2 #include "host-utils.h"
8 //#define DEBUG_UNALIGNED
9 //#define DEBUG_UNASSIGNED
13 #define DPRINTF_MMU(fmt, args...) \
14 do { printf("MMU: " fmt , ##args); } while (0)
16 #define DPRINTF_MMU(fmt, args...)
20 #define DPRINTF_MXCC(fmt, args...) \
21 do { printf("MXCC: " fmt , ##args); } while (0)
23 #define DPRINTF_MXCC(fmt, args...)
27 #define DPRINTF_ASI(fmt, args...) \
28 do { printf("ASI: " fmt , ##args); } while (0)
30 #define DPRINTF_ASI(fmt, args...)
33 void raise_exception(int tt
)
35 env
->exception_index
= tt
;
39 void helper_trap(target_ulong nb_trap
)
41 env
->exception_index
= TT_TRAP
+ (nb_trap
& 0x7f);
45 void helper_trapcc(target_ulong nb_trap
, target_ulong do_trap
)
48 env
->exception_index
= TT_TRAP
+ (nb_trap
& 0x7f);
53 void check_ieee_exceptions(void)
57 status
= get_float_exception_flags(&env
->fp_status
);
59 /* Copy IEEE 754 flags into FSR */
60 if (status
& float_flag_invalid
)
62 if (status
& float_flag_overflow
)
64 if (status
& float_flag_underflow
)
66 if (status
& float_flag_divbyzero
)
68 if (status
& float_flag_inexact
)
71 if ((env
->fsr
& FSR_CEXC_MASK
) & ((env
->fsr
& FSR_TEM_MASK
) >> 23)) {
72 /* Unmasked exception, generate a trap */
73 env
->fsr
|= FSR_FTT_IEEE_EXCP
;
74 raise_exception(TT_FP_EXCP
);
76 /* Accumulate exceptions */
77 env
->fsr
|= (env
->fsr
& FSR_CEXC_MASK
) << 5;
82 #ifdef USE_INT_TO_FLOAT_HELPERS
85 set_float_exception_flags(0, &env
->fp_status
);
86 FT0
= int32_to_float32(*((int32_t *)&FT1
), &env
->fp_status
);
87 check_ieee_exceptions();
92 DT0
= int32_to_float64(*((int32_t *)&FT1
), &env
->fp_status
);
95 #if defined(CONFIG_USER_ONLY)
98 QT0
= int32_to_float128(*((int32_t *)&FT1
), &env
->fp_status
);
102 #ifdef TARGET_SPARC64
105 set_float_exception_flags(0, &env
->fp_status
);
106 FT0
= int64_to_float32(*((int64_t *)&DT1
), &env
->fp_status
);
107 check_ieee_exceptions();
112 set_float_exception_flags(0, &env
->fp_status
);
113 DT0
= int64_to_float64(*((int64_t *)&DT1
), &env
->fp_status
);
114 check_ieee_exceptions();
117 #if defined(CONFIG_USER_ONLY)
120 set_float_exception_flags(0, &env
->fp_status
);
121 QT0
= int64_to_float128(*((int32_t *)&DT1
), &env
->fp_status
);
122 check_ieee_exceptions();
130 FT0
= float32_abs(FT1
);
133 #ifdef TARGET_SPARC64
136 DT0
= float64_abs(DT1
);
139 #if defined(CONFIG_USER_ONLY)
142 QT0
= float128_abs(QT1
);
149 set_float_exception_flags(0, &env
->fp_status
);
150 FT0
= float32_sqrt(FT1
, &env
->fp_status
);
151 check_ieee_exceptions();
156 set_float_exception_flags(0, &env
->fp_status
);
157 DT0
= float64_sqrt(DT1
, &env
->fp_status
);
158 check_ieee_exceptions();
161 #if defined(CONFIG_USER_ONLY)
164 set_float_exception_flags(0, &env
->fp_status
);
165 QT0
= float128_sqrt(QT1
, &env
->fp_status
);
166 check_ieee_exceptions();
170 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
171 void glue(do_, name) (void) \
173 target_ulong new_fsr; \
175 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
176 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
177 case float_relation_unordered: \
178 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
179 if ((env->fsr & FSR_NVM) || TRAP) { \
180 env->fsr |= new_fsr; \
181 env->fsr |= FSR_NVC; \
182 env->fsr |= FSR_FTT_IEEE_EXCP; \
183 raise_exception(TT_FP_EXCP); \
185 env->fsr |= FSR_NVA; \
188 case float_relation_less: \
