Eliminate some uses of T2
[qemu/malc.git] / hw / slavio_intctl.c
blob39851def1ba4c303caae7b6dc4254cd01834ba50
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "console.h"
28 //#define DEBUG_IRQ_COUNT
29 //#define DEBUG_IRQ
31 #ifdef DEBUG_IRQ
32 #define DPRINTF(fmt, args...) \
33 do { printf("IRQ: " fmt , ##args); } while (0)
34 #else
35 #define DPRINTF(fmt, args...)
36 #endif
39 * Registers of interrupt controller in sun4m.
41 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 * There is a system master controller and one for each cpu.
49 #define MAX_CPUS 16
50 #define MAX_PILS 16
52 typedef struct SLAVIO_INTCTLState {
53 uint32_t intreg_pending[MAX_CPUS];
54 uint32_t intregm_pending;
55 uint32_t intregm_disabled;
56 uint32_t target_cpu;
57 #ifdef DEBUG_IRQ_COUNT
58 uint64_t irq_count[32];
59 #endif
60 qemu_irq *cpu_irqs[MAX_CPUS];
61 const uint32_t *intbit_to_level;
62 uint32_t cputimer_lbit, cputimer_mbit;
63 uint32_t pil_out[MAX_CPUS];
64 } SLAVIO_INTCTLState;
66 #define INTCTL_MAXADDR 0xf
67 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
68 #define INTCTLM_MAXADDR 0x13
69 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
70 #define INTCTLM_MASK 0x1f
71 #define MASTER_IRQ_MASK ~0x0fa2007f
72 #define MASTER_DISABLE 0x80000000
73 #define CPU_SOFTIRQ_MASK 0xfffe0000
74 #define CPU_HARDIRQ_MASK 0x0000fffe
75 #define CPU_IRQ_INT15_IN 0x0004000
76 #define CPU_IRQ_INT15_MASK 0x80000000
78 static void slavio_check_interrupts(void *opaque);
80 // per-cpu interrupt controller
81 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
83 SLAVIO_INTCTLState *s = opaque;
84 uint32_t saddr, ret;
85 int cpu;
87 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
88 saddr = (addr & INTCTL_MAXADDR) >> 2;
89 switch (saddr) {
90 case 0:
91 ret = s->intreg_pending[cpu];
92 break;
93 default:
94 ret = 0;
95 break;
97 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
99 return ret;
102 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
104 SLAVIO_INTCTLState *s = opaque;
105 uint32_t saddr;
106 int cpu;
108 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
109 saddr = (addr & INTCTL_MAXADDR) >> 2;
110 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
111 switch (saddr) {
112 case 1: // clear pending softints
113 if (val & CPU_IRQ_INT15_IN)
114 val |= CPU_IRQ_INT15_MASK;
115 val &= CPU_SOFTIRQ_MASK;
116 s->intreg_pending[cpu] &= ~val;
117 slavio_check_interrupts(s);
118 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
119 break;
120 case 2: // set softint
121 val &= CPU_SOFTIRQ_MASK;
122 s->intreg_pending[cpu] |= val;
123 slavio_check_interrupts(s);
124 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
125 break;
126 default:
127 break;
131 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
132 NULL,
133 NULL,
134 slavio_intctl_mem_readl,
137 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
138 NULL,
139 NULL,
140 slavio_intctl_mem_writel,
143 // master system interrupt controller
144 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
146 SLAVIO_INTCTLState *s = opaque;
147 uint32_t saddr, ret;
149 saddr = (addr & INTCTLM_MASK) >> 2;
150 switch (saddr) {
151 case 0:
152 ret = s->intregm_pending & ~MASTER_DISABLE;
153 break;
154 case 1:
155 ret = s->intregm_disabled & MASTER_IRQ_MASK;
156 break;
157 case 4:
158 ret = s->target_cpu;
159 break;
160 default:
161 ret = 0;
162 break;
164 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
166 return ret;
169 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
171 SLAVIO_INTCTLState *s = opaque;
172 uint32_t saddr;
174 saddr = (addr & INTCTLM_MASK) >> 2;
175 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
176 switch (saddr) {
177 case 2: // clear (enable)
178 // Force clear unused bits
179 val &= MASTER_IRQ_MASK;
180 s->intregm_disabled &= ~val;
181 DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
182 slavio_check_interrupts(s);
183 break;
184 case 3: // set (disable, clear pending)
185 // Force clear unused bits
186 val &= MASTER_IRQ_MASK;
187 s->intregm_disabled |= val;
188 s->intregm_pending &= ~val;
189 slavio_check_interrupts(s);
190 DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
191 break;
192 case 4:
193 s->target_cpu = val & (MAX_CPUS - 1);
194 slavio_check_interrupts(s);
195 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
196 break;
197 default:
198 break;
202 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
203 NULL,
204 NULL,
205 slavio_intctlm_mem_readl,
208 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
209 NULL,
210 NULL,
211 slavio_intctlm_mem_writel,
214 void slavio_pic_info(void *opaque)
