvm_dirty_pages_log_change(phys_addr, size,
257 KVM_MEM_LOG_DIRTY_PAGES,
258 KVM_MEM_LOG_DIRTY_PAGES);
261 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
263 return kvm_dirty_pages_log_change(phys_addr, size,
265 KVM_MEM_LOG_DIRTY_PAGES);
268 static int kvm_set_migration_log(int enable)
270 KVMState *s = kvm_state;
271 KVMSlot *mem;
272 int i, err;
274 s->migration_log = enable;
276 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
277 mem = &s->slots[i];
279 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
280 continue;
282 err = kvm_set_user_memory_region(s, mem);
283 if (err) {
284 return err;
287 return 0;
290 static int test_le_bit(unsigned long nr, unsigned char *addr)
292 return (addr[nr >> 3] >> (nr & 7)) & 1;
296 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
297 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
298 * This means all bits are set to dirty.
300 * @start_add: start of logged region.
301 * @end_addr: end of logged region.
303 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
304 target_phys_addr_t end_addr)
306 KVMState *s = kvm_state;
307 unsigned long size, allocated_size = 0;
308 target_phys_addr_t phys_addr;
309 ram_addr_t addr;
310 KVMDirtyLog d;
311 KVMSlot *mem;
312 int ret = 0;
314 d.dirty_bitmap = NULL;
315 while (start_addr < end_addr) {
316 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
317 if (mem == NULL) {
318 break;
321 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
322 if (!d.dirty_bitmap) {
323 d.dirty_bitmap = qemu_malloc(size);
324 } else if (size > allocated_size) {
325 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
327 allocated_size = size;
328 memset(d.dirty_bitmap, 0, allocated_size);
330 d.slot = mem->slot;
332 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
333 dprintf("ioctl failed %d\n", errno);
334 ret = -1;
335 break;
338 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
339 phys_addr < mem->start_addr + mem->memory_size;
340 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
341 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
342 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
344 if (test_le_bit(nr, bitmap)) {
345 cpu_physical_memory_set_dirty(addr);
348 start_addr = phys_addr;
350 qemu_free(d.dirty_bitmap);
352 return ret;
355 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
357 int ret = -ENOSYS;
358 #ifdef KVM_CAP_COALESCED_MMIO
359 KVMState *s = kvm_state;
361 if (s->coalesced_mmio) {
362 struct kvm_coalesced_mmio_zone zone;
364 zone.addr = start;
365 zone.size = size;
367 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
369 #endif
371 return ret;
374 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
376 int ret = -ENOSYS;
377 #ifdef KVM_CAP_COALESCED_MMIO
378 KVMState *s = kvm_state;
380 if (s->coalesced_mmio) {
381 struct kvm_coalesced_mmio_zone zone;
383 zone.addr = start;
384 zone.size = size;
386 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
388 #endif
390 return ret;
393 int kvm_check_extension(KVMState *s, unsigned int extension)
395 int ret;
397 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
398 if (ret < 0) {
399 ret = 0;
402 return ret;
405 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
406 ram_addr_t size,
407 ram_addr_t phys_offset)
409 KVMState *s = kvm_state;
410 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
411 KVMSlot *mem, old;
412 int err;
414 if (start_addr & ~TARGET_PAGE_MASK) {
415 if (flags >= IO_MEM_UNASSIGNED) {
416 if (!kvm_lookup_overlapping_slot(s, start_addr,
417 start_addr + size)) {
418 return;
420 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
421 } else {
422 fprintf(stderr, "Only page-aligned memory slots supported\n");
424 abort();
427 /* KVM does not support read-only slots */
428 phys_offset &= ~IO_MEM_ROM;
430 while (1) {
431 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
432 if (!mem) {
433 break;
436 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
437 (start_addr + size <= mem->start_addr + mem->memory_size) &&
438 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
439 /* The new slot fits into the existing one and comes with
440 * identical parameters - nothing to be done. */
441 return;
444 old = *mem;
446 /* unregister the overlapping slot */
447 mem->memory_size = 0;
448 err = kvm_set_user_memory_region(s, mem);
449 if (err) {
450 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
451 __func__, strerror(-err));
452 abort();
455 /* Workaround for older KVM versions: we can't join slots, even not by
456 * unregistering the previous ones and then registering the larger
457 * slot. We have to maintain the existing fragmentation. Sigh.
