Eliminate some uses of T2
[qemu/malc.git] / hw / omap1.c
blob3888e800f5aa8cdaea4bc39f32d44c004650409a
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of
9 * the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
21 #include "hw.h"
22 #include "arm-misc.h"
23 #include "omap.h"
24 #include "sysemu.h"
25 #include "qemu-timer.h"
26 /* We use pc-style serial ports. */
27 #include "pc.h"
29 /* Should signal the TCMI */
30 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
32 uint8_t ret;
34 OMAP_8B_REG(addr);
35 cpu_physical_memory_read(addr, (void *) &ret, 1);
36 return ret;
39 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
40 uint32_t value)
42 uint8_t val8 = value;
44 OMAP_8B_REG(addr);
45 cpu_physical_memory_write(addr, (void *) &val8, 1);
48 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
50 uint16_t ret;
52 OMAP_16B_REG(addr);
53 cpu_physical_memory_read(addr, (void *) &ret, 2);
54 return ret;
57 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
58 uint32_t value)
60 uint16_t val16 = value;
62 OMAP_16B_REG(addr);
63 cpu_physical_memory_write(addr, (void *) &val16, 2);
66 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
68 uint32_t ret;
70 OMAP_32B_REG(addr);
71 cpu_physical_memory_read(addr, (void *) &ret, 4);
72 return ret;
75 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
76 uint32_t value)
78 OMAP_32B_REG(addr);
79 cpu_physical_memory_write(addr, (void *) &value, 4);
82 /* Interrupt Handlers */
83 struct omap_intr_handler_bank_s {
84 uint32_t irqs;
85 uint32_t inputs;
86 uint32_t mask;
87 uint32_t fiq;
88 uint32_t sens_edge;
89 unsigned char priority[32];
92 struct omap_intr_handler_s {
93 qemu_irq *pins;
94 qemu_irq parent_intr[2];
95 target_phys_addr_t base;
96 unsigned char nbanks;
98 /* state */
99 uint32_t new_agr[2];
100 int sir_intr[2];
101 struct omap_intr_handler_bank_s banks[];
104 static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
106 int i, j, sir_intr, p_intr, p, f;
107 uint32_t level;
108 sir_intr = 0;
109 p_intr = 255;
111 /* Find the interrupt line with the highest dynamic priority.
112 * Note: 0 denotes the hightest priority.
113 * If all interrupts have the same priority, the default order is IRQ_N,
114 * IRQ_N-1,...,IRQ_0. */
115 for (j = 0; j < s->nbanks; ++j) {
116 level = s->banks[j].irqs & ~s->banks[j].mask &
117 (is_fiq ? s->banks[j].fiq : ~s->banks[j].fiq);
118 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
119 level >>= f) {
120 p = s->banks[j].priority[i];
121 if (p <= p_intr) {
122 p_intr = p;
123 sir_intr = 32 * j + i;
125 f = ffs(level >> 1);
128 s->sir_intr[is_fiq] = sir_intr;
131 static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
133 int i;
134 uint32_t has_intr = 0;
136 for (i = 0; i < s->nbanks; ++i)
137 has_intr |= s->banks[i].irqs & ~s->banks[i].mask &
138 (is_fiq ? s->banks[i].fiq : ~s->banks[i].fiq);
140 if (s->new_agr[is_fiq] && has_intr) {
141 s->new_agr[is_fiq] = 0;
142 omap_inth_sir_update(s, is_fiq);
143 qemu_set_irq(s->parent_intr[is_fiq], 1);
147 #define INT_FALLING_EDGE 0
148 #define INT_LOW_LEVEL 1
150 static void omap_set_intr(void *opaque, int irq, int req)
152 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
153 uint32_t rise;
155 struct omap_intr_handler_bank_s *bank = &ih->banks[irq >> 5];
156 int n = irq & 31;
158 if (req) {
159 rise = ~bank->irqs & (1 << n);
160 if (~bank->sens_edge & (1 << n))
161 rise &= ~bank->inputs & (1 << n);
163 bank->inputs |= (1 << n);
164 if (rise) {
165 bank->irqs |= rise;
166 omap_inth_update(ih, 0);
167 omap_inth_update(ih, 1);
169 } else {
170 rise = bank->sens_edge & bank->irqs & (1 << n);
171 bank->irqs &= ~rise;
172 bank->inputs &= ~(1 << n);
176 static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
178 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
179 int i, offset = addr - s->base;
180 int bank_no = offset >> 8;
181 int line_no;
182 struct omap_intr_handler_bank_s *bank = &s->banks[bank_no];
183 offset &= 0xff;
185 switch (offset) {
186 case 0x00: /* ITR */
187 return bank->irqs;
189 case 0x04: /* MIR */
190 return bank->mask;
192 case 0x10: /* SIR_IRQ_CODE */
193 case 0x14: /* SIR_FIQ_CODE */
194 if (bank_no != 0)
195 break;
196 line_no = s->sir_intr[(offset - 0x10) >> 2];
197 bank = &s->banks[line_no >> 5];
198 i = line_no & 31;
199 if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
200 bank->irqs &= ~(1 << i);
201 return line_no;
203 case 0x18: /* CONTROL_REG */
204 if (bank_no != 0)
205 break;
206 return 0;
208 case 0x1c: /* ILR0 */
209 case 0x20: /* ILR1 */
210 case 0x24: /* ILR2 */
211 case 0x28: /* ILR3 */
212 case 0x2c: /* ILR4 */
213 case 0x30: /* ILR5 */
214 case 0x34: /* ILR6 */
215 case 0x38: /* ILR7 */
216 case 0x3c: /* ILR8 */
217 case 0x40: /* ILR9 */
218 case 0x44: /* ILR10 */
219 case 0x48: /* ILR11 */
220 case 0x4c: /* ILR12 */
221 case 0x50: /* ILR13 */
222 case 0x54: /* ILR14 */
223 case 0x58: /* ILR15 */
224 case 0x5c: /* ILR16 */
225 case 0x60: /* ILR17 */
226 case 0x64: /* ILR18 */
227 case 0x68: /* ILR19 */
228 case 0x6c: /* ILR20 */
229 case 0x70: /* ILR21 */
230 case 0x74: /* ILR22 */
231 case 0x78: /* ILR23 */
232 case 0x7c: /* ILR24 */
233 case 0x80: /* ILR25 */
234 case 0x84: /* ILR26 */
235 case 0x88: /* ILR27 */
236 case 0x8c: /* ILR28 */
237 case 0x90: /* ILR29 */
238 case 0x94: /* ILR30 */
239 case 0x98: /* ILR31 */
240 i = (offset - 0x1c) >> 2;
241 return (bank->priority[i] << 2) |
242 (((bank->sens_edge >> i) & 1) << 1) |
243 ((bank->fiq >> i) & 1);
245 case 0x9c: /* ISR */
246 return 0x00000000;
249 OMAP_BAD_REG(addr);
250 return 0;
253 static void omap_inth_write(void *opaque, target_phys_addr_t addr,
254 uint32_t value)
256 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
257 int i, offset = addr - s->base;
258 int bank_no = offset >> 8;
259 struct omap_intr_handler_bank_s *bank = &s->banks[bank_no];
260 offset &= 0xff;
262 switch (offset) {
263 case 0x00: /* ITR */
264 /* Important: ignore the clearing if the IRQ is level-triggered and
265 the input bit is 1 */
266 bank->irqs &= value | (bank->inputs & bank->sens_edge);
267 return;
269 case 0x04: /* MIR */
270 bank->mask = value;
271 omap_inth_update(s, 0);
272 omap_inth_update(s, 1);
273 return;
275 case 0x10: /* SIR_IRQ_CODE */
276 case 0x14: /* SIR_FIQ_CODE */
277 OMAP_RO_REG(addr);
278 break;
280 case 0x18: /* CONTROL_REG */
281 if (bank_no != 0)
282 break;
283 if (value & 2) {
284 qemu_set_irq(s->parent_intr[1], 0);
285 s->new_agr[1] = ~0;
286 omap_inth_update(s, 1);
288 if (value & 1) {
289 qemu_set_irq(s->parent_intr[0], 0);
290 s->new_agr[0] = ~0;
291 omap_inth_update(s, 0);
293 return;
295 case 0x1c: /* ILR0 */
296 case 0x20: /* ILR1 */
297 case 0x24: /* ILR2 */
298 case 0x28: /* ILR3 */
299 case 0x2c: /* ILR4 */
300 case 0x30: /* ILR5 */
301 case 0x34: /* ILR6 */
302 case 0x38: /* ILR7 */
303 case 0x3c: /* ILR8 */
304 case 0x40: /* ILR9 */
305 case 0x44: /* ILR10 */
306 case 0x48: /* ILR11 */
307 case 0x4c: /* ILR12 */
308 case 0x50: /* ILR13 */
309 case 0x54: /* ILR14 */
310 case 0x58: /* ILR15 */
311 case 0x5c: /* ILR16 */
312 case 0x60: /* ILR17 */
313 case 0x64: /* ILR18 */
314 case 0x68: /* ILR19 */
315 case 0x6c: /* ILR20 */
316 case 0x70: /* ILR21 */
317 case 0x74: /* ILR22 */
318 case 0x78: /* ILR23 */
319 case 0x7c: /* ILR24 */
320 case 0x80: /* ILR25 */
321 case 0x84: /* ILR26 */
322 case 0x88: /* ILR27 */
323 case 0x8c: /* ILR28 */
324 case 0x90: /* ILR29 */
325 case 0x94: /* ILR30 */
326 case 0x98: /* ILR31 */
327 i = (offset - 0x1c) >> 2;
328 bank->priority[i] = (value >> 2) & 0x1f;
329 bank->sens_edge &= ~(1 << i);
330 bank->sens_edge |= ((value >> 1) & 1) << i;
331 bank->fiq &= ~(1 << i);
332 bank->fiq |= (value & 1) << i;
333 return;
335 case 0x9c: /* ISR */
336 for (i = 0; i < 32; i ++)
337 if (value & (1 << i)) {
338 omap_set_intr(s, 32 * bank_no + i, 1);
339 return;
341 return;
343 OMAP_BAD_REG(addr);
346 static CPUReadMemoryFunc *omap_inth_readfn[] = {
347 omap_badwidth_read32,
348 omap_badwidth_read32,
349 omap_inth_read,
352 static CPUWriteMemoryFunc *omap_inth_writefn[] = {
353 omap_inth_write,
354 omap_inth_write,
355 omap_inth_write,
358 void omap_inth_reset(struct omap_intr_handler_s *s)
360 int i;
362 for (i = 0; i < s->nbanks; ++i){
363 s->banks[i].irqs = 0x00000000;
364 s->banks[i].mask = 0xffffffff;
365 s->banks[i].sens_edge = 0x00000000;
366 s->banks[i].fiq = 0x00000000;
367 s->banks[i].inputs = 0x00000000;
368 memset(s->banks[i].priority, 0, sizeof(s->banks[i].priority));
371 s->new_agr[0] = ~0;
372 s->new_agr[1] = ~0;
373 s->sir_intr[0] = 0;
374 s->sir_intr[1] = 0;
376 qemu_set_irq(s->parent_intr[0], 0);
377 qemu_set_irq(s->parent_intr[1], 0);
380 struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
381 unsigned long size, unsigned char nbanks,
382 qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
384 int iomemtype;
385 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
386 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
387 sizeof(struct omap_intr_handler_bank_s) * nbanks);
389 s->parent_intr[0] = parent_irq;
390 s->parent_intr[1] = parent_fiq;
391 s->base = base;
392 s->nbanks = nbanks;
393 s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
395 omap_inth_reset(s);
397 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
398 omap_inth_writefn, s);
399 cpu_register_physical_memory(s->base, size, iomemtype);
401 return s;
404 /* MPU OS timers */
405 struct omap_mpu_timer_s {
406 qemu_irq irq;
407 omap_clk clk;
408 target_phys_addr_t base;
409 uint32_t val;
410 int64_t time;
411 QEMUTimer *timer;
412 int64_t rate;
413 int it_ena;
415 int enable;
416 int ptv;
417 int ar;
418 int st;
419 uint32_t reset_val;
422 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
424 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
426 if (timer->st && timer->enable && timer->rate)
427 return timer->val - muldiv64(distance >> (timer->ptv + 1),
428 timer->rate, ticks_per_sec);
429 else
430 return timer->val;
433 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
435 timer->val = omap_timer_read(timer);
436 timer->time = qemu_get_clock(vm_clock);
439 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
441 int64_t expires;
443 if (timer->enable && timer->st && timer->rate) {
444 timer->val = timer->reset_val; /* Should skip this on clk enable */
445 expires = muldiv64(timer->val << (timer->ptv + 1),
446 ticks_per_sec, timer->rate);
448 /* If timer expiry would be sooner than in about 1 ms and
449 * auto-reload isn't set, then fire immediately. This is a hack
450 * to make systems like PalmOS run in acceptable time. PalmOS
451 * sets the interval to a very low value and polls the status bit
452 * in a busy loop when it wants to sleep just a couple of CPU
453 * ticks. */
454 if (expires > (ticks_per_sec >> 10) || timer->ar)
455 qemu_mod_timer(timer->timer, timer->time + expires);
456 else {
457 timer->val = 0;
458 timer->st = 0;
459 if (timer->it_ena)
460 /* Edge-triggered irq */
461 qemu_irq_pulse(timer->irq);
463 } else
464 qemu_del_timer(timer->timer);
467 static void omap_timer_tick(void *opaque)
469 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
470 omap_timer_sync(timer);
472 if (!timer->ar) {
473 timer->val = 0;
474 timer->st = 0;
477 if (timer->it_ena)
478 /* Edge-triggered irq */
479 qemu_irq_pulse(timer->irq);
480 omap_timer_update(timer);
483 static void omap_timer_clk_update(void *opaque, int line, int on)
485 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
487 omap_timer_sync(timer);
488 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
489 omap_timer_update(timer);
492 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
494 omap_clk_adduser(timer->clk,
495 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
496 timer->rate = omap_clk_getrate(timer->clk);
499 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
501 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
502 int offset = addr - s->base;
504 switch (offset) {
505 case 0x00: /* CNTL_TIMER */
506 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
508 case 0x04: /* LOAD_TIM */
509 break;
511 case 0x08: /* READ_TIM */
512 return omap_timer_read(s);
515 OMAP_BAD_REG(addr);
516 return 0;
519 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
520 uint32_t value)
522 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
523 int offset = addr - s->base;
525 switch (offset) {
526 case 0x00: /* CNTL_TIMER */
527 omap_timer_sync(s);
528 s->enable = (value >> 5) & 1;
529 s->ptv = (value >> 2) & 7;
530 s->ar = (value >> 1) & 1;
531 s->st = value & 1;
532 omap_timer_update(s);
533 return;
535 case 0x04: /* LOAD_TIM */
536 s->reset_val = value;
537 return;
539 case 0x08: /* READ_TIM */
540 OMAP_RO_REG(addr);
541 break;
543 default:
544 OMAP_BAD_REG(addr);
548 static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
549 omap_badwidth_read32,
550 omap_badwidth_read32,
551 omap_mpu_timer_read,
554 static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
555 omap_badwidth_write32,
556 omap_badwidth_write32,
557 omap_mpu_timer_write,
560 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
562 qemu_del_timer(s->timer);
563 s->enable = 0;
564 s->reset_val = 31337;
565 s->val = 0;
566 s->ptv = 0;
567 s->ar = 0;
568 s->st = 0;
569 s->it_ena = 1;
572 struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
573 qemu_irq irq, omap_clk clk)
575 int iomemtype;
576 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
577 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
579 s->irq = irq;
580 s->clk = clk;
581 s->base = base;
582 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
583 omap_mpu_timer_reset(s);
584 omap_timer_clk_setup(s);
586 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
587 omap_mpu_timer_writefn, s);
588 cpu_register_physical_memory(s->base, 0x100, iomemtype);
590 return s;
593 /* Watchdog timer */
594 struct omap_watchdog_timer_s {
595 struct omap_mpu_timer_s timer;
596 uint8_t last_wr;
597 int mode;
598 int free;
599 int reset;
602 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
604 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
605 int offset = addr - s->timer.base;
607 switch (offset) {
608 case 0x00: /* CNTL_TIMER */
609 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
610 (s->timer.st << 7) | (s->free << 1);
612 case 0x04: /* READ_TIMER */
613 return omap_timer_read(&s->timer);
615 case 0x08: /* TIMER_MODE */
616 return s->mode << 15;
619 OMAP_BAD_REG(addr);
620 return 0;
623 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
624 uint32_t value)
626 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
627 int offset = addr - s->timer.base;
629 switch (offset) {
630 case 0x00: /* CNTL_TIMER */
631 omap_timer_sync(&s->timer);
632 s->timer.ptv = (value >> 9) & 7;
633 s->timer.ar = (value >> 8) & 1;
634 s->timer.st = (value >> 7) & 1;
635 s->free = (value >> 1) & 1;
636 omap_timer_update(&s->timer);
637 break;
639 case 0x04: /* LOAD_TIMER */
640 s->timer.reset_val = value & 0xffff;
641 break;
643 case 0x08: /* TIMER_MODE */