189 new_fsr = FSR_FCC0 << FS; \
191 case float_relation_greater: \
192 new_fsr = FSR_FCC1 << FS; \
198 env->fsr |= new_fsr; \
201 GEN_FCMP(fcmps
, float32
, FT0
, FT1
, 0, 0);
202 GEN_FCMP(fcmpd
, float64
, DT0
, DT1
, 0, 0);
204 GEN_FCMP(fcmpes
, float32
, FT0
, FT1
, 0, 1);
205 GEN_FCMP(fcmped
, float64
, DT0
, DT1
, 0, 1);
207 #ifdef CONFIG_USER_ONLY
208 GEN_FCMP(fcmpq
, float128
, QT0
, QT1
, 0, 0);
209 GEN_FCMP(fcmpeq
, float128
, QT0
, QT1
, 0, 1);
212 #ifdef TARGET_SPARC64
213 GEN_FCMP(fcmps_fcc1
, float32
, FT0
, FT1
, 22, 0);
214 GEN_FCMP(fcmpd_fcc1
, float64
, DT0
, DT1
, 22, 0);
216 GEN_FCMP(fcmps_fcc2
, float32
, FT0
, FT1
, 24, 0);
217 GEN_FCMP(fcmpd_fcc2
, float64
, DT0
, DT1
, 24, 0);
219 GEN_FCMP(fcmps_fcc3
, float32
, FT0
, FT1
, 26, 0);
220 GEN_FCMP(fcmpd_fcc3
, float64
, DT0
, DT1
, 26, 0);
222 GEN_FCMP(fcmpes_fcc1
, float32
, FT0
, FT1
, 22, 1);
223 GEN_FCMP(fcmped_fcc1
, float64
, DT0
, DT1
, 22, 1);
225 GEN_FCMP(fcmpes_fcc2
, float32
, FT0
, FT1
, 24, 1);
226 GEN_FCMP(fcmped_fcc2
, float64
, DT0
, DT1
, 24, 1);
228 GEN_FCMP(fcmpes_fcc3
, float32
, FT0
, FT1
, 26, 1);
229 GEN_FCMP(fcmped_fcc3
, float64
, DT0
, DT1
, 26, 1);
230 #ifdef CONFIG_USER_ONLY
231 GEN_FCMP(fcmpq_fcc1
, float128
, QT0
, QT1
, 22, 0);
232 GEN_FCMP(fcmpq_fcc2
, float128
, QT0
, QT1
, 24, 0);
233 GEN_FCMP(fcmpq_fcc3
, float128
, QT0
, QT1
, 26, 0);
234 GEN_FCMP(fcmpeq_fcc1
, float128
, QT0
, QT1
, 22, 1);
235 GEN_FCMP(fcmpeq_fcc2
, float128
, QT0
, QT1
, 24, 1);
236 GEN_FCMP(fcmpeq_fcc3
, float128
, QT0
, QT1
, 26, 1);
240 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && defined(DEBUG_MXCC)
241 static void dump_mxcc(CPUState
*env
)
243 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
244 env
->mxccdata
[0], env
->mxccdata
[1], env
->mxccdata
[2], env
->mxccdata
[3]);
245 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
246 " %016llx %016llx %016llx %016llx\n",
247 env
->mxccregs
[0], env
->mxccregs
[1], env
->mxccregs
[2], env
->mxccregs
[3],
248 env
->mxccregs
[4], env
->mxccregs
[5], env
->mxccregs
[6], env
->mxccregs
[7]);
252 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
253 && defined(DEBUG_ASI)
254 static void dump_asi(const char *txt
, target_ulong addr
, int asi
, int size
,
260 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %02" PRIx64
"\n", txt
,
261 addr
, asi
, r1
& 0xff);
264 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %04" PRIx64
"\n", txt
,
265 addr
, asi
, r1
& 0xffff);
268 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %08" PRIx64
"\n", txt
,
269 addr
, asi
, r1
& 0xffffffff);
272 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %016" PRIx64
"\n", txt
,
279 #ifndef TARGET_SPARC64
280 #ifndef CONFIG_USER_ONLY
281 uint64_t helper_ld_asi(target_ulong addr
, int asi
, int size
, int sign
)
284 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
285 uint32_t last_addr
= addr
;
289 case 2: /* SuperSparc MXCC registers */
291 case 0x01c00a00: /* MXCC control register */
293 ret
= env
->mxccregs
[3];
295 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
297 case 0x01c00a04: /* MXCC control register */
299 ret
= env
->mxccregs
[3];
301 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
303 case 0x01c00c00: /* Module reset register */
305 ret
= env
->mxccregs
[5];
306 // should we do something here?