459 * This workaround assumes that the new slot starts at the same
460 * address as the first existing one. If not or if some overlapping
461 * slot comes around later, we will fail (not seen in practice so far)
462 * - and actually require a recent KVM version. */
463 if (s->broken_set_mem_region &&
464 old.start_addr == start_addr && old.memory_size < size &&
465 flags < IO_MEM_UNASSIGNED) {
466 mem = kvm_alloc_slot(s);
467 mem->memory_size = old.memory_size;
468 mem->start_addr = old.start_addr;
469 mem->phys_offset = old.phys_offset;
470 mem->flags = 0;
472 err = kvm_set_user_memory_region(s, mem);
473 if (err) {
474 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
475 strerror(-err));
476 abort();
479 start_addr += old.memory_size;
480 phys_offset += old.memory_size;
481 size -= old.memory_size;
482 continue;
485 /* register prefix slot */
486 if (old.start_addr < start_addr) {
487 mem = kvm_alloc_slot(s);
488 mem->memory_size = start_addr - old.start_addr;
489 mem->start_addr = old.start_addr;
490 mem->phys_offset = old.phys_offset;
491 mem->flags = 0;
493 err = kvm_set_user_memory_region(s, mem);
494 if (err) {
495 fprintf(stderr, "%s: error registering prefix slot: %s\n",
496 __func__, strerror(-err));
497 abort();
501 /* register suffix slot */
502 if (old.start_addr + old.memory_size > start_addr + size) {
503 ram_addr_t size_delta;
505 mem = kvm_alloc_slot(s);
506 mem->start_addr = start_addr + size;
507 size_delta = mem->start_addr - old.start_addr;
508 mem->memory_size = old.memory_size - size_delta;
509 mem->phys_offset = old.phys_offset + size_delta;
510 mem->flags = 0;
512 err = kvm_set_user_memory_region(s, mem);
513 if (err) {
514 fprintf(stderr, "%s: error registering suffix slot: %s\n",
515 __func__, strerror(-err));
516 abort();
521 /* in case the KVM bug workaround already "consumed" the new slot */
522 if (!size)
523 return;
525 /* KVM does not need to know about this memory */
526 if (flags >= IO_MEM_UNASSIGNED)
527 return;
529 mem = kvm_alloc_slot(s);
530 mem->memory_size = size;
531 mem->start_addr = start_addr;
532 mem->phys_offset = phys_offset;
533 mem->flags = 0;
535 err = kvm_set_user_memory_region(s, mem);
536 if (err) {
537 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
538 strerror(-err));
539 abort();
543 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
544 target_phys_addr_t start_addr,
545 ram_addr_t size,
546 ram_addr_t phys_offset)
548 kvm_set_phys_mem(start_addr, size, phys_offset);
551 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
552 target_phys_addr_t start_addr,
553 target_phys_addr_t end_addr)
555 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
558 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
559 int enable)
561 return kvm_set_migration_log(enable);
564 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
565 .set_memory = kvm_client_set_memory,
566 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
567 .migration_log = kvm_client_migration_log,
570 int kvm_init(int smp_cpus)
572 static const char upgrade_note[] =
573 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
574 "(see http://sourceforge.net/projects/kvm).\n";
575 KVMState *s;
576 int ret;
577 int i;
579 if (smp_cpus > 1) {
580 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
581 return -EINVAL;
584 s = qemu_mallocz(sizeof(KVMState));
586 #ifdef KVM_CAP_SET_GUEST_DEBUG
587 QTAILQ_INIT(&s->kvm_sw_breakpoints);
588 #endif
589 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
590 s->slots[i].slot = i;
592 s->vmfd = -1;
593 s->fd = qemu_open("/dev/kvm", O_RDWR);
594 if (s->fd == -1) {
595 fprintf(stderr, "Could not access KVM kernel module: %m\n");
596 ret = -errno;
597 goto err;
600 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
601 if (ret < KVM_API_VERSION) {
602 if (ret > 0)
603 ret = -EINVAL;
604 fprintf(stderr, "kvm version too old\n");
605 goto err;
608 if (ret > KVM_API_VERSION) {
609 ret = -EINVAL;
610 fprintf(stderr, "kvm version not supported\n");
611 goto err;
614 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
615 if (s->vmfd < 0)
616 goto err;
618 /* initially, KVM allocated its own memory and we had to jump through
619 * hooks to make phys_ram_base point to this. Modern versions of KVM
620 * just use a user allocated buffer so we can use regular pages
621 * unmodified. Make sure we have a sufficiently modern version of KVM.