644 if (!s->mode && ((value >> 15) & 1))
645 omap_clk_get(s->timer.clk);
646 s->mode |= (value >> 15) & 1;
647 if (s->last_wr == 0xf5) {
648 if ((value & 0xff) == 0xa0) {
649 if (s->mode) {
650 s->mode = 0;
651 omap_clk_put(s->timer.clk);
653 } else {
654 /* XXX: on T|E hardware somehow this has no effect,
655 * on Zire 71 it works as specified. */
656 s->reset = 1;
657 qemu_system_reset_request();
660 s->last_wr = value & 0xff;
661 break;
663 default:
664 OMAP_BAD_REG(addr);
668 static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
669 omap_badwidth_read16,
670 omap_wd_timer_read,
671 omap_badwidth_read16,
674 static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
675 omap_badwidth_write16,
676 omap_wd_timer_write,
677 omap_badwidth_write16,
680 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
682 qemu_del_timer(s->timer.timer);
683 if (!s->mode)
684 omap_clk_get(s->timer.clk);
685 s->mode = 1;
686 s->free = 1;
687 s->reset = 0;
688 s->timer.enable = 1;
689 s->timer.it_ena = 1;
690 s->timer.reset_val = 0xffff;
691 s->timer.val = 0;
692 s->timer.st = 0;
693 s->timer.ptv = 0;
694 s->timer.ar = 0;
695 omap_timer_update(&s->timer);
698 struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
699 qemu_irq irq, omap_clk clk)
701 int iomemtype;
702 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
703 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
705 s->timer.irq = irq;
706 s->timer.clk = clk;
707 s->timer.base = base;
708 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
709 omap_wd_timer_reset(s);
710 omap_timer_clk_setup(&s->timer);
712 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
713 omap_wd_timer_writefn, s);
714 cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
716 return s;
719 /* 32-kHz timer */
720 struct omap_32khz_timer_s {
721 struct omap_mpu_timer_s timer;
724 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
726 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
727 int offset = addr & OMAP_MPUI_REG_MASK;
729 switch (offset) {
730 case 0x00: /* TVR */
731 return s->timer.reset_val;
733 case 0x04: /* TCR */
734 return omap_timer_read(&s->timer);
736 case 0x08: /* CR */
737 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
739 default:
740 break;
742 OMAP_BAD_REG(addr);
743 return 0;
746 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
747 uint32_t value)
749 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
750 int offset = addr & OMAP_MPUI_REG_MASK;
752 switch (offset) {
753 case 0x00: /* TVR */
754 s->timer.reset_val = value & 0x00ffffff;
755 break;
757 case 0x04: /* TCR */
758 OMAP_RO_REG(addr);
759 break;
761 case 0x08: /* CR */
762 s->timer.ar = (value >> 3) & 1;
763 s->timer.it_ena = (value >> 2) & 1;
764 if (s->timer.st != (value & 1) || (value & 2)) {
765 omap_timer_sync(&s->timer);
766 s->timer.enable = value & 1;
767 s->timer.st = value & 1;
768 omap_timer_update(&s->timer);
770 break;
772 default:
773 OMAP_BAD_REG(addr);
777 static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
778 omap_badwidth_read32,
779 omap_badwidth_read32,
780 omap_os_timer_read,
783 static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
784 omap_badwidth_write32,
785 omap_badwidth_write32,
786 omap_os_timer_write,
789 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
791 qemu_del_timer(s->timer.timer);
792 s->timer.enable = 0;
793 s->timer.it_ena = 0;
794 s->timer.reset_val = 0x00ffffff;
795 s->timer.val = 0;
796 s->timer.st = 0;
797 s->timer.ptv = 0;
798 s->timer.ar = 1;
801 struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
802 qemu_irq irq, omap_clk clk)
804 int iomemtype;
805 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
806 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
808 s->timer.irq = irq;
809 s->timer.clk = clk;
810 s->timer.base = base;
811 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
812 omap_os_timer_reset(s);
813 omap_timer_clk_setup(&s->timer);
815 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
816 omap_os_timer_writefn, s);
817 cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
819 return s;
822 /* Ultra Low-Power Device Module */
823 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
825 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
826 int offset = addr - s->ulpd_pm_base;
827 uint16_t ret;
829 switch (offset) {
830 case 0x14: /* IT_STATUS */
831 ret = s->ulpd_pm_regs[offset >> 2];
832 s->ulpd_pm_regs[offset >> 2] = 0;
833 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
834 return ret;
836 case 0x18: /* Reserved */
837 case 0x1c: /* Reserved */
838 case 0x20: /* Reserved */
839 case 0x28: /* Reserved */
840 case 0x2c: /* Reserved */
841 OMAP_BAD_REG(addr);
842 case 0x00: /* COUNTER_32_LSB */
843 case 0x04: /* COUNTER_32_MSB */
844 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
845 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
846 case 0x10: /* GAUGING_CTRL */
847 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
848 case 0x30: /* CLOCK_CTRL */
849 case 0x34: /* SOFT_REQ */
850 case 0x38: /* COUNTER_32_FIQ */
851 case 0x3c: /* DPLL_CTRL */
852 case 0x40: /* STATUS_REQ */
853 /* XXX: check clk::usecount state for every clock */
854 case 0x48: /* LOCL_TIME */
855 case 0x4c: /* APLL_CTRL */
856 case 0x50: /* POWER_CTRL */
857 return s->ulpd_pm_regs[offset >> 2];
860 OMAP_BAD_REG(addr);
861 return 0;
864 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
865 uint16_t diff, uint16_t value)
867 if (diff & (1 << 4)) /* USB_MCLK_EN */
868 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
869 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
870 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
873 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
874 uint16_t diff, uint16_t value)
876 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
877 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
878 if (diff & (1 << 1)) /* SOFT_COM_REQ */
879 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
880 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
881 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
882 if (diff & (1 << 3)) /* SOFT_USB_REQ */
883 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
886 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
887 uint32_t value)
889 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
890 int offset = addr - s->ulpd_pm_base;
891 int64_t now, ticks;
892 int div, mult;
893 static const int bypass_div[4] = { 1, 2, 4, 4 };
894 uint16_t diff;
896 switch (offset) {
897 case 0x00: /* COUNTER_32_LSB */
898 case 0x04: /* COUNTER_32_MSB */
899 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
900 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
901 case 0x14: /* IT_STATUS */
902 case 0x40: /* STATUS_REQ */
903 OMAP_RO_REG(addr);
904 break;
906 case 0x10: /* GAUGING_CTRL */
907 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
908 if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
909 now = qemu_get_clock(vm_clock);
911 if (value & 1)
912 s->ulpd_gauge_start = now;
913 else {
914 now -= s->ulpd_gauge_start;
916 /* 32-kHz ticks */
917 ticks = muldiv64(now, 32768, ticks_per_sec);
918 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
919 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
920 if (ticks >> 32) /* OVERFLOW_32K */
921 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
923 /* High frequency ticks */
924 ticks = muldiv64(now, 12000000, ticks_per_sec);
925 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
926 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
927 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
928 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
930 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
931 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
934 s->ulpd_pm_regs[offset >> 2] = value;
935 break;
937 case 0x18: /* Reserved */
938 case 0x1c: /* Reserved */
939 case 0x20: /* Reserved */
940 case 0x28: /* Reserved */
941 case 0x2c: /* Reserved */
942 OMAP_BAD_REG(addr);
943 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
944 case 0x38: /* COUNTER_32_FIQ */
945 case 0x48: /* LOCL_TIME */
946 case 0x50: /* POWER_CTRL */
947 s->ulpd_pm_regs[offset >> 2] = value;
948 break;
950 case 0x30: /* CLOCK_CTRL */
951 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
952 s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
953 omap_ulpd_clk_update(s, diff, value);
954 break;
956 case 0x34: /* SOFT_REQ */
957 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
958 s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
959 omap_ulpd_req_update(s, diff, value);
960 break;
962 case 0x3c: /* DPLL_CTRL */
963 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
964 * omitted altogether, probably a typo. */
965 /* This register has identical semantics with DPLL(1:3) control
966 * registers, see omap_dpll_write() */
967 diff = s->ulpd_pm_regs[offset >> 2] & value;
968 s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
969 if (diff & (0x3ff << 2)) {
970 if (value & (1 << 4)) { /* PLL_ENABLE */
971 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
972 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
973 } else {
974 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
975 mult = 1;
977 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
980 /* Enter the desired mode. */
981 s->ulpd_pm_regs[offset >> 2] =
982 (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
983 ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
985 /* Act as if the lock is restored. */
986 s->ulpd_pm_regs[offset >> 2] |= 2;
987 break;
989 case 0x4c: /* APLL_CTRL */
990 diff = s->ulpd_pm_regs[offset >> 2] & value;
991 s->ulpd_pm_regs[offset >> 2] = value & 0xf;
992 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
993 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
994 (value & (1 << 0)) ? "apll" : "dpll4"));
995 break;
997 default:
998 OMAP_BAD_REG(addr);
1002 static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1003 omap_badwidth_read16,
1004 omap_ulpd_pm_read,
1005 omap_badwidth_read16,
1008 static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1009 omap_badwidth_write16,
1010 omap_ulpd_pm_write,
1011 omap_badwidth_write16,
1014 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1016 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1017 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1018 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1019 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1020 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1021 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1022 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1023 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1024 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1025 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1026 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1027 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1028 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1029 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1030 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1031 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1032 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1033 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1034 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1035 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1036 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1037 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1038 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1041 static void omap_ulpd_pm_init(target_phys_addr_t base,
1042 struct omap_mpu_state_s *mpu)
1044 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1045 omap_ulpd_pm_writefn, mpu);
1047 mpu->ulpd_pm_base = base;
1048 cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1049 omap_ulpd_pm_reset(mpu);
1052 /* OMAP Pin Configuration */
1053 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1055 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1056 int offset = addr - s->pin_cfg_base;
1058 switch (offset) {
1059 case 0x00: /* FUNC_MUX_CTRL_0 */
1060 case 0x04: /* FUNC_MUX_CTRL_1 */
1061 case 0x08: /* FUNC_MUX_CTRL_2 */
1062 return s->func_mux_ctrl[offset >> 2];
1064 case 0x0c: /* COMP_MODE_CTRL_0 */
1065 return s->comp_mode_ctrl[0];
1067 case 0x10: /* FUNC_MUX_CTRL_3 */
1068 case 0x14: /* FUNC_MUX_CTRL_4 */
1069 case 0x18: /* FUNC_MUX_CTRL_5 */
1070 case 0x1c: /* FUNC_MUX_CTRL_6 */
1071 case 0x20: /* FUNC_MUX_CTRL_7 */
1072 case 0x24: /* FUNC_MUX_CTRL_8 */
1073 case 0x28: /* FUNC_MUX_CTRL_9 */
1074 case 0x2c: /* FUNC_MUX_CTRL_A */
1075 case 0x30: /* FUNC_MUX_CTRL_B */
1076 case 0x34: /* FUNC_MUX_CTRL_C */
1077 case 0x38: /* FUNC_MUX_CTRL_D */
1078 return s->func_mux_ctrl[(offset >> 2) - 1];
1080 case 0x40: /* PULL_DWN_CTRL_0 */
1081 case 0x44: /* PULL_DWN_CTRL_1 */
1082 case 0x48: /* PULL_DWN_CTRL_2 */
1083 case 0x4c: /* PULL_DWN_CTRL_3 */
1084 return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1086 case 0x50: /* GATE_INH_CTRL_0 */
1087 return s->gate_inh_ctrl[0];
1089 case 0x60: /* VOLTAGE_CTRL_0 */
1090 return s->voltage_ctrl[0];
1092 case 0x70: /* TEST_DBG_CTRL_0 */
1093 return s->test_dbg_ctrl[0];
1095 case 0x80: /* MOD_CONF_CTRL_0 */
1096 return s->mod_conf_ctrl[0];
1099 OMAP_BAD_REG(addr);
1100 return 0;
1103 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1104 uint32_t diff, uint32_t value)
1106 if (s->compat1509) {
1107 if (diff & (1 << 9)) /* BLUETOOTH */
1108 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1109 (~value >> 9) & 1);
1110 if (diff & (1 << 7)) /* USB.CLKO */
1111 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1112 (value >> 7) & 1);
1116 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1117 uint32_t diff, uint32_t value)
1119 if (s->compat1509) {
1120 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1121 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1122 (value >> 31) & 1);
1123 if (diff & (1 << 1)) /* CLK32K */
1124 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1125 (~value >> 1) & 1);
1129 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1130 uint32_t diff, uint32_t value)
1132 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1133 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1134 omap_findclk(s, ((value >> 31) & 1) ?
1135 "ck_48m" : "armper_ck"));
1136 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1137 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1138 omap_findclk(s, ((value >> 30) & 1) ?
1139 "ck_48m" : "armper_ck"));
1140 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1141 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1142 omap_findclk(s, ((value >> 29) & 1) ?
1143 "ck_48m" : "armper_ck"));
1144 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1145 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1146 omap_findclk(s, ((value >> 23) & 1) ?