308 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
310 case 0x01c00f00: /* MBus port address register */
312 ret
= env
->mxccregs
[7];
314 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
317 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr
, size
);
320 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, addr = %08x -> ret = %08x,"
321 "addr = %08x\n", asi
, size
, sign
, last_addr
, ret
, addr
);
326 case 3: /* MMU probe */
330 mmulev
= (addr
>> 8) & 15;
334 ret
= mmu_probe(env
, addr
, mmulev
);
335 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64
"\n",
339 case 4: /* read MMU regs */
341 int reg
= (addr
>> 8) & 0x1f;
343 ret
= env
->mmuregs
[reg
];
344 if (reg
== 3) /* Fault status cleared on read */
346 else if (reg
== 0x13) /* Fault status read */
347 ret
= env
->mmuregs
[3];
348 else if (reg
== 0x14) /* Fault address read */
349 ret
= env
->mmuregs
[4];
350 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64
"\n", reg
, ret
);
353 case 5: // Turbosparc ITLB Diagnostic
354 case 6: // Turbosparc DTLB Diagnostic
355 case 7: // Turbosparc IOTLB Diagnostic
357 case 9: /* Supervisor code access */
360 ret
= ldub_code(addr
);
363 ret
= lduw_code(addr
& ~1);
367 ret
= ldl_code(addr
& ~3);
370 ret
= ldq_code(addr
& ~7);
374 case 0xa: /* User data access */
377 ret
= ldub_user(addr
);
380 ret
= lduw_user(addr
& ~1);
384 ret
= ldl_user(addr
& ~3);
387 ret
= ldq_user(addr
& ~7);
391 case 0xb: /* Supervisor data access */
394 ret
= ldub_kernel(addr
);
397 ret
= lduw_kernel(addr
& ~1);
401 ret
= ldl_kernel(addr
& ~3);
404 ret
= ldq_kernel(addr
& ~7);
408 case 0xc: /* I-cache tag */
409 case 0xd: /* I-cache data */
410 case 0xe: /* D-cache tag */
411 case 0xf: /* D-cache data */
413 case 0x20: /* MMU passthrough */
416 ret
= ldub_phys(addr
);
419 ret
= lduw_phys(addr
& ~1);
423 ret
= ldl_phys(addr
& ~3);
426 ret
= ldq_phys(addr
& ~7);
430 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
433 ret
= ldub_phys((target_phys_addr_t
)addr
434 | ((target_phys_addr_t
)(asi
& 0xf) << 32));
437 ret
= lduw_phys((target_phys_addr_t
)(addr
& ~1)
438 | ((target_phys_addr_t
)(asi
& 0xf) << 32));
442 ret
= ldl_phys((target_phys_addr_t
)(addr
& ~3)
443 | ((target_phys_addr_t
)(asi
& 0xf) << 32));
446 ret
= ldq_phys((target_phys_addr_t
)(addr
& ~7)
447 | ((target_phys_addr_t
)(asi
& 0xf) << 32));
451 case 0x30: // Turbosparc secondary cache diagnostic
452 case 0x31: // Turbosparc RAM snoop
453 case 0x32: // Turbosparc page table descriptor diagnostic
454 case 0x39: /* data cache diagnostic register */
457 case 8: /* User code access, XXX */
459 do_unassigned_access(addr
, 0, 0, asi
);
479 dump_asi("read ", last_addr
, asi
, size
, ret
);
484 void helper_st_asi(target_ulong addr
, uint64_t val
, int asi
, int size
)
487 case 2: /* SuperSparc MXCC registers */
489 case 0x01c00000: /* MXCC stream data register 0 */
491 env
->mxccdata
[0] = val
;
493 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
495 case 0x01c00008: /* MXCC stream data register 1 */
497 env
->mxccdata
[1] = val
;
499 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
501 case 0x01c00010: /* MXCC stream data register 2 */
503 env
->mxccdata
[2] = val
;
505 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
507 case 0x01c00018: /* MXCC stream data register 3 */
509 env
->mxccdata
[3] = val
;
511 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
513 case 0x01c00100: /* MXCC stream source */
515 env
->mxccregs
[0] = val
;
517 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
518 env
->mxccdata
[0] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) + 0);
519 env
->mxccdata
[1] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) + 8);
520 env
->mxccdata
[2] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) + 16);
521 env
->mxccdata
[3] = ldq_phys((env
->mxccregs
[0] & 0xffffffffULL
) + 24);
523 case 0x01c00200: /* MXCC stream destination */
525 env
->mxccregs
[1] = val
;
527 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
528 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 0, env
->mxccdata
[0]);
529 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 8, env