623 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
624 ret = -EINVAL;
625 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
626 upgrade_note);
627 goto err;
630 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
631 * destroyed properly. Since we rely on this capability, refuse to work
632 * with any kernel without this capability. */
633 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
634 ret = -EINVAL;
636 fprintf(stderr,
637 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
638 upgrade_note);
639 goto err;
642 s->coalesced_mmio = 0;
643 #ifdef KVM_CAP_COALESCED_MMIO
644 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
645 s->coalesced_mmio_ring = NULL;
646 #endif
648 s->broken_set_mem_region = 1;
649 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
650 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
651 if (ret > 0) {
652 s->broken_set_mem_region = 0;
654 #endif
656 s->vcpu_events = 0;
657 #ifdef KVM_CAP_VCPU_EVENTS
658 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
659 #endif
661 ret = kvm_arch_init(s, smp_cpus);
662 if (ret < 0)
663 goto err;
665 kvm_state = s;
666 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
668 return 0;
670 err:
671 if (s) {
672 if (s->vmfd != -1)
673 close(s->vmfd);
674 if (s->fd != -1)
675 close(s->fd);
677 qemu_free(s);
679 return ret;
682 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
683 uint32_t count)
685 int i;
686 uint8_t *ptr = data;
688 for (i = 0; i < count; i++) {
689 if (direction == KVM_EXIT_IO_IN) {
690 switch (size) {
691 case 1:
692 stb_p(ptr, cpu_inb(port));
693 break;
694 case 2:
695 stw_p(ptr, cpu_inw(port));
696 break;
697 case 4:
698 stl_p(ptr, cpu_inl(port));
699 break;
701 } else {
702 switch (size) {
703 case 1:
704 cpu_outb(port, ldub_p(ptr));
705 break;
706 case 2:
707 cpu_outw(port, lduw_p(ptr));
708 break;
709 case 4:
710 cpu_outl(port, ldl_p(ptr));
711 break;
715 ptr += size;
718 return 1;
721 void kvm_flush_coalesced_mmio_buffer(void)
723 #ifdef KVM_CAP_COALESCED_MMIO
724 KVMState *s = kvm_state;
725 if (s->coalesced_mmio_ring) {
726 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
727 while (ring->first != ring->last) {
728 struct kvm_coalesced_mmio *ent;
730 ent = &ring->coalesced_mmio[ring->first];
732 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
733 /* FIXME smp_wmb() */
734 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
737 #endif
740 void kvm_cpu_synchronize_state(CPUState *env)
742 if (!env->kvm_vcpu_dirty) {
743 kvm_arch_get_registers(env);
744 env->kvm_vcpu_dirty = 1;