1147 "ck_48m" : "armper_ck"));
1148 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1149 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1150 omap_findclk(s, ((value >> 12) & 1) ?
1151 "ck_48m" : "armper_ck"));
1152 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1153 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1156 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1157 uint32_t value)
1159 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1160 int offset = addr - s->pin_cfg_base;
1161 uint32_t diff;
1163 switch (offset) {
1164 case 0x00: /* FUNC_MUX_CTRL_0 */
1165 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1166 s->func_mux_ctrl[offset >> 2] = value;
1167 omap_pin_funcmux0_update(s, diff, value);
1168 return;
1170 case 0x04: /* FUNC_MUX_CTRL_1 */
1171 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1172 s->func_mux_ctrl[offset >> 2] = value;
1173 omap_pin_funcmux1_update(s, diff, value);
1174 return;
1176 case 0x08: /* FUNC_MUX_CTRL_2 */
1177 s->func_mux_ctrl[offset >> 2] = value;
1178 return;
1180 case 0x0c: /* COMP_MODE_CTRL_0 */
1181 s->comp_mode_ctrl[0] = value;
1182 s->compat1509 = (value != 0x0000eaef);
1183 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1184 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1185 return;
1187 case 0x10: /* FUNC_MUX_CTRL_3 */
1188 case 0x14: /* FUNC_MUX_CTRL_4 */
1189 case 0x18: /* FUNC_MUX_CTRL_5 */
1190 case 0x1c: /* FUNC_MUX_CTRL_6 */
1191 case 0x20: /* FUNC_MUX_CTRL_7 */
1192 case 0x24: /* FUNC_MUX_CTRL_8 */
1193 case 0x28: /* FUNC_MUX_CTRL_9 */
1194 case 0x2c: /* FUNC_MUX_CTRL_A */
1195 case 0x30: /* FUNC_MUX_CTRL_B */
1196 case 0x34: /* FUNC_MUX_CTRL_C */
1197 case 0x38: /* FUNC_MUX_CTRL_D */
1198 s->func_mux_ctrl[(offset >> 2) - 1] = value;
1199 return;
1201 case 0x40: /* PULL_DWN_CTRL_0 */
1202 case 0x44: /* PULL_DWN_CTRL_1 */
1203 case 0x48: /* PULL_DWN_CTRL_2 */
1204 case 0x4c: /* PULL_DWN_CTRL_3 */
1205 s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1206 return;
1208 case 0x50: /* GATE_INH_CTRL_0 */
1209 s->gate_inh_ctrl[0] = value;
1210 return;
1212 case 0x60: /* VOLTAGE_CTRL_0 */
1213 s->voltage_ctrl[0] = value;
1214 return;
1216 case 0x70: /* TEST_DBG_CTRL_0 */
1217 s->test_dbg_ctrl[0] = value;
1218 return;
1220 case 0x80: /* MOD_CONF_CTRL_0 */
1221 diff = s->mod_conf_ctrl[0] ^ value;
1222 s->mod_conf_ctrl[0] = value;
1223 omap_pin_modconf1_update(s, diff, value);
1224 return;
1226 default:
1227 OMAP_BAD_REG(addr);
1231 static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1232 omap_badwidth_read32,
1233 omap_badwidth_read32,
1234 omap_pin_cfg_read,
1237 static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1238 omap_badwidth_write32,
1239 omap_badwidth_write32,
1240 omap_pin_cfg_write,
1243 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1245 /* Start in Compatibility Mode. */
1246 mpu->compat1509 = 1;
1247 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1248 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1249 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1250 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1251 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1252 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1253 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1254 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1255 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1256 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1259 static void omap_pin_cfg_init(target_phys_addr_t base,
1260 struct omap_mpu_state_s *mpu)
1262 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1263 omap_pin_cfg_writefn, mpu);
1265 mpu->pin_cfg_base = base;
1266 cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1267 omap_pin_cfg_reset(mpu);
1270 /* Device Identification, Die Identification */
1271 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1273 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1275 switch (addr) {
1276 case 0xfffe1800: /* DIE_ID_LSB */
1277 return 0xc9581f0e;
1278 case 0xfffe1804: /* DIE_ID_MSB */
1279 return 0xa8858bfa;
1281 case 0xfffe2000: /* PRODUCT_ID_LSB */
1282 return 0x00aaaafc;
1283 case 0xfffe2004: /* PRODUCT_ID_MSB */
1284 return 0xcafeb574;
1286 case 0xfffed400: /* JTAG_ID_LSB */
1287 switch (s->mpu_model) {
1288 case omap310:
1289 return 0x03310315;
1290 case omap1510:
1291 return 0x03310115;
1293 break;
1295 case 0xfffed404: /* JTAG_ID_MSB */
1296 switch (s->mpu_model) {
1297 case omap310:
1298 return 0xfb57402f;
1299 case omap1510:
1300 return 0xfb47002f;
1302 break;
1305 OMAP_BAD_REG(addr);
1306 return 0;
1309 static void omap_id_write(void *opaque, target_phys_addr_t addr,
1310 uint32_t value)
1312 OMAP_BAD_REG(addr);
1315 static CPUReadMemoryFunc *omap_id_readfn[] = {
1316 omap_badwidth_read32,
1317 omap_badwidth_read32,
1318 omap_id_read,
1321 static CPUWriteMemoryFunc *omap_id_writefn[] = {
1322 omap_badwidth_write32,
1323 omap_badwidth_write32,
1324 omap_id_write,
1327 static void omap_id_init(struct omap_mpu_state_s *mpu)
1329 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1330 omap_id_writefn, mpu);
1331 cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
1332 cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
1333 if (!cpu_is_omap15xx(mpu))
1334 cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
1337 /* MPUI Control (Dummy) */
1338 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1340 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1341 int offset = addr - s->mpui_base;
1343 switch (offset) {
1344 case 0x00: /* CTRL */
1345 return s->mpui_ctrl;
1346 case 0x04: /* DEBUG_ADDR */
1347 return 0x01ffffff;
1348 case 0x08: /* DEBUG_DATA */
1349 return 0xffffffff;
1350 case 0x0c: /* DEBUG_FLAG */
1351 return 0x00000800;
1352 case 0x10: /* STATUS */
1353 return 0x00000000;
1355 /* Not in OMAP310 */
1356 case 0x14: /* DSP_STATUS */
1357 case 0x18: /* DSP_BOOT_CONFIG */
1358 return 0x00000000;
1359 case 0x1c: /* DSP_MPUI_CONFIG */
1360 return 0x0000ffff;
1363 OMAP_BAD_REG(addr);
1364 return 0;
1367 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1368 uint32_t value)
1370 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1371 int offset = addr - s->mpui_base;
1373 switch (offset) {
1374 case 0x00: /* CTRL */
1375 s->mpui_ctrl = value & 0x007fffff;
1376 break;
1378 case 0x04: /* DEBUG_ADDR */
1379 case 0x08: /* DEBUG_DATA */
1380 case 0x0c: /* DEBUG_FLAG */
1381 case 0x10: /* STATUS */
1382 /* Not in OMAP310 */
1383 case 0x14: /* DSP_STATUS */
1384 OMAP_RO_REG(addr);
1385 case 0x18: /* DSP_BOOT_CONFIG */
1386 case 0x1c: /* DSP_MPUI_CONFIG */
1387 break;
1389 default:
1390 OMAP_BAD_REG(addr);
1394 static CPUReadMemoryFunc *omap_mpui_readfn[] = {
1395 omap_badwidth_read32,
1396 omap_badwidth_read32,
1397 omap_mpui_read,
1400 static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
1401 omap_badwidth_write32,
1402 omap_badwidth_write32,
1403 omap_mpui_write,
1406 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1408 s->mpui_ctrl = 0x0003ff1b;
1411 static void omap_mpui_init(target_phys_addr_t base,
1412 struct omap_mpu_state_s *mpu)
1414 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
1415 omap_mpui_writefn, mpu);
1417 mpu->mpui_base = base;
1418 cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
1420 omap_mpui_reset(mpu);
1423 /* TIPB Bridges */
1424 struct omap_tipb_bridge_s {
1425 target_phys_addr_t base;
1426 qemu_irq abort;
1428 int width_intr;
1429 uint16_t control;
1430 uint16_t alloc;
1431 uint16_t buffer;
1432 uint16_t enh_control;
1435 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1437 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1438 int offset = addr - s->base;
1440 switch (offset) {
1441 case 0x00: /* TIPB_CNTL */
1442 return s->control;
1443 case 0x04: /* TIPB_BUS_ALLOC */
1444 return s->alloc;
1445 case 0x08: /* MPU_TIPB_CNTL */
1446 return s->buffer;
1447 case 0x0c: /* ENHANCED_TIPB_CNTL */
1448 return s->enh_control;
1449 case 0x10: /* ADDRESS_DBG */
1450 case 0x14: /* DATA_DEBUG_LOW */
1451 case 0x18: /* DATA_DEBUG_HIGH */
1452 return 0xffff;
1453 case 0x1c: /* DEBUG_CNTR_SIG */
1454 return 0x00f8;
1457 OMAP_BAD_REG(addr);
1458 return 0;
1461 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1462 uint32_t value)
1464 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1465 int offset = addr - s->base;
1467 switch (offset) {
1468 case 0x00: /* TIPB_CNTL */
1469 s->control = value & 0xffff;
1470 break;
1472 case 0x04: /* TIPB_BUS_ALLOC */
1473 s->alloc = value & 0x003f;
1474 break;
1476 case 0x08: /* MPU_TIPB_CNTL */
1477 s->buffer = value & 0x0003;
1478 break;
1480 case 0x0c: /* ENHANCED_TIPB_CNTL */
1481 s->width_intr = !(value & 2);
1482 s->enh_control = value & 0x000f;
1483 break;
1485 case 0x10: /* ADDRESS_DBG */
1486 case 0x14: /* DATA_DEBUG_LOW */
1487 case 0x18: /* DATA_DEBUG_HIGH */
1488 case 0x1c: /* DEBUG_CNTR_SIG */
1489 OMAP_RO_REG(addr);
1490 break;
1492 default:
1493 OMAP_BAD_REG(addr);
1497 static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
1498 omap_badwidth_read16,
1499 omap_tipb_bridge_read,
1500 omap_tipb_bridge_read,
1503 static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
1504 omap_badwidth_write16,
1505 omap_tipb_bridge_write,
1506 omap_tipb_bridge_write,
1509 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1511 s->control = 0xffff;
1512 s->alloc = 0x0009;
1513 s->buffer = 0x0000;
1514 s->enh_control = 0x000f;
1517 struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1518 qemu_irq abort_irq, omap_clk clk)
1520 int iomemtype;
1521 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1522 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1524 s->abort = abort_irq;
1525 s->base = base;
1526 omap_tipb_bridge_reset(s);
1528 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
1529 omap_tipb_bridge_writefn, s);
1530 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1532 return s;
1535 /* Dummy Traffic Controller's Memory Interface */
1536 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1538 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1539 int offset = addr - s->tcmi_base;
1540 uint32_t ret;
1542 switch (offset) {
1543 case 0x00: /* IMIF_PRIO */
1544 case 0x04: /* EMIFS_PRIO */
1545 case 0x08: /* EMIFF_PRIO */
1546 case 0x0c: /* EMIFS_CONFIG */
1547 case 0x10: /* EMIFS_CS0_CONFIG */
1548 case 0x14: /* EMIFS_CS1_CONFIG */
1549 case 0x18: /* EMIFS_CS2_CONFIG */
1550 case 0x1c: /* EMIFS_CS3_CONFIG */
1551 case 0x24: /* EMIFF_MRS */
1552 case 0x28: /* TIMEOUT1 */
1553 case 0x2c: /* TIMEOUT2 */
1554 case 0x30: /* TIMEOUT3 */
1555 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1556 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1557 return s->tcmi_regs[offset >> 2];
1559 case 0x20: /* EMIFF_SDRAM_CONFIG */
1560 ret = s->tcmi_regs[offset >> 2];
1561 s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1562 /* XXX: We can try using the VGA_DIRTY flag for this */
1563 return ret;
1566 OMAP_BAD_REG(addr);
1567 return 0;
1570 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1571 uint32_t value)
1573 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1574 int offset = addr - s->tcmi_base;
1576 switch (offset) {
1577 case 0x00: /* IMIF_PRIO */
1578 case 0x04: /* EMIFS_PRIO */
1579 case 0x08: /* EMIFF_PRIO */
1580 case 0x10: /* EMIFS_CS0_CONFIG */
1581 case 0x14: /* EMIFS_CS1_CONFIG */
1582 case 0x18: /* EMIFS_CS2_CONFIG */
1583 case 0x1c: /* EMIFS_CS3_CONFIG */
1584 case 0x20: /* EMIFF_SDRAM_CONFIG */
1585 case 0x24: /* EMIFF_MRS */
1586 case 0x28: /* TIMEOUT1 */
1587 case 0x2c: /* TIMEOUT2 */
1588 case 0x30: /* TIMEOUT3 */
1589 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1590 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1591 s->tcmi_regs[offset >> 2] = value;
1592 break;
1593 case 0x0c: /* EMIFS_CONFIG */
1594 s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
1595 break;
1597 default:
1598 OMAP_BAD_REG(addr);
1602 static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
1603 omap_badwidth_read32,
1604 omap_badwidth_read32,
1605 omap_tcmi_read,
1608 static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
1609 omap_badwidth_write32,
1610 omap_badwidth_write32,
1611 omap_tcmi_write,
1614 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1616 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1617 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1618 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1619 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1620 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1621 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1622 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1623 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1624 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1625 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1626 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1627 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1628 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1629 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1630 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1633 static void omap_tcmi_init(target_phys_addr_t base,
1634 struct omap_mpu_state_s *mpu)
1636 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
1637 omap_tcmi_writefn, mpu);
1639 mpu->tcmi_base = base;
1640 cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
1641 omap_tcmi_reset(mpu);
1644 /* Digital phase-locked loops control */
1645 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1647 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1648 int offset = addr - s->base;
1650 if (offset == 0x00) /* CTL_REG */
1651 return s->mode;
1653 OMAP_BAD_REG(addr);
1654 return 0;
1657 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1658 uint32_t value)