->mxccdata
[1]);
530 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 16, env
->mxccdata
[2]);
531 stq_phys((env
->mxccregs
[1] & 0xffffffffULL
) + 24, env
->mxccdata
[3]);
533 case 0x01c00a00: /* MXCC control register */
535 env
->mxccregs
[3] = val
;
537 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
539 case 0x01c00a04: /* MXCC control register */
541 env
->mxccregs
[3] = (env
->mxccregs
[0xa] & 0xffffffff00000000ULL
) | val
;
543 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
545 case 0x01c00e00: /* MXCC error register */
546 // writing a 1 bit clears the error
548 env
->mxccregs
[6] &= ~val
;
550 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
552 case 0x01c00f00: /* MBus port address register */
554 env
->mxccregs
[7] = val
;
556 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr
, size
);
559 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr
, size
);
562 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi
, size
, addr
, val
);
567 case 3: /* MMU flush */
571 mmulev
= (addr
>> 8) & 15;
572 DPRINTF_MMU("mmu flush level %d\n", mmulev
);
574 case 0: // flush page
575 tlb_flush_page(env
, addr
& 0xfffff000);
577 case 1: // flush segment (256k)
578 case 2: // flush region (16M)
579 case 3: // flush context (4G)
580 case 4: // flush entire
591 case 4: /* write MMU regs */
593 int reg
= (addr
>> 8) & 0x1f;
596 oldreg
= env
->mmuregs
[reg
];
598 case 0: // Control Register
599 env
->mmuregs
[reg
] = (env
->mmuregs
[reg
] & 0xff000000) |
601 // Mappings generated during no-fault mode or MMU
602 // disabled mode are invalid in normal mode
603 if ((oldreg
& (MMU_E
| MMU_NF
| env
->mmu_bm
)) !=
604 (env
->mmuregs
[reg
] & (MMU_E
| MMU_NF
| env
->mmu_bm
)))
607 case 1: // Context Table Pointer Register
608 env
->mmuregs
[reg
] = val
& env
->mmu_ctpr_mask
;
610 case 2: // Context Register
611 env
->mmuregs
[reg
] = val
& env
->mmu_cxr_mask
;
612 if (oldreg
!= env
->mmuregs
[reg
]) {
613 /* we flush when the MMU context changes because
614 QEMU has no MMU context support */
618 case 3: // Synchronous Fault Status Register with Clear
619 case 4: // Synchronous Fault Address Register
621 case 0x10: // TLB Replacement Control Register
622 env
->mmuregs
[reg
] = val
& env
->mmu_trcr_mask
;
624 case 0x13: // Synchronous Fault Status Register with Read and Clear
625 env
->mmuregs
[3] = val
& env
->mmu_sfsr_mask
;
627 case 0x14: // Synchronous Fault Address Register
628 env
->mmuregs
[4] = val
;
631 env
->mmuregs
[reg
] = val
;
634 if (oldreg
!= env
->mmuregs
[reg
]) {
635 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg
, oldreg
, env
->mmuregs
[reg
]);
642 case 5: // Turbosparc ITLB Diagnostic
643 case 6: // Turbosparc DTLB Diagnostic
644 case 7: // Turbosparc IOTLB Diagnostic
646 case 0xa: /* User data access */
652 stw_user(addr
& ~1, val
);
656 stl_user(addr
& ~3, val
);
659 stq_user(addr
& ~7, val
);
663 case 0xb: /* Supervisor data access */
666 stb_kernel(addr
, val
);
669 stw_kernel(addr
& ~1, val
);
673 stl_kernel(addr
& ~3, val
);
676 stq_kernel(addr
& ~7, val
);
680 case 0xc: /* I-cache tag */
681 case 0xd: /* I-cache data */
682 case 0xe: /* D-cache tag */
683 case 0xf: /* D-cache data */
684 case 0x10: /* I/D-cache flush page */
685 case 0x11: /* I/D-cache flush segment */
686 case 0x12: /* I/D-cache flush region */
687 case 0x13: /* I/D-cache flush context */
688 case 0x14: /* I/D-cache flush user */
690 case 0x17: /* Block copy, sta access */
696 uint32_t src
= val
& ~3, dst
= addr
& ~3, temp
;
698 for (i
= 0; i
< 32; i
+= 4, src
+= 4, dst
+= 4) {
699 temp
= ldl_kernel(src
);
700 stl_kernel(dst
, temp
);
704 case 0x1f: /* Block fill, stda access */
707 // fill 32 bytes with val
709 uint32_t dst
= addr
& 7;
711 for (i
= 0; i
< 32; i
+= 8, dst
+= 8)
712 stq_kernel(dst
, val
);
715 case 0x20: /* MMU passthrough */
722 stw_phys(addr
& ~1, val
);
726 stl_phys(addr
& ~3, val
);
729 stq_phys(addr
& ~7, val
);
734 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
738 stb_phys((target_phys_addr_t
)addr
739 | ((target_phys_addr_t
)(asi
& 0xf) << 32), val
);
742 stw_phys((target_phys_addr_t
)(addr
& ~1)
743 | ((target_phys_addr_t