748 int kvm_cpu_exec(CPUState *env)
750 struct kvm_run *run = env->kvm_run;
751 int ret;
753 dprintf("kvm_cpu_exec()\n");
755 do {
756 #ifndef CONFIG_IOTHREAD
757 if (env->exit_request) {
758 dprintf("interrupt exit requested\n");
759 ret = 0;
760 break;
762 #endif
764 if (env->kvm_vcpu_dirty) {
765 kvm_arch_put_registers(env);
766 env->kvm_vcpu_dirty = 0;
769 kvm_arch_pre_run(env, run);
770 qemu_mutex_unlock_iothread();
771 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
772 qemu_mutex_lock_iothread();
773 kvm_arch_post_run(env, run);
775 if (ret == -EINTR || ret == -EAGAIN) {
776 cpu_exit(env);
777 dprintf("io window exit\n");
778 ret = 0;
779 break;
782 if (ret < 0) {
783 dprintf("kvm run failed %s\n", strerror(-ret));
784 abort();
787 kvm_flush_coalesced_mmio_buffer();
789 ret = 0; /* exit loop */
790 switch (run->exit_reason) {
791 case KVM_EXIT_IO:
792 dprintf("handle_io\n");
793 ret = kvm_handle_io(run->io.port,
794 (uint8_t *)run + run->io.data_offset,
795 run->io.direction,
796 run->io.size,
797 run->io.count);
798 break;
799 case KVM_EXIT_MMIO:
800 dprintf("handle_mmio\n");
801 cpu_physical_memory_rw(run->mmio.phys_addr,
802 run->mmio.data,
803 run->mmio.len,
804 run->mmio.is_write);
805 ret = 1;
806 break;
807 case KVM_EXIT_IRQ_WINDOW_OPEN:
808 dprintf("irq_window_open\n");
809 break;
810 case KVM_EXIT_SHUTDOWN:
811 dprintf("shutdown\n");
812 qemu_system_reset_request();
813 ret = 1;
814 break;
815 case KVM_EXIT_UNKNOWN:
816 dprintf("kvm_exit_unknown\n");
817 break;
818 case KVM_EXIT_FAIL_ENTRY:
819 dprintf("kvm_exit_fail_entry\n");
820 break;
821 case KVM_EXIT_EXCEPTION:
822 dprintf("kvm_exit_exception\n");
823 break;
824 case KVM_EXIT_DEBUG:
825 dprintf("kvm_exit_debug\n");
826 #ifdef KVM_CAP_SET_GUEST_DEBUG
827 if (kvm_arch_debug(&run->debug.arch)) {
828 gdb_set_stop_cpu(env);
829 vm_stop(EXCP_DEBUG);
830 env->exception_index = EXCP_DEBUG;
831 return 0;
833 /* re-enter, this exception was guest-internal */
834 ret = 1;
835 #endif /* KVM_CAP_SET_GUEST_DEBUG */
836 break;
837 default:
838 dprintf("kvm_arch_handle_exit\n");
839 ret = kvm_arch_handle_exit(env, run);
840 break;
842 } while (ret > 0);
844 if (env->exit_request) {
845 env->exit_request = 0;
846 env->exception_index = EXCP_INTERRUPT;
849 return ret;
852 int kvm_ioctl(KVMState *s, int type, ...)
854 int ret;
855 void *arg;
856 va_list ap;
858 va_start(ap, type);
859 arg = va_arg(ap, void *);
860 va_end(ap);
862 ret = ioctl(s->fd, type, arg);
863 if (ret == -1)
864 ret = -errno;
866 return ret;
869 int kvm_vm_ioctl(KVMState *s, int type, ...)