216 SLAVIO_INTCTLState *s = opaque;
217 int i;
219 for (i = 0; i < MAX_CPUS; i++) {
220 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
222 term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
225 void slavio_irq_info(void *opaque)
227 #ifndef DEBUG_IRQ_COUNT
228 term_printf("irq statistic code not compiled.\n");
229 #else
230 SLAVIO_INTCTLState *s = opaque;
231 int i;
232 int64_t count;
234 term_printf("IRQ statistics:\n");
235 for (i = 0; i < 32; i++) {
236 count = s->irq_count[i];
237 if (count > 0)
238 term_printf("%2d: %" PRId64 "\n", i, count);
240 #endif
243 static void slavio_check_interrupts(void *opaque)
245 SLAVIO_INTCTLState *s = opaque;
246 uint32_t pending = s->intregm_pending, pil_pending;
247 unsigned int i, j;
249 pending &= ~s->intregm_disabled;
251 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
252 for (i = 0; i < MAX_CPUS; i++) {
253 pil_pending = 0;
254 if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
255 (i == s->target_cpu)) {
256 for (j = 0; j < 32; j++) {
257 if (pending & (1 << j))
258 pil_pending |= 1 << s->intbit_to_level[j];
261 pil_pending |= (s->intreg_pending[i] & CPU_SOFTIRQ_MASK) >> 16;
263 for (j = 0; j < MAX_PILS; j++) {
264 if (pil_pending & (1 << j)) {
265 if (!(s->pil_out[i] & (1 << j)))
266 qemu_irq_raise(s->cpu_irqs[i][j]);
267 } else {
268 if (s->pil_out[i] & (1 << j))
269 qemu_irq_lower(s->cpu_irqs[i][j]);
272 s->pil_out[i] = pil_pending;
277 * "irq" here is the bit number in the system interrupt register to
278 * separate serial and keyboard interrupts sharing a level.
280 static void slavio_set_irq(void *opaque, int irq, int level)
282 SLAVIO_INTCTLState *s = opaque;
283 uint32_t mask = 1 << irq;
284 uint32_t pil = s->intbit_to_level[irq];
286 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
287 level);
288 if (pil > 0) {
289 if (level) {
290 #ifdef DEBUG_IRQ_COUNT
291 s->irq_count[pil]++;
292 #endif
293 s->intregm_pending |= mask;
294 s->intreg_pending[s->target_cpu] |= 1 << pil;
295 } else {
296 s->intregm_pending &= ~mask;
297 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
299 slavio_check_interrupts(s);
303 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
305 SLAVIO_INTCTLState *s = opaque;
307 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
309 if (level) {
310 s->intregm_pending |= s->cputimer_mbit;
311 s->intreg_pending[cpu] |= s->cputimer_lbit;
312 } else {
313 s->intregm_pending &= ~s->cputimer_mbit;
314 s->intreg_pending[cpu] &= ~s->cputimer_lbit;
317 slavio_check_interrupts(s);
320 static void slavio_intctl_save(QEMUFile *f, void *opaque)
322 SLAVIO_INTCTLState *s = opaque;
323 int i;
325 for (i = 0; i < MAX_CPUS; i++) {
326 qemu_put_be32s(f, &s->intreg_pending[i]);
328 qemu_put_be32s(f, &s->intregm_pending);
329 qemu_put_be32s(f, &s->intregm_disabled);
330 qemu_put_be32s(f, &s->target_cpu);
333 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
335 SLAVIO_INTCTLState *s = opaque;
336 int i;
338 if (version_id != 1)
339 return -EINVAL;
341 for (i = 0; i < MAX_CPUS; i++) {
342 qemu_get_be32s(f, &s->intreg_pending[i]);
344 qemu_get_be32s(f, &s->intregm_pending);
345 qemu_get_be32s(f, &s->intregm_disabled);
346 qemu_get_be32s(f, &s->target_cpu);
347 slavio_check_interrupts(s);
348 return 0;
351 static void slavio_intctl_reset(void *opaque)
353 SLAVIO_INTCTLState *s = opaque;
354 int i;
356 for (i = 0; i < MAX_CPUS; i++) {
357 s->intreg_pending[i] = 0;
359 s->intregm_disabled = ~MASTER_IRQ_MASK;
360 s->intregm_pending = 0;
361 s->target_cpu = 0;
362 slavio_check_interrupts(s);
365 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
366 const uint32_t *intbit_to_level,
367 qemu_irq **irq, qemu_irq **cpu_irq,
368 qemu_irq **parent_irq, unsigned int cputimer)
370 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
371 SLAVIO_INTCTLState *s;
373 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
374 if (!s)
375 return NULL;
377 s->intbit_to_level = intbit_to_level;
378 for (i = 0; i < MAX_CPUS; i++) {
379 slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
380 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
381 slavio_intctl_io_memory);
382 s->cpu_irqs[i] = parent_irq[i];
385 slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
386 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
388 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
389 qemu_register_reset(slavio_intctl_reset, s);
390 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
392 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
393 s->cputimer_mbit = 1 << cputimer;
394 s->cputimer_lbit = 1 << intbit_to_level[cputimer];
395 slavio_intctl_reset(s);
396 return s;