)(asi
& 0xf) << 32), val
);
747 stl_phys((target_phys_addr_t
)(addr
& ~3)
748 | ((target_phys_addr_t
)(asi
& 0xf) << 32), val
);
751 stq_phys((target_phys_addr_t
)(addr
& ~7)
752 | ((target_phys_addr_t
)(asi
& 0xf) << 32), val
);
757 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
758 case 0x31: // store buffer data, Ross RT620 I-cache flush or
759 // Turbosparc snoop RAM
760 case 0x32: // store buffer control or Turbosparc page table descriptor diagnostic
761 case 0x36: /* I-cache flash clear */
762 case 0x37: /* D-cache flash clear */
763 case 0x38: /* breakpoint diagnostics */
764 case 0x4c: /* breakpoint action */
766 case 8: /* User code access, XXX */
767 case 9: /* Supervisor code access, XXX */
769 do_unassigned_access(addr
, 1, 0, asi
);
773 dump_asi("write", addr
, asi
, size
, val
);
777 #endif /* CONFIG_USER_ONLY */
778 #else /* TARGET_SPARC64 */
780 #ifdef CONFIG_USER_ONLY
781 uint64_t helper_ld_asi(target_ulong addr
, int asi
, int size
, int sign
)
784 #if defined(DEBUG_ASI)
785 target_ulong last_addr
= addr
;
789 raise_exception(TT_PRIV_ACT
);
792 case 0x80: // Primary
793 case 0x82: // Primary no-fault
794 case 0x88: // Primary LE
795 case 0x8a: // Primary no-fault LE
799 ret
= ldub_raw(addr
);
802 ret
= lduw_raw(addr
& ~1);
805 ret
= ldl_raw(addr
& ~3);
809 ret
= ldq_raw(addr
& ~7);
814 case 0x81: // Secondary
815 case 0x83: // Secondary no-fault
816 case 0x89: // Secondary LE
817 case 0x8b: // Secondary no-fault LE
824 /* Convert from little endian */
826 case 0x88: // Primary LE
827 case 0x89: // Secondary LE
828 case 0x8a: // Primary no-fault LE
829 case 0x8b: // Secondary no-fault LE
847 /* Convert to signed number */
864 dump_asi("read ", last_addr
, asi
, size
, ret
);
869 void helper_st_asi(target_ulong addr
, target_ulong val
, int asi
, int size
)
872 dump_asi("write", addr
, asi
, size
, val
);
875 raise_exception(TT_PRIV_ACT
);
877 /* Convert to little endian */
879 case 0x88: // Primary LE
880 case 0x89: // Secondary LE
883 addr
= bswap16(addr
);
886 addr
= bswap32(addr
);
889 addr
= bswap64(addr
);
899 case 0x80: // Primary
900 case 0x88: // Primary LE
907 stw_raw(addr
& ~1, val
);
910 stl_raw(addr
& ~3, val
);
914 stq_raw(addr
& ~7, val
);
919 case 0x81: // Secondary
920 case 0x89: // Secondary LE
924 case 0x82: // Primary no-fault, RO
925 case 0x83: // Secondary no-fault, RO
926 case 0x8a: // Primary no-fault LE, RO
927 case 0x8b: // Secondary no-fault LE, RO
929 do_unassigned_access(addr
, 1, 0, 1);
934 #else /* CONFIG_USER_ONLY */
936 uint64_t helper_ld_asi(target_ulong addr
, int asi
, int size
, int sign
)
939 #if defined(DEBUG_ASI)
940 target_ulong last_addr
= addr
;
943 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
944 || (asi
>= 0x30 && asi
< 0x80 && !(env
->hpstate
& HS_PRIV
)))
945 raise_exception(TT_PRIV_ACT
);
948 case 0x10: // As if user primary
949 case 0x18: // As if user primary LE
950 case 0x80: // Primary
951 case 0x82: // Primary no-fault
952 case 0x88: // Primary LE
953 case 0x8a: // Primary no-fault LE
954 if ((asi
& 0x80) && (env
->pstate
& PS_PRIV
)) {
955 if (env
->hpstate
& HS_PRIV
) {
958 ret
= ldub_hypv(addr
);
961 ret
= lduw_hypv(addr
& ~1);
964 ret
= ldl_hypv(addr
& ~3);
968 ret
= ldq_hypv(addr
& ~7);
974 ret
= ldub_kernel(addr
);
977 ret
= lduw_kernel(addr
& ~1);
980 ret
= ldl_kernel(addr
& ~3);
984 ret
= ldq_kernel(addr
& ~7);
991 ret
= ldub_user(addr
);
994 ret
= lduw_user(addr
& ~1);
997 ret
= ldl_user(addr
& ~3);
1001 ret
= ldq_user(addr
& ~7);
1006 case 0x14: // Bypass
1007 case 0x15: // Bypass, non-cacheable
1008 case 0x1c: // Bypass LE
1009 case 0x1d: // Bypass, non-cacheable LE
1013 ret
= ldub_phys(addr
);
1016 ret
= lduw_phys(addr
& ~1);
1019 ret
= ldl_phys(addr
& ~3);
1023 ret
= ldq_phys(addr
& ~7);
1028 case 0x04: // Nucleus
1029 case 0x0c: // Nucleus Little Endian (LE)
1030 case 0x11: // As if user secondary
1031 case 0x19: // As if user secondary LE
1032 case 0x24: // Nucleus quad LDD 128 bit atomic
1033 case 0x2c: // Nucleus quad LDD 128 bit atomic
1034 case 0x4a: // UPA config
1035 case 0x81: // Secondary
1036 case 0x83: // Secondary no-fault
1037 case 0x89: // Secondary LE