1660 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1661 uint16_t diff;
1662 int offset = addr - s->base;
1663 static const int bypass_div[4] = { 1, 2, 4, 4 };
1664 int div, mult;
1666 if (offset == 0x00) { /* CTL_REG */
1667 /* See omap_ulpd_pm_write() too */
1668 diff = s->mode & value;
1669 s->mode = value & 0x2fff;
1670 if (diff & (0x3ff << 2)) {
1671 if (value & (1 << 4)) { /* PLL_ENABLE */
1672 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1673 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1674 } else {
1675 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1676 mult = 1;
1678 omap_clk_setrate(s->dpll, div, mult);
1681 /* Enter the desired mode. */
1682 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1684 /* Act as if the lock is restored. */
1685 s->mode |= 2;
1686 } else {
1687 OMAP_BAD_REG(addr);
1691 static CPUReadMemoryFunc *omap_dpll_readfn[] = {
1692 omap_badwidth_read16,
1693 omap_dpll_read,
1694 omap_badwidth_read16,
1697 static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
1698 omap_badwidth_write16,
1699 omap_dpll_write,
1700 omap_badwidth_write16,
1703 static void omap_dpll_reset(struct dpll_ctl_s *s)
1705 s->mode = 0x2002;
1706 omap_clk_setrate(s->dpll, 1, 1);
1709 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1710 omap_clk clk)
1712 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
1713 omap_dpll_writefn, s);
1715 s->base = base;
1716 s->dpll = clk;
1717 omap_dpll_reset(s);
1719 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1722 /* UARTs */
1723 struct omap_uart_s {
1724 SerialState *serial; /* TODO */
1727 static void omap_uart_reset(struct omap_uart_s *s)
1731 struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
1732 qemu_irq irq, omap_clk clk, CharDriverState *chr)
1734 struct omap_uart_s *s = (struct omap_uart_s *)
1735 qemu_mallocz(sizeof(struct omap_uart_s));
1736 if (chr)
1737 s->serial = serial_mm_init(base, 2, irq, chr, 1);
1738 return s;
1741 /* MPU Clock/Reset/Power Mode Control */
1742 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
1744 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1745 int offset = addr - s->clkm.mpu_base;
1747 switch (offset) {
1748 case 0x00: /* ARM_CKCTL */
1749 return s->clkm.arm_ckctl;
1751 case 0x04: /* ARM_IDLECT1 */
1752 return s->clkm.arm_idlect1;
1754 case 0x08: /* ARM_IDLECT2 */
1755 return s->clkm.arm_idlect2;
1757 case 0x0c: /* ARM_EWUPCT */
1758 return s->clkm.arm_ewupct;
1760 case 0x10: /* ARM_RSTCT1 */
1761 return s->clkm.arm_rstct1;
1763 case 0x14: /* ARM_RSTCT2 */
1764 return s->clkm.arm_rstct2;
1766 case 0x18: /* ARM_SYSST */
1767 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1769 case 0x1c: /* ARM_CKOUT1 */
1770 return s->clkm.arm_ckout1;
1772 case 0x20: /* ARM_CKOUT2 */
1773 break;
1776 OMAP_BAD_REG(addr);
1777 return 0;
1780 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1781 uint16_t diff, uint16_t value)
1783 omap_clk clk;
1785 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1786 if (value & (1 << 14))
1787 /* Reserved */;
1788 else {
1789 clk = omap_findclk(s, "arminth_ck");
1790 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1793 if (diff & (1 << 12)) { /* ARM_TIMXO */
1794 clk = omap_findclk(s, "armtim_ck");
1795 if (value & (1 << 12))
1796 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1797 else
1798 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1800 /* XXX: en_dspck */
1801 if (diff & (3 << 10)) { /* DSPMMUDIV */
1802 clk = omap_findclk(s, "dspmmu_ck");
1803 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1805 if (diff & (3 << 8)) { /* TCDIV */
1806 clk = omap_findclk(s, "tc_ck");
1807 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1809 if (diff & (3 << 6)) { /* DSPDIV */
1810 clk = omap_findclk(s, "dsp_ck");
1811 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1813 if (diff & (3 << 4)) { /* ARMDIV */
1814 clk = omap_findclk(s, "arm_ck");
1815 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1817 if (diff & (3 << 2)) { /* LCDDIV */
1818 clk = omap_findclk(s, "lcd_ck");
1819 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1821 if (diff & (3 << 0)) { /* PERDIV */
1822 clk = omap_findclk(s, "armper_ck");
1823 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1827 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1828 uint16_t diff, uint16_t value)
1830 omap_clk clk;
1832 if (value & (1 << 11)) /* SETARM_IDLE */
1833 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
1834 if (!(value & (1 << 10))) /* WKUP_MODE */
1835 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1837 #define SET_CANIDLE(clock, bit) \
1838 if (diff & (1 << bit)) { \
1839 clk = omap_findclk(s, clock); \
1840 omap_clk_canidle(clk, (value >> bit) & 1); \
1842 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1843 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1844 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1845 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1846 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1847 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1848 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1849 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1850 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1851 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1852 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1853 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1854 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1855 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1858 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1859 uint16_t diff, uint16_t value)
1861 omap_clk clk;
1863 #define SET_ONOFF(clock, bit) \
1864 if (diff & (1 << bit)) { \
1865 clk = omap_findclk(s, clock); \
1866 omap_clk_onoff(clk, (value >> bit) & 1); \
1868 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1869 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1870 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1871 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1872 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1873 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1874 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1875 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1876 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1877 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1878 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1881 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1882 uint16_t diff, uint16_t value)
1884 omap_clk clk;
1886 if (diff & (3 << 4)) { /* TCLKOUT */
1887 clk = omap_findclk(s, "tclk_out");
1888 switch ((value >> 4) & 3) {
1889 case 1:
1890 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1891 omap_clk_onoff(clk, 1);
1892 break;
1893 case 2:
1894 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1895 omap_clk_onoff(clk, 1);
1896 break;
1897 default:
1898 omap_clk_onoff(clk, 0);
1901 if (diff & (3 << 2)) { /* DCLKOUT */
1902 clk = omap_findclk(s, "dclk_out");
1903 switch ((value >> 2) & 3) {
1904 case 0:
1905 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1906 break;
1907 case 1:
1908 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1909 break;
1910 case 2:
1911 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1912 break;
1913 case 3:
1914 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1915 break;
1918 if (diff & (3 << 0)) { /* ACLKOUT */
1919 clk = omap_findclk(s, "aclk_out");
1920 switch ((value >> 0) & 3) {
1921 case 1:
1922 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1923 omap_clk_onoff(clk, 1);
1924 break;
1925 case 2:
1926 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1927 omap_clk_onoff(clk, 1);
1928 break;
1929 case 3:
1930 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1931 omap_clk_onoff(clk, 1);
1932 break;
1933 default:
1934 omap_clk_onoff(clk, 0);
1939 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
1940 uint32_t value)
1942 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1943 int offset = addr - s->clkm.mpu_base;
1944 uint16_t diff;
1945 omap_clk clk;
1946 static const char *clkschemename[8] = {
1947 "fully synchronous", "fully asynchronous", "synchronous scalable",
1948 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1951 switch (offset) {
1952 case 0x00: /* ARM_CKCTL */
1953 diff = s->clkm.arm_ckctl ^ value;
1954 s->clkm.arm_ckctl = value & 0x7fff;
1955 omap_clkm_ckctl_update(s, diff, value);
1956 return;
1958 case 0x04: /* ARM_IDLECT1 */
1959 diff = s->clkm.arm_idlect1 ^ value;
1960 s->clkm.arm_idlect1 = value & 0x0fff;
1961 omap_clkm_idlect1_update(s, diff, value);
1962 return;
1964 case 0x08: /* ARM_IDLECT2 */
1965 diff = s->clkm.arm_idlect2 ^ value;
1966 s->clkm.arm_idlect2 = value & 0x07ff;
1967 omap_clkm_idlect2_update(s, diff, value);
1968 return;
1970 case 0x0c: /* ARM_EWUPCT */
1971 diff = s->clkm.arm_ewupct ^ value;
1972 s->clkm.arm_ewupct = value & 0x003f;
1973 return;
1975 case 0x10: /* ARM_RSTCT1 */
1976 diff = s->clkm.arm_rstct1 ^ value;
1977 s->clkm.arm_rstct1 = value & 0x0007;
1978 if (value & 9) {
1979 qemu_system_reset_request();
1980 s->clkm.cold_start = 0xa;
1982 if (diff & ~value & 4) { /* DSP_RST */
1983 omap_mpui_reset(s);
1984 omap_tipb_bridge_reset(s->private_tipb);
1985 omap_tipb_bridge_reset(s->public_tipb);
1987 if (diff & 2) { /* DSP_EN */
1988 clk = omap_findclk(s, "dsp_ck");
1989 omap_clk_canidle(clk, (~value >> 1) & 1);
1991 return;
1993 case 0x14: /* ARM_RSTCT2 */
1994 s->clkm.arm_rstct2 = value & 0x0001;
1995 return;
1997 case 0x18: /* ARM_SYSST */
1998 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1999 s->clkm.clocking_scheme = (value >> 11) & 7;
2000 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2001 clkschemename[s->clkm.clocking_scheme]);
2003 s->clkm.cold_start &= value & 0x3f;
2004 return;
2006 case 0x1c: /* ARM_CKOUT1 */
2007 diff = s->clkm.arm_ckout1 ^ value;
2008 s->clkm.arm_ckout1 = value & 0x003f;
2009 omap_clkm_ckout1_update(s, diff, value);
2010 return;
2012 case 0x20: /* ARM_CKOUT2 */
2013 default:
2014 OMAP_BAD_REG(addr);
2018 static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2019 omap_badwidth_read16,
2020 omap_clkm_read,
2021 omap_badwidth_read16,
2024 static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2025 omap_badwidth_write16,
2026 omap_clkm_write,
2027 omap_badwidth_write16,
2030 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2032 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2033 int offset = addr - s->clkm.dsp_base;
2035 switch (offset) {
2036 case 0x04: /* DSP_IDLECT1 */
2037 return s->clkm.dsp_idlect1;
2039 case 0x08: /* DSP_IDLECT2 */
2040 return s->clkm.dsp_idlect2;
2042 case 0x14: /* DSP_RSTCT2 */
2043 return s->clkm.dsp_rstct2;
2045 case 0x18: /* DSP_SYSST */
2046 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2047 (s->env->halted << 6); /* Quite useless... */
2050 OMAP_BAD_REG(addr);
2051 return 0;
2054 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2055 uint16_t diff, uint16_t value)
2057 omap_clk clk;
2059 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2062 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2063 uint16_t diff, uint16_t value)
2065 omap_clk clk;
2067 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2070 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2071 uint32_t value)
2073 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2074 int offset = addr - s->clkm.dsp_base;
2075 uint16_t diff;
2077 switch (offset) {
2078 case 0x04: /* DSP_IDLECT1 */
2079 diff = s->clkm.dsp_idlect1 ^ value;
2080 s->clkm.dsp_idlect1 = value & 0x01f7;
2081 omap_clkdsp_idlect1_update(s, diff, value);
2082 break;
2084 case 0x08: /* DSP_IDLECT2 */
2085 s->clkm.dsp_idlect2 = value & 0x0037;
2086 diff = s->clkm.dsp_idlect1 ^ value;
2087 omap_clkdsp_idlect2_update(s, diff, value);
2088 break;
2090 case 0x14: /* DSP_RSTCT2 */
2091 s->clkm.dsp_rstct2 = value & 0x0001;
2092 break;
2094 case 0x18: /* DSP_SYSST */
2095 s->clkm.cold_start &= value & 0x3f;
2096 break;
2098 default:
2099 OMAP_BAD_REG(addr);
2103 static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2104 omap_badwidth_read16,
2105 omap_clkdsp_read,
2106 omap_badwidth_read16,
2109 static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2110 omap_badwidth_write16,
2111 omap_clkdsp_write,
2112 omap_badwidth_write16,
2115 static void omap_clkm_reset(struct omap_mpu_state_s *s)
2117 if (s->wdt && s->wdt->reset)
2118 s->clkm.cold_start = 0x6;
2119 s->clkm.clocking_scheme = 0;
2120 omap_clkm_ckctl_update(s, ~0, 0x3000);
2121 s->clkm.arm_ckctl = 0x3000;
2122 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2123 s->clkm.arm_idlect1 = 0x0400;
2124 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2125 s->clkm.arm_idlect2 = 0x0100;
2126 s->clkm.arm_ewupct = 0x003f;
2127 s->clkm.arm_rstct1 = 0x0000;
2128 s->clkm.arm_rstct2 = 0x0000;
2129 s->clkm.arm_ckout1 = 0x0015;
2130 s->clkm.dpll1_mode = 0x2002;
2131 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2132 s->clkm.dsp_idlect1 = 0x0040;
2133 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2134 s->clkm.dsp_idlect2 = 0x0000;
2135 s->clkm.dsp_rstct2 = 0x0000;
2138 static void omap_clkm_init(target_phys_addr_t mpu_base,
2139 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2141 int iomemtype[2] = {
2142 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2143 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2146 s->clkm.mpu_base = mpu_base;
2147 s->clkm.dsp_base = dsp_base;
2148 s->clkm.arm_idlect1 = 0x03ff;
2149 s->clkm.arm_idlect2 = 0x0100;
2150 s->clkm.dsp_idlect1 = 0x0002;
2151 omap_clkm_reset(s);
2152 s->clkm.cold_start = 0x3a;
2154 cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2155 cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2158 /* MPU I/O */
2159 struct omap_mpuio_s {
2160 target_phys_addr_t base;
2161 qemu_irq irq;