871 int ret;
872 void *arg;
873 va_list ap;
875 va_start(ap, type);
876 arg = va_arg(ap, void *);
877 va_end(ap);
879 ret = ioctl(s->vmfd, type, arg);
880 if (ret == -1)
881 ret = -errno;
883 return ret;
886 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
888 int ret;
889 void *arg;
890 va_list ap;
892 va_start(ap, type);
893 arg = va_arg(ap, void *);
894 va_end(ap);
896 ret = ioctl(env->kvm_fd, type, arg);
897 if (ret == -1)
898 ret = -errno;
900 return ret;
903 int kvm_has_sync_mmu(void)
905 #ifdef KVM_CAP_SYNC_MMU
906 KVMState *s = kvm_state;
908 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
909 #else
910 return 0;
911 #endif
914 int kvm_has_vcpu_events(void)
916 return kvm_state->vcpu_events;
919 void kvm_setup_guest_memory(void *start, size_t size)
921 if (!kvm_has_sync_mmu()) {
922 #ifdef MADV_DONTFORK
923 int ret = madvise(start, size, MADV_DONTFORK);
925 if (ret) {
926 perror("madvice");
927 exit(1);
929 #else
930 fprintf(stderr,
931 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
932 exit(1);
933 #endif
937 #ifdef KVM_CAP_SET_GUEST_DEBUG
938 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
940 #ifdef CONFIG_IOTHREAD
941 if (env != cpu_single_env) {
942 abort();
944 #endif
945 func(data);
948 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
949 target_ulong pc)
951 struct kvm_sw_breakpoint *bp;
953 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
954 if (bp->pc == pc)
955 return bp;
957 return NULL;
960 int kvm_sw_breakpoints_active(CPUState *env)
962 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
965 struct kvm_set_guest_debug_data {
966 struct kvm_guest_debug dbg;
967 CPUState *env;
968 int err;
971 static void kvm_invoke_set_guest_debug(void *data)
973 struct kvm_set_guest_debug_data *dbg_data = data;
974 CPUState *env = dbg_data->env;
976 if (env->kvm_vcpu_dirty) {
977 kvm_arch_put_registers(env);
978 env->kvm_vcpu_dirty = 0;
980 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
983 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
985 struct kvm_set_guest_debug_data data;
987 data.dbg.control = 0;
988 if (env->singlestep_enabled)
989 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
991 kvm_arch_update_guest_debug(env, &data.dbg);
992 data.dbg.control |= reinject_trap;
993 data.env = env;
995 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
996 return data.err;
999 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1000 target_ulong len, int type)
1002 struct kvm_sw_breakpoint *bp;
1003 CPUState *env;
1004 int err;
1006 if (type == GDB_BREAKPOINT_SW) {
1007 bp = kvm_find_sw_breakpoint(current_env, addr);
1008 if (bp) {
1009 bp->use_count++;
1010 return 0;
1013 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1014 if (!bp)
1015 return -ENOMEM;
1017 bp->pc = addr;
1018 bp->use_count = 1;
1019 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1020 if (err) {
1021 free(bp);
1022 return err;
1025 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1026 bp, entry);
1027 } else {
1028 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1029 if (err)
1030 return err;
1033 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1034 err = kvm_update_guest_debug(env, 0);
1035 if (err)
1036 return err;
1038 return 0;
1041 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1042 target_ulong len, int type)
1044 struct kvm_sw_breakpoint *bp;
1045 CPUState *env;
1046 int err;
1048 if (type == GDB_BREAKPOINT_SW) {
1049 bp = kvm_find_sw_breakpoint(current_env, addr);
1050 if (!bp)
1051 return -ENOENT;
1053 if (bp->use_count > 1) {
1054 bp->use_count--;
1055 return 0;
1058 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1059 if (err)
1060 return err;
1062 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1063 qemu_free(bp);
1064 } else {
1065 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1066 if (err)
1067 return err;
1070 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1071 err = kvm_update_guest_debug(env, 0);
1072 if (err)
1073 return err;
1075 return 0;
1078 void kvm_remove_all_breakpoints(CPUState *current_env)
1080 struct kvm_sw_breakpoint *bp, *next;
1081 KVMState *s = current_env->kvm_state;
1082 CPUState *env;
1084 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1085 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1086 /* Try harder to find a CPU that currently sees the breakpoint. */
1087 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1088 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1089 break;
1093 kvm_arch_remove_all_hw_breakpoints();
1095 for (env = first_cpu; env != NULL; env = env->next_cpu)
1096 kvm_update_guest_debug(env, 0);
1099 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1101 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1103 return -EINVAL;
1106 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1107 target_ulong len, int type)
1109 return -EINVAL;
1112 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1113 target_ulong len, int type)
1115 return -EINVAL;
1118 void kvm_remove_all_breakpoints(CPUState *current_env)
1121 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1123 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1125 struct kvm_signal_mask *sigmask;
1126 int r;
1128 if (!sigset)
1129 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1131 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1133 sigmask->len = 8;
1134 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1135 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1136 free(sigmask);
1138 return r;