1038 case 0x8b: // Secondary no-fault LE
1044 case 0x50: // I-MMU regs
1046 int reg
= (addr
>> 3) & 0xf;
1048 ret
= env
->immuregs
[reg
];
1051 case 0x51: // I-MMU 8k TSB pointer
1052 case 0x52: // I-MMU 64k TSB pointer
1053 case 0x55: // I-MMU data access
1056 case 0x56: // I-MMU tag read
1060 for (i
= 0; i
< 64; i
++) {
1061 // Valid, ctx match, vaddr match
1062 if ((env
->itlb_tte
[i
] & 0x8000000000000000ULL
) != 0 &&
1063 env
->itlb_tag
[i
] == addr
) {
1064 ret
= env
->itlb_tag
[i
];
1070 case 0x58: // D-MMU regs
1072 int reg
= (addr
>> 3) & 0xf;
1074 ret
= env
->dmmuregs
[reg
];
1077 case 0x5e: // D-MMU tag read
1081 for (i
= 0; i
< 64; i
++) {
1082 // Valid, ctx match, vaddr match
1083 if ((env
->dtlb_tte
[i
] & 0x8000000000000000ULL
) != 0 &&
1084 env
->dtlb_tag
[i
] == addr
) {
1085 ret
= env
->dtlb_tag
[i
];
1091 case 0x59: // D-MMU 8k TSB pointer
1092 case 0x5a: // D-MMU 64k TSB pointer
1093 case 0x5b: // D-MMU data pointer
1094 case 0x5d: // D-MMU data access
1095 case 0x48: // Interrupt dispatch, RO
1096 case 0x49: // Interrupt data receive
1097 case 0x7f: // Incoming interrupt vector, RO
1100 case 0x54: // I-MMU data in, WO
1101 case 0x57: // I-MMU demap, WO
1102 case 0x5c: // D-MMU data in, WO
1103 case 0x5f: // D-MMU demap, WO
1104 case 0x77: // Interrupt vector, WO
1106 do_unassigned_access(addr
, 0, 0, 1);
1111 /* Convert from little endian */
1113 case 0x0c: // Nucleus Little Endian (LE)
1114 case 0x18: // As if user primary LE
1115 case 0x19: // As if user secondary LE
1116 case 0x1c: // Bypass LE
1117 case 0x1d: // Bypass, non-cacheable LE
1118 case 0x88: // Primary LE
1119 case 0x89: // Secondary LE
1120 case 0x8a: // Primary no-fault LE
1121 case 0x8b: // Secondary no-fault LE
1139 /* Convert to signed number */
1146 ret
= (int16_t) ret
;
1149 ret
= (int32_t) ret
;
1156 dump_asi("read ", last_addr
, asi
, size
, ret
);
1161 void helper_st_asi(target_ulong addr
, target_ulong val
, int asi
, int size
)
1164 dump_asi("write", addr
, asi
, size
, val
);
1166 if ((asi
< 0x80 && (env
->pstate
& PS_PRIV
) == 0)
1167 || (asi
>= 0x30 && asi
< 0x80 && !(env
->hpstate
& HS_PRIV
)))
1168 raise_exception(TT_PRIV_ACT
);
1170 /* Convert to little endian */
1172 case 0x0c: // Nucleus Little Endian (LE)
1173 case 0x18: // As if user primary LE
1174 case 0x19: // As if user secondary LE
1175 case 0x1c: // Bypass LE
1176 case 0x1d: // Bypass, non-cacheable LE
1177 case 0x88: // Primary LE
1178 case 0x89: // Secondary LE
1181 addr
= bswap16(addr
);
1184 addr
= bswap32(addr
);
1187 addr
= bswap64(addr
);
1197 case 0x10: // As if user primary
1198 case 0x18: // As if user primary LE
1199 case 0x80: // Primary
1200 case 0x88: // Primary LE
1201 if ((asi
& 0x80) && (env
->pstate
& PS_PRIV
)) {
1202 if (env
->hpstate
& HS_PRIV
) {
1205 stb_hypv(addr
, val
);
1208 stw_hypv(addr
& ~1, val
);
1211 stl_hypv(addr
& ~3, val
);
1215 stq_hypv(addr
& ~7, val
);
1221 stb_kernel(addr
, val
);
1224 stw_kernel(addr
& ~1, val
);
1227 stl_kernel(addr
& ~3, val
);
1231 stq_kernel(addr
& ~7, val
);
1238 stb_user(addr
, val
);
1241 stw_user(addr
& ~1, val
);
1244 stl_user(addr
& ~3, val
);
1248 stq_user(addr
& ~7, val
);
1253 case 0x14: // Bypass
1254 case 0x15: // Bypass, non-cacheable
1255 case 0x1c: // Bypass LE
1256 case 0x1d: // Bypass, non-cacheable LE
1260 stb_phys(addr
, val
);
1263 stw_phys(addr
& ~1, val
);
1266 stl_phys(addr
& ~3, val
);
1270 stq_phys(addr
& ~7, val
);
1275 case 0x04: // Nucleus
1276 case 0x0c: // Nucleus Little Endian (LE)
1277 case 0x11: // As if user secondary
1278 case 0x19: // As if user secondary LE
1279 case 0x24: // Nucleus quad LDD 128 bit atomic
1280 case 0x2c: // Nucleus quad LDD 128 bit atomic
1281 case 0x4a: // UPA config
1282 case 0x81: // Secondary
1283 case 0x89: // Secondary LE
1291 env
->lsu
= val
& (DMMU_E
| IMMU_E
);
1292 // Mappings generated during D/I MMU disabled mode are
1293 // invalid in normal mode
1294 if (oldreg
!= env
->lsu
) {
1295 DPRINTF_MMU("LSU change: 0x%" PRIx64
" -> 0x%" PRIx64
"\n", oldreg
, env
->lsu
);
1303 case 0x50: // I-MMU regs
1305 int reg
= (addr
>> 3) & 0xf;
1308 oldreg
= env
->immuregs
[reg
];