2162 qemu_irq kbd_irq;
2163 qemu_irq *in;
2164 qemu_irq handler[16];
2165 qemu_irq wakeup;
2167 uint16_t inputs;
2168 uint16_t outputs;
2169 uint16_t dir;
2170 uint16_t edge;
2171 uint16_t mask;
2172 uint16_t ints;
2174 uint16_t debounce;
2175 uint16_t latch;
2176 uint8_t event;
2178 uint8_t buttons[5];
2179 uint8_t row_latch;
2180 uint8_t cols;
2181 int kbd_mask;
2182 int clk;
2185 static void omap_mpuio_set(void *opaque, int line, int level)
2187 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2188 uint16_t prev = s->inputs;
2190 if (level)
2191 s->inputs |= 1 << line;
2192 else
2193 s->inputs &= ~(1 << line);
2195 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2196 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2197 s->ints |= 1 << line;
2198 qemu_irq_raise(s->irq);
2199 /* TODO: wakeup */
2201 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2202 (s->event >> 1) == line) /* PIN_SELECT */
2203 s->latch = s->inputs;
2207 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2209 int i;
2210 uint8_t *row, rows = 0, cols = ~s->cols;
2212 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2213 if (*row & cols)
2214 rows |= i;
2216 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2217 s->row_latch = ~rows;
2220 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2222 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2223 int offset = addr & OMAP_MPUI_REG_MASK;
2224 uint16_t ret;
2226 switch (offset) {
2227 case 0x00: /* INPUT_LATCH */
2228 return s->inputs;
2230 case 0x04: /* OUTPUT_REG */
2231 return s->outputs;
2233 case 0x08: /* IO_CNTL */
2234 return s->dir;
2236 case 0x10: /* KBR_LATCH */
2237 return s->row_latch;
2239 case 0x14: /* KBC_REG */
2240 return s->cols;
2242 case 0x18: /* GPIO_EVENT_MODE_REG */
2243 return s->event;
2245 case 0x1c: /* GPIO_INT_EDGE_REG */
2246 return s->edge;
2248 case 0x20: /* KBD_INT */
2249 return (~s->row_latch & 0x1f) && !s->kbd_mask;
2251 case 0x24: /* GPIO_INT */
2252 ret = s->ints;
2253 s->ints &= s->mask;
2254 if (ret)
2255 qemu_irq_lower(s->irq);
2256 return ret;
2258 case 0x28: /* KBD_MASKIT */
2259 return s->kbd_mask;
2261 case 0x2c: /* GPIO_MASKIT */
2262 return s->mask;
2264 case 0x30: /* GPIO_DEBOUNCING_REG */
2265 return s->debounce;
2267 case 0x34: /* GPIO_LATCH_REG */
2268 return s->latch;
2271 OMAP_BAD_REG(addr);
2272 return 0;
2275 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2276 uint32_t value)
2278 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2279 int offset = addr & OMAP_MPUI_REG_MASK;
2280 uint16_t diff;
2281 int ln;
2283 switch (offset) {
2284 case 0x04: /* OUTPUT_REG */
2285 diff = (s->outputs ^ value) & ~s->dir;
2286 s->outputs = value;
2287 while ((ln = ffs(diff))) {
2288 ln --;
2289 if (s->handler[ln])
2290 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2291 diff &= ~(1 << ln);
2293 break;
2295 case 0x08: /* IO_CNTL */
2296 diff = s->outputs & (s->dir ^ value);
2297 s->dir = value;
2299 value = s->outputs & ~s->dir;
2300 while ((ln = ffs(diff))) {
2301 ln --;
2302 if (s->handler[ln])
2303 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2304 diff &= ~(1 << ln);
2306 break;
2308 case 0x14: /* KBC_REG */
2309 s->cols = value;
2310 omap_mpuio_kbd_update(s);
2311 break;
2313 case 0x18: /* GPIO_EVENT_MODE_REG */
2314 s->event = value & 0x1f;
2315 break;
2317 case 0x1c: /* GPIO_INT_EDGE_REG */
2318 s->edge = value;
2319 break;
2321 case 0x28: /* KBD_MASKIT */
2322 s->kbd_mask = value & 1;
2323 omap_mpuio_kbd_update(s);
2324 break;
2326 case 0x2c: /* GPIO_MASKIT */
2327 s->mask = value;
2328 break;
2330 case 0x30: /* GPIO_DEBOUNCING_REG */
2331 s->debounce = value & 0x1ff;
2332 break;
2334 case 0x00: /* INPUT_LATCH */
2335 case 0x10: /* KBR_LATCH */
2336 case 0x20: /* KBD_INT */
2337 case 0x24: /* GPIO_INT */
2338 case 0x34: /* GPIO_LATCH_REG */
2339 OMAP_RO_REG(addr);
2340 return;
2342 default:
2343 OMAP_BAD_REG(addr);
2344 return;
2348 static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2349 omap_badwidth_read16,
2350 omap_mpuio_read,
2351 omap_badwidth_read16,
2354 static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2355 omap_badwidth_write16,
2356 omap_mpuio_write,
2357 omap_badwidth_write16,
2360 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2362 s->inputs = 0;
2363 s->outputs = 0;
2364 s->dir = ~0;
2365 s->event = 0;
2366 s->edge = 0;
2367 s->kbd_mask = 0;
2368 s->mask = 0;
2369 s->debounce = 0;
2370 s->latch = 0;
2371 s->ints = 0;
2372 s->row_latch = 0x1f;
2373 s->clk = 1;
2376 static void omap_mpuio_onoff(void *opaque, int line, int on)
2378 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2380 s->clk = on;
2381 if (on)
2382 omap_mpuio_kbd_update(s);
2385 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2386 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2387 omap_clk clk)
2389 int iomemtype;
2390 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2391 qemu_mallocz(sizeof(struct omap_mpuio_s));
2393 s->base = base;
2394 s->irq = gpio_int;
2395 s->kbd_irq = kbd_int;
2396 s->wakeup = wakeup;
2397 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2398 omap_mpuio_reset(s);
2400 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
2401 omap_mpuio_writefn, s);
2402 cpu_register_physical_memory(s->base, 0x800, iomemtype);
2404 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2406 return s;
2409 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2411 return s->in;
2414 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2416 if (line >= 16 || line < 0)
2417 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2418 s->handler[line] = handler;
2421 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2423 if (row >= 5 || row < 0)
2424 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
2425 __FUNCTION__, col, row);
2427 if (down)
2428 s->buttons[row] |= 1 << col;
2429 else
2430 s->buttons[row] &= ~(1 << col);
2432 omap_mpuio_kbd_update(s);
2435 /* General-Purpose I/O */
2436 struct omap_gpio_s {
2437 target_phys_addr_t base;
2438 qemu_irq irq;
2439 qemu_irq *in;
2440 qemu_irq handler[16];
2442 uint16_t inputs;
2443 uint16_t outputs;
2444 uint16_t dir;
2445 uint16_t edge;
2446 uint16_t mask;
2447 uint16_t ints;
2448 uint16_t pins;
2451 static void omap_gpio_set(void *opaque, int line, int level)
2453 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2454 uint16_t prev = s->inputs;
2456 if (level)
2457 s->inputs |= 1 << line;
2458 else
2459 s->inputs &= ~(1 << line);
2461 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2462 (1 << line) & s->dir & ~s->mask) {
2463 s->ints |= 1 << line;
2464 qemu_irq_raise(s->irq);
2468 static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2470 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2471 int offset = addr & OMAP_MPUI_REG_MASK;
2473 switch (offset) {
2474 case 0x00: /* DATA_INPUT */
2475 return s->inputs & s->pins;
2477 case 0x04: /* DATA_OUTPUT */
2478 return s->outputs;
2480 case 0x08: /* DIRECTION_CONTROL */
2481 return s->dir;
2483 case 0x0c: /* INTERRUPT_CONTROL */
2484 return s->edge;
2486 case 0x10: /* INTERRUPT_MASK */
2487 return s->mask;
2489 case 0x14: /* INTERRUPT_STATUS */
2490 return s->ints;
2492 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2493 OMAP_BAD_REG(addr);
2494 return s->pins;
2497 OMAP_BAD_REG(addr);
2498 return 0;
2501 static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2502 uint32_t value)
2504 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2505 int offset = addr & OMAP_MPUI_REG_MASK;
2506 uint16_t diff;
2507 int ln;
2509 switch (offset) {
2510 case 0x00: /* DATA_INPUT */
2511 OMAP_RO_REG(addr);
2512 return;
2514 case 0x04: /* DATA_OUTPUT */
2515 diff = (s->outputs ^ value) & ~s->dir;
2516 s->outputs = value;
2517 while ((ln = ffs(diff))) {
2518 ln --;
2519 if (s->handler[ln])
2520 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2521 diff &= ~(1 << ln);
2523 break;
2525 case 0x08: /* DIRECTION_CONTROL */
2526 diff = s->outputs & (s->dir ^ value);
2527 s->dir = value;
2529 value = s->outputs & ~s->dir;
2530 while ((ln = ffs(diff))) {
2531 ln --;
2532 if (s->handler[ln])
2533 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2534 diff &= ~(1 << ln);
2536 break;
2538 case 0x0c: /* INTERRUPT_CONTROL */
2539 s->edge = value;
2540 break;
2542 case 0x10: /* INTERRUPT_MASK */
2543 s->mask = value;
2544 break;
2546 case 0x14: /* INTERRUPT_STATUS */
2547 s->ints &= ~value;
2548 if (!s->ints)
2549 qemu_irq_lower(s->irq);
2550 break;
2552 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2553 OMAP_BAD_REG(addr);
2554 s->pins = value;
2555 break;
2557 default:
2558 OMAP_BAD_REG(addr);
2559 return;
2563 /* *Some* sources say the memory region is 32-bit. */
2564 static CPUReadMemoryFunc *omap_gpio_readfn[] = {
2565 omap_badwidth_read16,
2566 omap_gpio_read,
2567 omap_badwidth_read16,
2570 static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
2571 omap_badwidth_write16,
2572 omap_gpio_write,
2573 omap_badwidth_write16,
2576 static void omap_gpio_reset(struct omap_gpio_s *s)
2578 s->inputs = 0;
2579 s->outputs = ~0;
2580 s->dir = ~0;
2581 s->edge = ~0;
2582 s->mask = ~0;
2583 s->ints = 0;
2584 s->pins = ~0;
2587 struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2588 qemu_irq irq, omap_clk clk)
2590 int iomemtype;
2591 struct omap_gpio_s *s = (struct omap_gpio_s *)
2592 qemu_mallocz(sizeof(struct omap_gpio_s));
2594 s->base = base;
2595 s->irq = irq;
2596 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2597 omap_gpio_reset(s);
2599 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
2600 omap_gpio_writefn, s);
2601 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
2603 return s;
2606 qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2608 return s->in;
2611 void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
2613 if (line >= 16 || line < 0)
2614 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2615 s->handler[line] = handler;
2618 /* MicroWire Interface */
2619 struct omap_uwire_s {
2620 target_phys_addr_t base;
2621 qemu_irq txirq;
2622 qemu_irq rxirq;
2623 qemu_irq txdrq;
2625 uint16_t txbuf;
2626 uint16_t rxbuf;
2627 uint16_t control;
2628 uint16_t setup[5];
2630 struct uwire_slave_s *chip[4];
2633 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2635 int chipselect = (s->control >> 10) & 3; /* INDEX */
2636 struct uwire_slave_s *slave = s->chip[chipselect];
2638 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2639 if (s->control & (1 << 12)) /* CS_CMD */
2640 if (slave && slave->send)
2641 slave->send(slave->opaque,
2642 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2643 s->control &= ~(1 << 14); /* CSRB */
2644 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2645 * a DRQ. When is the level IRQ supposed to be reset? */
2648 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2649 if (s->control & (1 << 12)) /* CS_CMD */
2650 if (slave && slave->receive)
2651 s->rxbuf = slave->receive(slave->opaque);
2652 s->control |= 1 << 15; /* RDRB */
2653 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2654 * a DRQ. When is the level IRQ supposed to be reset? */
2658 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
2660 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2661 int offset = addr & OMAP_MPUI_REG_MASK;
2663 switch (offset) {
2664 case 0x00: /* RDR */
2665 s->control &= ~(1 << 15); /* RDRB */
2666 return s->rxbuf;
2668 case 0x04: /* CSR */
2669 return s->control;
2671 case 0x08: /* SR1 */
2672 return s->setup[0];
2673 case 0x0c: /* SR2 */
2674 return s->setup[1];
2675 case 0x10: /* SR3 */
2676 return s->setup[2];
2677 case 0x14: /* SR4 */
2678 return s->setup[3];
2679 case 0x18: /* SR5 */
2680 return s->setup[4];
2683 OMAP_BAD_REG(addr);
2684 return 0;
2687 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
2688 uint32_t value)
2690 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2691 int offset = addr & OMAP_MPUI_REG_MASK;
2693 switch (offset) {
2694 case 0x00: /* TDR */
2695 s->txbuf = value; /* TD */
2696 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2697 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2698 (s->control & (1 << 12)))) { /* CS_CMD */
2699 s->control |= 1 << 14; /* CSRB */
2700 omap_uwire_transfer_start(s);
2702 break;
2704 case 0x04: /* CSR */
2705 s->control = value & 0x1fff;
2706 if (value & (1 << 13)) /* START */
2707 omap_uwire_transfer_start(s);
2708 break;
2710 case 0x08: /* SR1 */
2711 s->setup[0] = value & 0x003f;
2712 break;
2714 case 0x0c: /* SR2 */
2715 s->setup[1] = value & 0x0fc0;
2716 break;
2718 case 0x10: /* SR3 */
2719 s->setup[2] = value & 0x0003;
2720 break;
2722 case 0x14: /* SR4 */
2723 s->setup[3] = value & 0x0001;
2724 break;
2726 case 0x18: /* SR5 */
2727 s->setup[4] = value & 0x000f;
2728 break;
2730 default:
2731 OMAP_BAD_REG(addr);
2732 return;
2736 static CPUReadMemoryFunc *omap_uwire_readfn[] = {
2737 omap_badwidth_read16,
2738 omap_uwire_read,
2739 omap_badwidth_read16,
2742 static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
2743 omap_badwidth_write16,
2744 omap_uwire_write,
2745 omap_badwidth_write16,
2748 static void omap_uwire_reset(struct omap_uwire_s *s)
2750 s->control = 0;
2751 s->setup[0] = 0;
2752 s->setup[1] = 0;
2753 s->setup[2] = 0;
2754 s->setup[3] = 0;
2755 s->setup[4] = 0;
2758 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
2759 qemu_irq *irq, qemu_irq dma, omap_clk clk)
2761 int iomemtype;
2762 struct omap_uwire_s *s = (struct omap_uwire_s *)
2763 qemu_mallocz(sizeof(struct omap_uwire_s));
2765 s->base = base;
2766 s->txirq = irq[0];
2767 s->rxirq = irq[1];
2768 s->txdrq = dma;
2769 omap_uwire_reset(s);
2771 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
2772 omap_uwire_writefn, s);
2773 cpu_register_physical_memory(s->base, 0x800, iomemtype);
2775 return s;
2778 void omap_uwire_attach(struct omap_uwire_s *s,
2779 struct uwire_slave_s *slave, int chipselect)
2781 if (chipselect < 0 || chipselect > 3)
2782 cpu_abort(cpu_single_env, "%s: Bad chipselect %i\n", __FUNCTION__,
2783 chipselect);
2785 s->chip[chipselect] = slave;
2788 /* Pseudonoise Pulse-Width Light Modulator */
2789 static void omap_pwl_update(struct omap_mpu_state_s *s)
2791 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
2793 if (output != s->pwl.output) {
2794 s->pwl.output = output;
2795 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2799 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
2801 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2802 int offset = addr & OMAP_MPUI_REG_MASK;
2804 switch (offset) {
2805 case 0x00: /* PWL_LEVEL */
2806 return s->pwl.level;
2807 case 0x04: /* PWL_CTRL */
2808 return s->pwl.enable;
2810 OMAP_BAD_REG(addr);
2811 return 0;
2814 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
2815 uint32_t value)
2817 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2818 int offset = addr & OMAP_MPUI_REG_MASK;
2820 switch (offset) {
2821 case 0x00: /* PWL_LEVEL */
2822 s->pwl.level = value;
2823 omap_pwl_update(s);
2824 break;
2825 case 0x04: /* PWL_CTRL */
2826 s->pwl.enable = value & 1;
2827 omap_pwl_update(s);
2828 break;
2829 default:
2830 OMAP_BAD_REG(addr);
2831 return;
2835 static CPUReadMemoryFunc *omap_pwl_readfn[] = {
2836 omap_pwl_read,
2837 omap_badwidth_read8,
2838 omap_badwidth_read8,
2841 static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
2842 omap_pwl_write,
2843 omap_badwidth_write8,
2844 omap_badwidth_write8,
2847 static void omap_pwl_reset(struct omap_mpu_state_s *s)
2849 s->pwl.output = 0;
2850 s->pwl.level = 0;
2851 s->pwl.enable = 0;
2852 s->pwl.clk = 1;
2853 omap_pwl_update(s);
2856 static void omap_pwl_clk_update(void *opaque, int line, int on)
2858 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2860 s->pwl.clk = on;
2861 omap_pwl_update(s);
2864 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2865 omap_clk clk)
2867 int iomemtype;
2869 omap_pwl_reset(s);
2871 iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
2872 omap_pwl_writefn, s);
2873 cpu_register_physical_memory(base, 0x800, iomemtype);
2875 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2878 /* Pulse-Width Tone module */
2879 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
2881 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2882 int offset = addr & OMAP_MPUI_REG_MASK;
2884 switch (offset) {
2885 case 0x00: /* FRC */
2886 return s->pwt.frc;
2887 case 0x04: /* VCR */
2888 return s->pwt.vrc;
2889 case 0x08: /* GCR */
2890 return s->pwt.gcr;
2892 OMAP_BAD_REG(addr);
2893 return 0;
2896 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
2897 uint32_t value)
2899 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2900 int offset = addr & OMAP_MPUI_REG_MASK;
2902 switch (offset) {
2903 case 0x00: /* FRC */
2904 s->pwt.frc = value & 0x3f;
2905 break;
2906 case 0x04: /* VRC */
2907 if ((value ^ s->pwt.vrc) & 1) {
2908 if (value & 1)
2909 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2910 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2911 ((omap_clk_getrate(s->pwt.clk) >> 3) /
2912 /* Pre-multiplexer divider */
2913 ((s->pwt.gcr & 2) ? 1 : 154) /
2914 /* Octave multiplexer */
2915 (2 << (value & 3)) *
2916 /* 101/107 divider */
2917 ((value & (1 << 2)) ? 101 : 107) *
2918 /* 49/55 divider */
2919 ((value & (1 << 3)) ? 49 : 55) *
2920 /* 50/63 divider */
2921 ((value & (1 << 4)) ? 50 : 63) *
2922 /* 80/127 divider */
2923 ((value & (1 << 5)) ? 80 : 127) /
2924 (107 * 55 * 63 * 127)));
2925 else
2926 printf("%s: silence!\n", __FUNCTION__);
2928 s->pwt.vrc = value & 0x7f;
2929 break;
2930 case 0x08: /* GCR */
2931 s->pwt.gcr = value & 3;
2932 break;
2933 default:
2934 OMAP_BAD_REG(addr);
2935 return;
2939 static CPUReadMemoryFunc *omap_pwt_readfn[] = {
2940 omap_pwt_read,
2941 omap_badwidth_read8,
2942 omap_badwidth_read8,
2945 static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
2946 omap_pwt_write,
2947 omap_badwidth_write8,
2948 omap_badwidth_write8,
2951 static void omap_pwt_reset(struct omap_mpu_state_s *s)
2953 s->pwt.frc = 0;
2954 s->pwt.vrc = 0;
2955 s->pwt.gcr = 0;
2958 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2959 omap_clk clk)
2961 int iomemtype;
2963 s->pwt.clk = clk;
2964 omap_pwt_reset(s);
2966 iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
2967 omap_pwt_writefn, s);
2968 cpu_register_physical_memory(base, 0x800, iomemtype);
2971 /* Real-time Clock module */
2972 struct omap_rtc_s {
2973 target_phys_addr_t base;
2974 qemu_irq irq;
2975 qemu_irq alarm;
2976 QEMUTimer *clk;
2978 uint8_t interrupts;
2979 uint8_t status;
2980 int16_t comp_reg;
2981 int running;
2982 int pm_am;
2983 int auto_comp;
2984 int round;
2985 struct tm alarm_tm;
2986 time_t alarm_ti;
2988 struct tm current_tm;
2989 time_t ti;
2990 uint64_t tick;
2993 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2995 /* s->alarm is level-triggered */
2996 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2999 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3001 s->alarm_ti = mktime(&s->alarm_tm);
3002 if (s->alarm_ti == -1)
3003 printf("%s: conversion failed\n", __FUNCTION__);
3006 static inline uint8_t omap_rtc_bcd(int num)
3008 return ((num / 10) << 4) | (num % 10);
3011 static inline int omap_rtc_bin(uint8_t num)
3013 return (num & 15) + 10 * (num >> 4);
3016 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3018 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3019 int offset = addr & OMAP_MPUI_REG_MASK;
3020 uint8_t i;
3022 switch (offset) {
3023 case 0x00: /* SECONDS_REG */
3024 return omap_rtc_bcd(s->current_tm.tm_sec);
3026 case 0x04: /* MINUTES_REG */
3027 return omap_rtc_bcd(s->current_tm.tm_min);
3029 case 0x08: /* HOURS_REG */
3030 if (s->pm_am)
3031 return ((s->current_tm.tm_hour > 11) << 7) |
3032 omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3033 else
3034 return omap_rtc_bcd(s->current_tm.tm_hour);
3036 case 0x0c: /* DAYS_REG */
3037 return omap_rtc_bcd(s->current_tm.tm_mday);
3039 case 0x10: /* MONTHS_REG */
3040 return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3042 case 0x14: /* YEARS_REG */
3043 return omap_rtc_bcd(s->current_tm.tm_year % 100);
3045 case 0x18: /* WEEK_REG */
3046 return s->current_tm.tm_wday;
3048 case 0x20: /* ALARM_SECONDS_REG */
3049 return omap_rtc_bcd(s->alarm_tm.tm_sec);
3051 case 0x24: /* ALARM_MINUTES_REG */
3052 return omap_rtc_bcd(s->alarm_tm.tm_min);
3054 case 0x28: /* ALARM_HOURS_REG */
3055 if (s->pm_am)
3056 return ((s->alarm_tm.tm_hour > 11) << 7) |
3057 omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3058 else
3059 return omap_rtc_bcd(s->alarm_tm.tm_hour);
3061 case 0x2c: /* ALARM_DAYS_REG */
3062 return omap_rtc_bcd(s->alarm_tm.tm_mday);
3064 case 0x30: /* ALARM_MONTHS_REG */
3065 return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3067 case 0x34: /* ALARM_YEARS_REG */
3068 return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3070 case 0x40: /* RTC_CTRL_REG */
3071 return (s->pm_am << 3) | (s->auto_comp << 2) |
3072 (s->round << 1) | s->running;
3074 case 0x44: /* RTC_STATUS_REG */
3075 i = s->status;
3076 s->status &= ~0x3d;
3077 return i;
3079 case 0x48: /* RTC_INTERRUPTS_REG */
3080 return s->interrupts;
3082 case 0x4c: /* RTC_COMP_LSB_REG */
3083 return ((uint16_t) s->comp_reg) & 0xff;
3085 case 0x50: /* RTC_COMP_MSB_REG */
3086 return ((uint16_t) s->comp_reg) >> 8;
3089 OMAP_BAD_REG(addr);
3090 return 0;
3093 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3094 uint32_t value)
3096 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3097 int offset = addr & OMAP_MPUI_REG_MASK;
3098 struct tm new_tm;
3099 time_t ti[2];
3101 switch (offset) {
3102 case 0x00: /* SECONDS_REG */
3103 #if ALMDEBUG
3104 printf("RTC SEC_REG <-- %02x\n", value);
3105 #endif
3106 s->ti -= s->current_tm.tm_sec;
3107 s->ti += omap_rtc_bin(value);
3108 return;
3110 case 0x04: /* MINUTES_REG */
3111 #if ALMDEBUG
3112 printf("RTC MIN_REG <-- %02x\n", value);
3113 #endif
3114 s->ti -= s->current_tm.tm_min * 60;
3115 s->ti += omap_rtc_bin(value) * 60;
3116 return;
3118 case 0x08: /* HOURS_REG */
3119 #if ALMDEBUG
3120 printf("RTC HRS_REG <-- %02x\n", value);
3121 #endif
3122 s->ti -= s->current_tm.tm_hour * 3600;
3123 if (s->pm_am) {
3124 s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3125 s->ti += ((value >> 7) & 1) * 43200;
3126 } else
3127 s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3128 return;
3130 case 0x0c: /* DAYS_REG */
3131 #if ALMDEBUG
3132 printf("RTC DAY_REG <-- %02x\n", value);
3133 #endif
3134 s->ti -= s->current_tm.tm_mday * 86400;
3135 s->ti += omap_rtc_bin(value) * 86400;
3136 return;
3138 case 0x10: /* MONTHS_REG */
3139 #if ALMDEBUG
3140 printf("RTC MTH_REG <-- %02x\n", value);
3141 #endif
3142 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3143 new_tm.tm_mon = omap_rtc_bin(value);
3144 ti[0] = mktime(&s->current_tm);
3145 ti[1] = mktime(&new_tm);
3147 if (ti[0] != -1 && ti[1] != -1) {
3148 s->ti -= ti[0];
3149 s->ti += ti[1];
3150 } else {
3151 /* A less accurate version */
3152 s->ti -= s->current_tm.tm_mon * 2592000;
3153 s->ti += omap_rtc_bin(value) * 2592000;
3155 return;
3157 case 0x14: /* YEARS_REG */
3158 #if ALMDEBUG
3159 printf("RTC YRS_REG <-- %02x\n", value);
3160 #endif
3161 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3162 new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3163 ti[0] = mktime(&s->current_tm);
3164 ti[1] = mktime(&new_tm);
3166 if (ti[0] != -1 && ti[1] != -1) {
3167 s->ti -= ti[0];
3168 s->ti += ti[1];
3169 } else {
3170 /* A less accurate version */
3171 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3172 s->ti += omap_rtc_bin(value) * 31536000;
3174 return;
3176 case 0x18: /* WEEK_REG */
3177 return; /* Ignored */
3179 case 0x20: /* ALARM_SECONDS_REG */
3180 #if ALMDEBUG
3181 printf("ALM SEC_REG <-- %02x\n", value);
3182 #endif
3183 s->alarm_tm.tm_sec = omap_rtc_bin(value);
3184 omap_rtc_alarm_update(s);
3185 return;
3187 case 0x24: /* ALARM_MINUTES_REG */
3188 #if ALMDEBUG
3189 printf("ALM MIN_REG <-- %02x\n", value);
3190 #endif
3191 s->alarm_tm.tm_min = omap_rtc_bin(value);
3192 omap_rtc_alarm_update(s);
3193 return;
3195 case 0x28: /* ALARM_HOURS_REG */
3196 #if ALMDEBUG
3197 printf("ALM HRS_REG <-- %02x\n", value);
3198 #endif
3199 if (s->pm_am)
3200 s->alarm_tm.tm_hour =
3201 ((omap_rtc_bin(value & 0x3f)) % 12) +
3202 ((value >> 7) & 1) * 12;
3203 else
3204 s->alarm_tm.tm_hour = omap_rtc_bin(value);
3205 omap_rtc_alarm_update(s);
3206 return;
3208 case 0x2c: /* ALARM_DAYS_REG */
3209 #if ALMDEBUG
3210 printf("ALM DAY_REG <-- %02x\n", value);
3211 #endif
3212 s->alarm_tm.tm_mday = omap_rtc_bin(value);
3213 omap_rtc_alarm_update(s);
3214 return;
3216 case 0x30: /* ALARM_MONTHS_REG */
3217 #if ALMDEBUG
3218 printf("ALM MON_REG <-- %02x\n", value);
3219 #endif
3220 s->alarm_tm.tm_mon = omap_rtc_bin(value);
3221 omap_rtc_alarm_update(s);
3222 return;
3224 case 0x34: /* ALARM_YEARS_REG */
3225 #if ALMDEBUG
3226 printf("ALM YRS_REG <-- %02x\n", value);
3227 #endif
3228 s->alarm_tm.tm_year = omap_rtc_bin(value);
3229 omap_rtc_alarm_update(s);
3230 return;
3232 case 0x40: /* RTC_CTRL_REG */
3233 #if ALMDEBUG
3234 printf("RTC CONTROL <-- %02x\n", value);
3235 #endif
3236 s->pm_am = (value >> 3) & 1;
3237 s->auto_comp = (value >> 2) & 1;
3238 s->round = (value >> 1) & 1;
3239 s->running = value & 1;
3240 s->status &= 0xfd;
3241 s->status |= s->running << 1;
3242 return;
3244 case 0x44: /* RTC_STATUS_REG */
3245 #if ALMDEBUG
3246 printf("RTC STATUSL <-- %02x\n", value);
3247 #endif
3248 s->status &= ~((value & 0xc0) ^ 0x80);
3249 omap_rtc_interrupts_update(s);
3250 return;
3252 case 0x48: /* RTC_INTERRUPTS_REG */
3253 #if ALMDEBUG
3254 printf("RTC INTRS <-- %02x\n", value);
3255 #endif
3256 s->interrupts = value;
3257 return;
3259 case 0x4c: /* RTC_COMP_LSB_REG */
3260 #if ALMDEBUG
3261 printf("RTC COMPLSB <-- %02x\n", value);
3262 #endif
3263 s->comp_reg &= 0xff00;
3264 s->comp_reg |= 0x00ff & value;
3265 return;
3267 case 0x50: /* RTC_COMP_MSB_REG */
3268 #if ALMDEBUG
3269 printf("RTC COMPMSB <-- %02x\n", value);
3270 #endif
3271 s->comp_reg &= 0x00ff;
3272 s->comp_reg |= 0xff00 & (value << 8);
3273 return;
3275 default:
3276 OMAP_BAD_REG(addr);
3277 return;
3281 static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3282 omap_rtc_read,
3283 omap_badwidth_read8,
3284 omap_badwidth_read8,
3287 static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3288 omap_rtc_write,
3289 omap_badwidth_write8,
3290 omap_badwidth_write8,
3293 static void omap_rtc_tick(void *opaque)
3295 struct omap_rtc_s *s = opaque;
3297 if (s->round) {
3298 /* Round to nearest full minute. */
3299 if (s->current_tm.tm_sec < 30)
3300 s->ti -= s->current_tm.tm_sec;
3301 else
3302 s->ti += 60 - s->current_tm.tm_sec;
3304 s->round = 0;
3307 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3309 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3310 s->status |= 0x40;
3311 omap_rtc_interrupts_update(s);
3314 if (s->interrupts & 0x04)
3315 switch (s->interrupts & 3) {
3316 case 0:
3317 s->status |= 0x04;
3318 qemu_irq_pulse(s->irq);
3319 break;
3320 case 1:
3321 if (s->current_tm.tm_sec)
3322 break;
3323 s->status |= 0x08;
3324 qemu_irq_pulse(s->irq);
3325 break;
3326 case 2:
3327 if (s->current_tm.tm_sec || s->current_tm.tm_min)
3328 break;
3329 s->status |= 0x10;
3330 qemu_irq_pulse(s->irq);
3331 break;
3332 case 3:
3333 if (s->current_tm.tm_sec ||
3334 s->current_tm.tm_min || s->current_tm.tm_hour)
3335 break;
3336 s->status |= 0x20;
3337 qemu_irq_pulse(s->irq);
3338 break;
3341 /* Move on */
3342 if (s->running)
3343 s->ti ++;
3344 s->tick += 1000;
3347 * Every full hour add a rough approximation of the compensation
3348 * register to the 32kHz Timer (which drives the RTC) value.