1313 case 1: // Not in I-MMU
1320 val
= 0; // Clear SFSR
1322 case 5: // TSB access
1323 case 6: // Tag access
1327 env
->immuregs
[reg
] = val
;
1328 if (oldreg
!= env
->immuregs
[reg
]) {
1329 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64
" -> 0x%08" PRIx64
"\n", reg
, oldreg
, env
->immuregs
[reg
]);
1336 case 0x54: // I-MMU data in
1340 // Try finding an invalid entry
1341 for (i
= 0; i
< 64; i
++) {
1342 if ((env
->itlb_tte
[i
] & 0x8000000000000000ULL
) == 0) {
1343 env
->itlb_tag
[i
] = env
->immuregs
[6];
1344 env
->itlb_tte
[i
] = val
;
1348 // Try finding an unlocked entry
1349 for (i
= 0; i
< 64; i
++) {
1350 if ((env
->itlb_tte
[i
] & 0x40) == 0) {
1351 env
->itlb_tag
[i
] = env
->immuregs
[6];
1352 env
->itlb_tte
[i
] = val
;
1359 case 0x55: // I-MMU data access
1361 unsigned int i
= (addr
>> 3) & 0x3f;
1363 env
->itlb_tag
[i
] = env
->immuregs
[6];
1364 env
->itlb_tte
[i
] = val
;
1367 case 0x57: // I-MMU demap
1370 case 0x58: // D-MMU regs
1372 int reg
= (addr
>> 3) & 0xf;
1375 oldreg
= env
->dmmuregs
[reg
];
1381 if ((val
& 1) == 0) {
1382 val
= 0; // Clear SFSR, Fault address
1383 env
->dmmuregs
[4] = 0;
1385 env
->dmmuregs
[reg
] = val
;
1387 case 1: // Primary context
1388 case 2: // Secondary context
1389 case 5: // TSB access
1390 case 6: // Tag access
1391 case 7: // Virtual Watchpoint
1392 case 8: // Physical Watchpoint
1396 env
->dmmuregs
[reg
] = val
;
1397 if (oldreg
!= env
->dmmuregs
[reg
]) {
1398 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64
" -> 0x%08" PRIx64
"\n", reg
, oldreg
, env
->dmmuregs
[reg
]);
1405 case 0x5c: // D-MMU data in
1409 // Try finding an invalid entry
1410 for (i
= 0; i
< 64; i
++) {
1411 if ((env
->dtlb_tte
[i
] & 0x8000000000000000ULL
) == 0) {
1412 env
->dtlb_tag
[i
] = env
->dmmuregs
[6];
1413 env
->dtlb_tte
[i
] = val
;
1417 // Try finding an unlocked entry
1418 for (i
= 0; i
< 64; i
++) {
1419 if ((env
->dtlb_tte
[i
] & 0x40) == 0) {
1420 env
->dtlb_tag
[i
] = env
->dmmuregs
[6];
1421 env
->dtlb_tte
[i
] = val
;
1428 case 0x5d: // D-MMU data access
1430 unsigned int i
= (addr
>> 3) & 0x3f;
1432 env
->dtlb_tag
[i
] = env
->dmmuregs
[6];
1433 env
->dtlb_tte
[i
] = val
;
1436 case 0x5f: // D-MMU demap
1437 case 0x49: // Interrupt data receive
1440 case 0x51: // I-MMU 8k TSB pointer, RO
1441 case 0x52: // I-MMU 64k TSB pointer, RO
1442 case 0x56: // I-MMU tag read, RO
1443 case 0x59: // D-MMU 8k TSB pointer, RO
1444 case 0x5a: // D-MMU 64k TSB pointer, RO
1445 case 0x5b: // D-MMU data pointer, RO
1446 case 0x5e: // D-MMU tag read, RO
1447 case 0x48: // Interrupt dispatch, RO
1448 case 0x7f: // Incoming interrupt vector, RO
1449 case 0x82: // Primary no-fault, RO
1450 case 0x83: // Secondary no-fault, RO
1451 case 0x8a: // Primary no-fault LE, RO
1452 case 0x8b: // Secondary no-fault LE, RO
1454 do_unassigned_access(addr
, 1, 0, 1);
1458 #endif /* CONFIG_USER_ONLY */
1460 void helper_ldf_asi(target_ulong addr
, int asi
, int size
, int rd
)
1466 case 0xf0: // Block load primary
1467 case 0xf1: // Block load secondary
1468 case 0xf8: // Block load primary LE
1469 case 0xf9: // Block load secondary LE
1471 raise_exception(TT_ILL_INSN
);
1475 raise_exception(TT_UNALIGNED
);
1478 for (i
= 0; i
< 16; i
++) {
1479 *(uint32_t *)&env
->fpr
[rd
++] = helper_ld_asi(addr
, asi
& 0x8f, 4, 0);
1488 val
= helper_ld_asi(addr
, asi
, size
, 0);
1492 *((uint32_t *)&FT0
) = val
;
1495 *((int64_t *)&DT0
) = val
;
1497 #if defined(CONFIG_USER_ONLY)
1505 void helper_stf_asi(target_ulong addr
, int asi
, int size
, int rd
)
1508 target_ulong val
= 0;
1511 case 0xf0: // Block store primary
1512 case 0xf1: // Block store secondary
1513 case 0xf8: // Block store primary LE
1514 case 0xf9: // Block store secondary LE
1516 raise_exception(TT_ILL_INSN
);
1520 raise_exception(TT_UNALIGNED
);
1523 for (i
= 0; i
< 16; i
++) {
1524 val
= *(uint32_t *)&env
->fpr
[rd
++];
1525 helper_st_asi(addr
, val
, asi
& 0x8f, 4);
1537 val
= *((uint32_t *)&FT0
);
1540 val
= *((int64_t *)&DT0
);
1542 #if defined(CONFIG_USER_ONLY)
1548 helper_st_asi(addr
, val
, asi
, size
);
1551 target_ulong
helper_cas_asi(target_ulong addr
, target_ulong val1
,