3350 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3351 s->tick += s->comp_reg * 1000 / 32768;
3353 qemu_mod_timer(s->clk, s->tick);
3356 static void omap_rtc_reset(struct omap_rtc_s *s)
3358 struct tm tm;
3360 s->interrupts = 0;
3361 s->comp_reg = 0;
3362 s->running = 0;
3363 s->pm_am = 0;
3364 s->auto_comp = 0;
3365 s->round = 0;
3366 s->tick = qemu_get_clock(rt_clock);
3367 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3368 s->alarm_tm.tm_mday = 0x01;
3369 s->status = 1 << 7;
3370 qemu_get_timedate(&tm, 0);
3371 s->ti = mktime(&tm);
3373 omap_rtc_alarm_update(s);
3374 omap_rtc_tick(s);
3377 struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3378 qemu_irq *irq, omap_clk clk)
3380 int iomemtype;
3381 struct omap_rtc_s *s = (struct omap_rtc_s *)
3382 qemu_mallocz(sizeof(struct omap_rtc_s));
3384 s->base = base;
3385 s->irq = irq[0];
3386 s->alarm = irq[1];
3387 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3389 omap_rtc_reset(s);
3391 iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
3392 omap_rtc_writefn, s);
3393 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3395 return s;
3398 /* Multi-channel Buffered Serial Port interfaces */
3399 struct omap_mcbsp_s {
3400 target_phys_addr_t base;
3401 qemu_irq txirq;
3402 qemu_irq rxirq;
3403 qemu_irq txdrq;
3404 qemu_irq rxdrq;
3406 uint16_t spcr[2];
3407 uint16_t rcr[2];
3408 uint16_t xcr[2];
3409 uint16_t srgr[2];
3410 uint16_t mcr[2];
3411 uint16_t pcr;
3412 uint16_t rcer[8];
3413 uint16_t xcer[8];
3414 int tx_rate;
3415 int rx_rate;
3416 int tx_req;
3417 int rx_req;
3419 struct i2s_codec_s *codec;
3420 QEMUTimer *source_timer;
3421 QEMUTimer *sink_timer;
3424 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3426 int irq;
3428 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
3429 case 0:
3430 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
3431 break;
3432 case 3:
3433 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3434 break;
3435 default:
3436 irq = 0;
3437 break;
3440 if (irq)
3441 qemu_irq_pulse(s->rxirq);
3443 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3444 case 0:
3445 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3446 break;
3447 case 3:
3448 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3449 break;
3450 default:
3451 irq = 0;
3452 break;
3455 if (irq)
3456 qemu_irq_pulse(s->txirq);
3459 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3461 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3462 s->spcr[0] |= 1 << 2; /* RFULL */
3463 s->spcr[0] |= 1 << 1; /* RRDY */
3464 qemu_irq_raise(s->rxdrq);
3465 omap_mcbsp_intr_update(s);
3468 static void omap_mcbsp_source_tick(void *opaque)
3470 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3471 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3473 if (!s->rx_rate)
3474 return;
3475 if (s->rx_req)
3476 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3478 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3480 omap_mcbsp_rx_newdata(s);
3481 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3484 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3486 if (!s->codec || !s->codec->rts)
3487 omap_mcbsp_source_tick(s);
3488 else if (s->codec->in.len) {
3489 s->rx_req = s->codec->in.len;
3490 omap_mcbsp_rx_newdata(s);
3494 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3496 qemu_del_timer(s->source_timer);
3499 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3501 s->spcr[0] &= ~(1 << 1); /* RRDY */
3502 qemu_irq_lower(s->rxdrq);
3503 omap_mcbsp_intr_update(s);
3506 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3508 s->spcr[1] |= 1 << 1; /* XRDY */
3509 qemu_irq_raise(s->txdrq);
3510 omap_mcbsp_intr_update(s);
3513 static void omap_mcbsp_sink_tick(void *opaque)
3515 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3516 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3518 if (!s->tx_rate)
3519 return;
3520 if (s->tx_req)
3521 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3523 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3525 omap_mcbsp_tx_newdata(s);
3526 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3529 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3531 if (!s->codec || !s->codec->cts)
3532 omap_mcbsp_sink_tick(s);
3533 else if (s->codec->out.size) {
3534 s->tx_req = s->codec->out.size;
3535 omap_mcbsp_tx_newdata(s);
3539 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3541 s->spcr[1] &= ~(1 << 1); /* XRDY */
3542 qemu_irq_lower(s->txdrq);
3543 omap_mcbsp_intr_update(s);
3544 if (s->codec && s->codec->cts)
3545 s->codec->tx_swallow(s->codec->opaque);
3548 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3550 s->tx_req = 0;
3551 omap_mcbsp_tx_done(s);
3552 qemu_del_timer(s->sink_timer);
3555 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3557 int prev_rx_rate, prev_tx_rate;
3558 int rx_rate = 0, tx_rate = 0;
3559 int cpu_rate = 1500000; /* XXX */
3561 /* TODO: check CLKSTP bit */
3562 if (s->spcr[1] & (1 << 6)) { /* GRST */
3563 if (s->spcr[0] & (1 << 0)) { /* RRST */
3564 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3565 (s->pcr & (1 << 8))) { /* CLKRM */
3566 if (~s->pcr & (1 << 7)) /* SCLKME */
3567 rx_rate = cpu_rate /
3568 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3569 } else
3570 if (s->codec)
3571 rx_rate = s->codec->rx_rate;
3574 if (s->spcr[1] & (1 << 0)) { /* XRST */
3575 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3576 (s->pcr & (1 << 9))) { /* CLKXM */
3577 if (~s->pcr & (1 << 7)) /* SCLKME */
3578 tx_rate = cpu_rate /
3579 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3580 } else
3581 if (s->codec)
3582 tx_rate = s->codec->tx_rate;
3585 prev_tx_rate = s->tx_rate;
3586 prev_rx_rate = s->rx_rate;
3587 s->tx_rate = tx_rate;
3588 s->rx_rate = rx_rate;
3590 if (s->codec)
3591 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3593 if (!prev_tx_rate && tx_rate)
3594 omap_mcbsp_tx_start(s);
3595 else if (s->tx_rate && !tx_rate)
3596 omap_mcbsp_tx_stop(s);
3598 if (!prev_rx_rate && rx_rate)
3599 omap_mcbsp_rx_start(s);
3600 else if (prev_tx_rate && !tx_rate)
3601 omap_mcbsp_rx_stop(s);
3604 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3606 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3607 int offset = addr & OMAP_MPUI_REG_MASK;
3608 uint16_t ret;
3610 switch (offset) {
3611 case 0x00: /* DRR2 */
3612 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3613 return 0x0000;
3614 /* Fall through. */
3615 case 0x02: /* DRR1 */
3616 if (s->rx_req < 2) {
3617 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3618 omap_mcbsp_rx_done(s);
3619 } else {
3620 s->tx_req -= 2;
3621 if (s->codec && s->codec->in.len >= 2) {
3622 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3623 ret |= s->codec->in.fifo[s->codec->in.start ++];
3624 s->codec->in.len -= 2;
3625 } else
3626 ret = 0x0000;
3627 if (!s->tx_req)
3628 omap_mcbsp_rx_done(s);
3629 return ret;
3631 return 0x0000;
3633 case 0x04: /* DXR2 */
3634 case 0x06: /* DXR1 */
3635 return 0x0000;
3637 case 0x08: /* SPCR2 */
3638 return s->spcr[1];
3639 case 0x0a: /* SPCR1 */
3640 return s->spcr[0];
3641 case 0x0c: /* RCR2 */
3642 return s->rcr[1];
3643 case 0x0e: /* RCR1 */
3644 return s->rcr[0];
3645 case 0x10: /* XCR2 */
3646 return s->xcr[1];
3647 case 0x12: /* XCR1 */
3648 return s->xcr[0];
3649 case 0x14: /* SRGR2 */
3650 return s->srgr[1];
3651 case 0x16: /* SRGR1 */
3652 return s->srgr[0];
3653 case 0x18: /* MCR2 */
3654 return s->mcr[1];
3655 case 0x1a: /* MCR1 */
3656 return s->mcr[0];
3657 case 0x1c: /* RCERA */
3658 return s->rcer[0];
3659 case 0x1e: /* RCERB */
3660 return s->rcer[1];
3661 case 0x20: /* XCERA */
3662 return s->xcer[0];
3663 case 0x22: /* XCERB */
3664 return s->xcer[1];
3665 case 0x24: /* PCR0 */
3666 return s->pcr;
3667 case 0x26: /* RCERC */
3668 return s->rcer[2];
3669 case 0x28: /* RCERD */
3670 return s->rcer[3];
3671 case 0x2a: /* XCERC */
3672 return s->xcer[2];
3673 case 0x2c: /* XCERD */
3674 return s->xcer[3];
3675 case 0x2e: /* RCERE */
3676 return s->rcer[4];
3677 case 0x30: /* RCERF */
3678 return s->rcer[5];
3679 case 0x32: /* XCERE */
3680 return s->xcer[4];
3681 case 0x34: /* XCERF */
3682 return s->xcer[5];
3683 case 0x36: /* RCERG */
3684 return s->rcer[6];
3685 case 0x38: /* RCERH */
3686 return s->rcer[7];
3687 case 0x3a: /* XCERG */
3688 return s->xcer[6];
3689 case 0x3c: /* XCERH */
3690 return s->xcer[7];
3693 OMAP_BAD_REG(addr);
3694 return 0;
3697 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
3698 uint32_t value)
3700 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3701 int offset = addr & OMAP_MPUI_REG_MASK;
3703 switch (offset) {
3704 case 0x00: /* DRR2 */
3705 case 0x02: /* DRR1 */
3706 OMAP_RO_REG(addr);
3707 return;
3709 case 0x04: /* DXR2 */
3710 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3711 return;
3712 /* Fall through. */
3713 case 0x06: /* DXR1 */
3714 if (s->tx_req > 1) {
3715 s->tx_req -= 2;
3716 if (s->codec && s->codec->cts) {
3717 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3718 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3720 if (s->tx_req < 2)
3721 omap_mcbsp_tx_done(s);
3722 } else
3723 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3724 return;
3726 case 0x08: /* SPCR2 */
3727 s->spcr[1] &= 0x0002;
3728 s->spcr[1] |= 0x03f9 & value;
3729 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3730 if (~value & 1) /* XRST */
3731 s->spcr[1] &= ~6;
3732 omap_mcbsp_req_update(s);
3733 return;
3734 case 0x0a: /* SPCR1 */
3735 s->spcr[0] &= 0x0006;
3736 s->spcr[0] |= 0xf8f9 & value;
3737 if (value & (1 << 15)) /* DLB */
3738 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3739 if (~value & 1) { /* RRST */
3740 s->spcr[0] &= ~6;
3741 s->rx_req = 0;
3742 omap_mcbsp_rx_done(s);
3744 omap_mcbsp_req_update(s);
3745 return;
3747 case 0x0c: /* RCR2 */
3748 s->rcr[1] = value & 0xffff;
3749 return;
3750 case 0x0e: /* RCR1 */
3751 s->rcr[0] = value & 0x7fe0;
3752 return;
3753 case 0x10: /* XCR2 */
3754 s->xcr[1] = value & 0xffff;
3755 return;
3756 case 0x12: /* XCR1 */
3757 s->xcr[0] = value & 0x7fe0;
3758 return;
3759 case 0x14: /* SRGR2 */
3760 s->srgr[1] = value & 0xffff;
3761 omap_mcbsp_req_update(s);
3762 return;
3763 case 0x16: /* SRGR1 */
3764 s->srgr[0] = value & 0xffff;
3765 omap_mcbsp_req_update(s);
3766 return;
3767 case 0x18: /* MCR2 */
3768 s->mcr[1] = value & 0x03e3;
3769 if (value & 3) /* XMCM */
3770 printf("%s: Tx channel selection mode enable attempt\n",
3771 __FUNCTION__);
3772 return;
3773 case 0x1a: /* MCR1 */
3774 s->mcr[0] = value & 0x03e1;
3775 if (value & 1) /* RMCM */
3776 printf("%s: Rx channel selection mode enable attempt\n",
3777 __FUNCTION__);
3778 return;
3779 case 0x1c: /* RCERA */
3780 s->rcer[0] = value & 0xffff;
3781 return;
3782 case 0x1e: /* RCERB */
3783 s->rcer[1] = value & 0xffff;
3784 return;
3785 case 0x20: /* XCERA */
3786 s->xcer[0] = value & 0xffff;
3787 return;
3788 case 0x22: /* XCERB */
3789 s->xcer[1] = value & 0xffff;
3790 return;
3791 case 0x24: /* PCR0 */
3792 s->pcr = value & 0x7faf;
3793 return;
3794 case 0x26: /* RCERC */
3795 s->rcer[2] = value & 0xffff;
3796 return;
3797 case 0x28: /* RCERD */
3798 s->rcer[3] = value & 0xffff;
3799 return;
3800 case 0x2a: /* XCERC */
3801 s->xcer[2] = value & 0xffff;
3802 return;
3803 case 0x2c: /* XCERD */
3804 s->xcer[3] = value & 0xffff;
3805 return;
3806 case 0x2e: /* RCERE */
3807 s->rcer[4] = value & 0xffff;
3808 return;
3809 case 0x30: /* RCERF */
3810 s->rcer[5] = value & 0xffff;
3811 return;
3812 case 0x32: /* XCERE */
3813 s->xcer[4] = value & 0xffff;
3814 return;
3815 case 0x34: /* XCERF */
3816 s->xcer[5] = value & 0xffff;
3817 return;
3818 case 0x36: /* RCERG */
3819 s->rcer[6] = value & 0xffff;
3820 return;
3821 case 0x38: /* RCERH */
3822 s->rcer[7] = value & 0xffff;
3823 return;
3824 case 0x3a: /* XCERG */
3825 s->xcer[6] = value & 0xffff;
3826 return;
3827 case 0x3c: /* XCERH */
3828 s->xcer[7] = value & 0xffff;
3829 return;
3832 OMAP_BAD_REG(addr);
3835 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
3836 uint32_t value)
3838 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3839 int offset = addr & OMAP_MPUI_REG_MASK;
3841 if (offset == 0x04) { /* DXR */
3842 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3843 return;
3844 if (s->tx_req > 3) {
3845 s->tx_req -= 4;
3846 if (s->codec && s->codec->cts) {
3847 s->codec->out.fifo[s->codec->out.len ++] =
3848 (value >> 24) & 0xff;
3849 s->codec->out.fifo[s->codec->out.len ++] =
3850 (value >> 16) & 0xff;
3851 s->codec->out.fifo[s->codec->out.len ++] =
3852 (value >> 8) & 0xff;
3853 s->codec->out.fifo[s->codec->out.len ++] =
3854 (value >> 0) & 0xff;
3856 if (s->tx_req < 4)
3857 omap_mcbsp_tx_done(s);
3858 } else
3859 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3860 return;
3863 omap_badwidth_write16(opaque, addr, value);
3866 static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
3867 omap_badwidth_read16,
3868 omap_mcbsp_read,
3869 omap_badwidth_read16,
3872 static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
3873 omap_badwidth_write16,
3874 omap_mcbsp_writeh,
3875 omap_mcbsp_writew,
3878 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3880 memset(&s->spcr, 0, sizeof(s->spcr));
3881 memset(&s->rcr, 0, sizeof(s->rcr));
3882 memset(&s->xcr, 0, sizeof(s->xcr));
3883 s->srgr[0] = 0x0001;
3884 s->srgr[1] = 0x2000;
3885 memset(&s->mcr, 0, sizeof(s->mcr));
3886 memset(&s->pcr, 0, sizeof(s->pcr));
3887 memset(&s->rcer, 0, sizeof(s->rcer));
3888 memset(&s->xcer, 0, sizeof(s->xcer));
3889 s->tx_req = 0;
3890 s->rx_req = 0;
3891 s->tx_rate = 0;
3892 s->rx_rate = 0;
3893 qemu_del_timer(s->source_timer);
3894 qemu_del_timer(s->sink_timer);
3897 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
3898 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
3900 int iomemtype;
3901 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3902 qemu_mallocz(sizeof(struct omap_mcbsp_s));
3904 s->base = base;
3905 s->txirq = irq[0];
3906 s->rxirq = irq[1];
3907 s->txdrq = dma[0];
3908 s->rxdrq = dma[1];
3909 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
3910 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
3911 omap_mcbsp_reset(s);
3913 iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
3914 omap_mcbsp_writefn, s);
3915 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3917 return s;
3920 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3922 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3924 if (s->rx_rate) {
3925 s->rx_req = s->codec->in.len;
3926 omap_mcbsp_rx_newdata(s);
3930 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3932 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3934 if (s->tx_rate) {
3935 s->tx_req = s->codec->out.size;
3936 omap_mcbsp_tx_newdata(s);
3940 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
3942 s->codec = slave;
3943 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3944 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3947 /* LED Pulse Generators */
3948 struct omap_lpg_s {
3949 target_phys_addr_t base;
3950 QEMUTimer *tm;
3952 uint8_t control;
3953 uint8_t power;
3954 int64_t on;
3955 int64_t period;
3956 int clk;
3957 int cycle;
3960 static void omap_lpg_tick(void *opaque)
3962 struct omap_lpg_s *s = opaque;
3964 if (s->cycle)
3965 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
3966 else
3967 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
3969 s->cycle = !s->cycle;
3970 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3973 static void omap_lpg_update(struct omap_lpg_s *s)
3975 int64_t on, period = 1, ticks = 1000;
3976 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3978 if (~s->control & (1 << 6)) /* LPGRES */
3979 on = 0;
3980 else if (s->control & (1 << 7)) /* PERM_ON */
3981 on = period;
3982 else {
3983 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3984 256 / 32);
3985 on = (s->clk && s->power) ? muldiv64(ticks,
3986 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3989 qemu_del_timer(s->tm);
3990 if (on == period && s->on < s->period)
3991 printf("%s: LED is on\n", __FUNCTION__);
3992 else if (on == 0 && s->on)
3993 printf("%s: LED is off\n", __FUNCTION__);
3994 else if (on && (on != s->on || period != s->period)) {
3995 s->cycle = 0;
3996 s->on = on;
3997 s->period = period;
3998 omap_lpg_tick(s);
3999 return;
4002 s->on = on;
4003 s->period = period;
4006 static void omap_lpg_reset(struct omap_lpg_s *s)
4008 s->control = 0x00;
4009 s->power = 0x00;
4010 s->clk = 1;
4011 omap_lpg_update(s);
4014 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4016 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4017 int offset = addr & OMAP_MPUI_REG_MASK;
4019 switch (offset) {
4020 case 0x00: /* LCR */
4021 return s->control;
4023 case 0x04: /* PMR */
4024 return s->power;
4027 OMAP_BAD_REG(addr);
4028 return 0;
4031 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4032 uint32_t value)
4034 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4035 int offset = addr & OMAP_MPUI_REG_MASK;
4037 switch (offset) {
4038 case 0x00: /* LCR */
4039 if (~value & (1 << 6)) /* LPGRES */
4040 omap_lpg_reset(s);
4041 s->control = value & 0xff;
4042 omap_lpg_update(s);
4043 return;
4045 case 0x04: /* PMR */
4046 s->power = value & 0x01;
4047 omap_lpg_update(s);
4048 return;
4050 default:
4051 OMAP_BAD_REG(addr);
4052 return;
4056 static CPUReadMemoryFunc *omap_lpg_readfn[] = {
4057 omap_lpg_read,
4058 omap_badwidth_read8,
4059 omap_badwidth_read8,
4062 static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
4063 omap_lpg_write,
4064 omap_badwidth_write8,
4065 omap_badwidth_write8,
4068 static void omap_lpg_clk_update(void *opaque, int line, int on)
4070 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4072 s->clk = on;
4073 omap_lpg_update(s);
4076 struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4078 int iomemtype;
4079 struct omap_lpg_s *s = (struct omap_lpg_s *)
4080 qemu_mallocz(sizeof(struct omap_lpg_s));
4082 s->base = base;
4083 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4085 omap_lpg_reset(s);
4087 iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
4088 omap_lpg_writefn, s);
4089 cpu_register_physical_memory(s->base, 0x800, iomemtype);
4091 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4093 return s;
4096 /* MPUI Peripheral Bridge configuration */
4097 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4099 if (addr == OMAP_MPUI_BASE) /* CMR */
4100 return 0xfe4d;
4102 OMAP_BAD_REG(addr);
4103 return 0;
4106 static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
4107 omap_badwidth_read16,
4108 omap_mpui_io_read,
4109 omap_badwidth_read16,
4112 static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
4113 omap_badwidth_write16,
4114 omap_badwidth_write16,
4115 omap_badwidth_write16,
4118 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4120 int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
4121 omap_mpui_io_writefn, mpu);
4122 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4125 /* General chip reset */
4126 static void omap_mpu_reset(void *opaque)
4128 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4130 omap_inth_reset(mpu->ih[0]);
4131 omap_inth_reset(mpu->ih[1]);
4132 omap_dma_reset(mpu->dma);
4133 omap_mpu_timer_reset(mpu->timer[0]);
4134 omap_mpu_timer_reset(mpu->timer[1]);
4135 omap_mpu_timer_reset(mpu->timer[2]);
4136 omap_wd_timer_reset(mpu->wdt);
4137 omap_os_timer_reset(mpu->os_timer);
4138 omap_lcdc_reset(mpu->lcd);
4139 omap_ulpd_pm_reset(mpu);
4140 omap_pin_cfg_reset(mpu);
4141 omap_mpui_reset(mpu);
4142 omap_tipb_bridge_reset(mpu->private_tipb);
4143 omap_tipb_bridge_reset(mpu->public_tipb);
4144 omap_dpll_reset(&mpu->dpll[0]);
4145 omap_dpll_reset(&mpu->dpll[1]);
4146 omap_dpll_reset(&mpu->dpll[2]);
4147 omap_uart_reset(mpu->uart[0]);
4148 omap_uart_reset(mpu->uart[1]);
4149 omap_uart_reset(mpu->uart[2]);
4150 omap_mmc_reset(mpu->mmc);
4151 omap_mpuio_reset(mpu->mpuio);
4152 omap_gpio_reset(mpu->gpio);
4153 omap_uwire_reset(mpu->microwire);
4154 omap_pwl_reset(mpu);
4155 omap_pwt_reset(mpu);
4156 omap_i2c_reset(mpu->i2c);
4157 omap_rtc_reset(mpu->rtc);
4158 omap_mcbsp_reset(mpu->mcbsp1);
4159 omap_mcbsp_reset(mpu->mcbsp2);
4160 omap_mcbsp_reset(mpu->mcbsp3);
4161 omap_lpg_reset(mpu->led[0]);
4162 omap_lpg_reset(mpu->led[1]);
4163 omap_clkm_reset(mpu);
4164 cpu_reset(mpu->env);
4167 static const struct omap_map_s {
4168 target_phys_addr_t phys_dsp;
4169 target_phys_addr_t phys_mpu;
4170 uint32_t size;
4171 const char *name;
4172 } omap15xx_dsp_mm[] = {
4173 /* Strobe 0 */
4174 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4175 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4176 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4177 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4178 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4179 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4180 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4181 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4182 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4183 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4184 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4185 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4186 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4187 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4188 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4189 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4190 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4191 /* Strobe 1 */
4192 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4194 { 0 }
4197 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4199 int io;
4201 for (; map->phys_dsp; map ++) {
4202 io = cpu_get_physical_page_desc(map->phys_mpu);
4204 cpu_register_physical_memory(map->phys_dsp, map->size, io);
4208 static void omap_mpu_wakeup(void *opaque, int irq, int req)
4210 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4212 if (mpu->env->halted)
4213 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4216 static const struct dma_irq_map omap_dma_irq_map[] = {
4217 { 0, OMAP_INT_DMA_CH0_6 },
4218 { 0, OMAP_INT_DMA_CH1_7 },
4219 { 0, OMAP_INT_DMA_CH2_8 },
4220 { 0, OMAP_INT_DMA_CH3 },
4221 { 0, OMAP_INT_DMA_CH4 },
4222 { 0, OMAP_INT_DMA_CH5 },
4223 { 1, OMAP_INT_1610_DMA_CH6 },
4224 { 1, OMAP_INT_1610_DMA_CH7 },
4225 { 1, OMAP_INT_1610_DMA_CH8 },
4226 { 1, OMAP_INT_1610_DMA_CH9 },
4227 { 1, OMAP_INT_1610_DMA_CH10 },
4228 { 1, OMAP_INT_1610_DMA_CH11 },
4229 { 1, OMAP_INT_1610_DMA_CH12 },
4230 { 1, OMAP_INT_1610_DMA_CH13 },
4231 { 1, OMAP_INT_1610_DMA_CH14 },
4232 { 1, OMAP_INT_1610_DMA_CH15 }
4235 /* DMA ports for OMAP1 */
4236 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4237 target_phys_addr_t addr)
4239 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4242 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4243 target_phys_addr_t addr)
4245 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4248 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4249 target_phys_addr_t addr)
4251 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4254 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4255 target_phys_addr_t addr)
4257 return addr >= 0xfffb0000 && addr < 0xffff0000;
4260 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4261 target_phys_addr_t addr)
4263 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4266 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4267 target_phys_addr_t addr)
4269 return addr >= 0xe1010000 && addr < 0xe1020004;
4272 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4273 DisplayState *ds, const char *core)
4275 int i;
4276 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4277 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4278 ram_addr_t imif_base, emiff_base;
4279 qemu_irq *cpu_irq;
4280 qemu_irq dma_irqs[6];
4281 int sdindex;
4283 if (!core)
4284 core = "ti925t";
4286 /* Core */
4287 s->mpu_model = omap310;
4288 s->env = cpu_init(core);
4289 if (!s->env) {
4290 fprintf(stderr, "Unable to find CPU definition\n");
4291 exit(1);
4293 s->sdram_size = sdram_size;
4294 s->sram_size = OMAP15XX_SRAM_SIZE;
4296 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4298 /* Clocks */
4299 omap_clk_init(s);
4301 /* Memory-mapped stuff */
4302 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4303 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4304 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4305 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4307 omap_clkm_init(0xfffece00, 0xe1008000, s);
4309 cpu_irq = arm_pic_init_cpu(s->env);
4310 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1,
4311 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4312 omap_findclk(s, "arminth_ck"));
4313 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1,
4314 s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4315 omap_findclk(s, "arminth_ck"));
4316 s->irq[0] = s->ih[0]->pins;
4317 s->irq[1] = s->ih[1]->pins;
4319 for (i = 0; i < 6; i ++)
4320 dma_irqs[i] = s->irq[omap_dma_irq_map[i].ih][omap_dma_irq_map[i].intr];
4321 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4322 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4324 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4325 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4326 s->port[imif ].addr_valid = omap_validate_imif_addr;
4327 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4328 s->port[local ].addr_valid = omap_validate_local_addr;
4329 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4331 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4332 s->irq[0][OMAP_INT_TIMER1],
4333 omap_findclk(s, "mputim_ck"));
4334 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4335 s->irq[0][OMAP_INT_TIMER2],
4336 omap_findclk(s, "mputim_ck"));
4337 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4338 s->irq[0][OMAP_INT_TIMER3],
4339 omap_findclk(s, "mputim_ck"));
4341 s->wdt = omap_wd_timer_init(0xfffec800,
4342 s->irq[0][OMAP_INT_WD_TIMER],
4343 omap_findclk(s, "armwdt_ck"));
4345 s->os_timer = omap_os_timer_init(0xfffb9000,
4346 s->irq[1][OMAP_INT_OS_TIMER],
4347 omap_findclk(s, "clk32-kHz"));
4349 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4350 omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
4351 omap_findclk(s, "lcd_ck"));
4353 omap_ulpd_pm_init(0xfffe0800, s);
4354 omap_pin_cfg_init(0xfffe1000, s);
4355 omap_id_init(s);
4357 omap_mpui_init(0xfffec900, s);
4359 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4360 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4361 omap_findclk(s, "tipb_ck"));
4362 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4363 s->irq[0][OMAP_INT_BRIDGE_PUB],
4364 omap_findclk(s, "tipb_ck"));
4366 omap_tcmi_init(0xfffecc00, s);
4368 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4369 omap_findclk(s, "uart1_ck"),
4370 serial_hds[0]);
4371 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4372 omap_findclk(s, "uart2_ck"),
4373 serial_hds[0] ? serial_hds[1] : 0);
4374 s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
4375 omap_findclk(s, "uart3_ck"),
4376 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4378 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4379 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4380 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4382 sdindex = drive_get_index(IF_SD, 0, 0);
4383 if (sdindex == -1) {
4384 fprintf(stderr, "qemu: missing SecureDigital device\n");
4385 exit(1);
4387 s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
4388 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4389 omap_findclk(s, "mmc_ck"));
4391 s->mpuio = omap_mpuio_init(0xfffb5000,
4392 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4393 s->wakeup, omap_findclk(s, "clk32-kHz"));
4395 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4396 omap_findclk(s, "arm_gpio_ck"));
4398 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4399 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4401 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4402 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4404 s->i2c = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4405 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4407 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4408 omap_findclk(s, "clk32-kHz"));
4410 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4411 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4412 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4413 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4414 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4415 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4417 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4418 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4420 /* Register mappings not currenlty implemented:
4421 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4422 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4423 * USB W2FC fffb4000 - fffb47ff
4424 * Camera Interface fffb6800 - fffb6fff
4425 * USB Host fffba000 - fffba7ff
4426 * FAC fffba800 - fffbafff
4427 * HDQ/1-Wire fffbc000 - fffbc7ff
4428 * TIPB switches fffbc800 - fffbcfff
4429 * Mailbox fffcf000 - fffcf7ff
4430 * Local bus IF fffec100 - fffec1ff
4431 * Local bus MMU fffec200 - fffec2ff
4432 * DSP MMU fffed200 - fffed2ff
4435 omap_setup_dsp_mapping(omap15xx_dsp_mm);
4436 omap_setup_mpui_io(s);
4438 qemu_register_reset(omap_mpu_reset, s);
4440 return s;