1552 target_ulong val2
, uint32_t asi
)
1556 val1
&= 0xffffffffUL
;
1557 ret
= helper_ld_asi(addr
, asi
, 4, 0);
1558 ret
&= 0xffffffffUL
;
1560 helper_st_asi(addr
, val2
& 0xffffffffUL
, asi
, 4);
1564 target_ulong
helper_casx_asi(target_ulong addr
, target_ulong val1
,
1565 target_ulong val2
, uint32_t asi
)
1569 ret
= helper_ld_asi(addr
, asi
, 8, 0);
1571 helper_st_asi(addr
, val2
, asi
, 8);
1574 #endif /* TARGET_SPARC64 */
1576 #ifndef TARGET_SPARC64
1577 void helper_rett(void)
1581 if (env
->psret
== 1)
1582 raise_exception(TT_ILL_INSN
);
1585 cwp
= (env
->cwp
+ 1) & (NWINDOWS
- 1);
1586 if (env
->wim
& (1 << cwp
)) {
1587 raise_exception(TT_WIN_UNF
);
1590 env
->psrs
= env
->psrps
;
1594 uint64_t helper_pack64(target_ulong high
, target_ulong low
)
1596 return ((uint64_t)high
<< 32) | (uint64_t)(low
& 0xffffffff);
1599 void helper_ldfsr(void)
1602 switch (env
->fsr
& FSR_RD_MASK
) {
1603 case FSR_RD_NEAREST
:
1604 rnd_mode
= float_round_nearest_even
;
1608 rnd_mode
= float_round_to_zero
;
1611 rnd_mode
= float_round_up
;
1614 rnd_mode
= float_round_down
;
1617 set_float_rounding_mode(rnd_mode
, &env
->fp_status
);
1622 env
->exception_index
= EXCP_DEBUG
;
1626 #ifndef TARGET_SPARC64
1627 void helper_wrpsr(target_ulong new_psr
)
1629 if ((new_psr
& PSR_CWP
) >= NWINDOWS
)
1630 raise_exception(TT_ILL_INSN
);
1632 PUT_PSR(env
, new_psr
);
1635 target_ulong
helper_rdpsr(void)
1637 return GET_PSR(env
);
1642 target_ulong
helper_popc(target_ulong val
)
1644 return ctpop64(val
);
1647 static inline uint64_t *get_gregset(uint64_t pstate
)
1662 static inline void change_pstate(uint64_t new_pstate
)
1664 uint64_t pstate_regs
, new_pstate_regs
;
1665 uint64_t *src
, *dst
;
1667 pstate_regs
= env
->pstate
& 0xc01;
1668 new_pstate_regs
= new_pstate
& 0xc01;
1669 if (new_pstate_regs
!= pstate_regs
) {
1670 // Switch global register bank
1671 src
= get_gregset(new_pstate_regs
);
1672 dst
= get_gregset(pstate_regs
);
1673 memcpy32(dst
, env
->gregs
);
1674 memcpy32(env
->gregs
, src
);
1676 env
->pstate
= new_pstate
;
1679 void helper_wrpstate(target_ulong new_state
)
1681 change_pstate(new_state
& 0xf3f);
1684 void helper_done(void)
1687 env
->pc
= env
->tnpc
[env
->tl
];
1688 env
->npc
= env
->tnpc
[env
->tl
] + 4;
1689 PUT_CCR(env
, env
->tstate
[env
->tl
] >> 32);
1690 env
->asi
= (env
->tstate
[env
->tl
] >> 24) & 0xff;
1691 change_pstate((env
->tstate
[env
->tl
] >> 8) & 0xf3f);
1692 PUT_CWP64(env
, env
->tstate
[env
->tl
] & 0xff);
1695 void helper_retry(void)
1698 env
->pc
= env
->tpc
[env
->tl
];
1699 env
->npc
= env
->tnpc
[env
->tl
];
1700 PUT_CCR(env
, env
->tstate
[env
->tl
] >> 32);
1701 env
->asi
= (env
->tstate
[env
->tl
] >> 24) & 0xff;
1702 change_pstate((env
->tstate
[env
->tl
] >> 8) & 0xf3f);
1703 PUT_CWP64(env
, env
->tstate
[env
->tl
] & 0xff);
1707 void set_cwp(int new_cwp
)
1709 /* put the modified wrap registers at their proper location */
1710 if (env
->cwp
== (NWINDOWS
- 1))
1711 memcpy32(env
->regbase
, env
->regbase
+ NWINDOWS
* 16);
1713 /* put the wrap registers at their temporary location */
1714 if (new_cwp
== (NWINDOWS
- 1))
1715 memcpy32(env
->regbase
+ NWINDOWS
* 16, env
->regbase
);
1716 env
->regwptr
= env
->regbase
+ (new_cwp
* 16);
1717 REGWPTR
= env
->regwptr
;
1720 void cpu_set_cwp(CPUState
*env1
, int new_cwp
)
1722 CPUState
*saved_env
;
1724 target_ulong
*saved_regwptr
;
1729 saved_regwptr
= REGWPTR
;
1735 REGWPTR
= saved_regwptr
;
1739 #ifdef TARGET_SPARC64
1741 static const char * const excp_names
[0x50] = {
1742 [TT_TFAULT
] = "Instruction Access Fault",
1743 [TT_TMISS
] = "Instruction Access MMU Miss",
1744 [TT_CODE_ACCESS
] = "Instruction Access Error",
1745 [TT_ILL_INSN
] = "Illegal Instruction",
1746 [TT_PRIV_INSN
] = "Privileged Instruction",
1747 [TT_NFPU_INSN
] = "FPU Disabled",
1748 [TT_FP_EXCP
] = "FPU Exception",
1749 [TT_TOVF
] = "Tag Overflow",
1750 [TT_CLRWIN
] = "Clean Windows",
1751 [TT_DIV_ZERO
] = "Division By Zero",
1752 [TT_DFAULT
] = "Data Access Fault",
1753 [TT_DMISS
] = "Data Access MMU Miss",
1754 [TT_DATA_ACCESS
] = "Data Access Error",
1755 [TT_DPROT
] = "Data Protection Error",
1756 [TT_UNALIGNED
] = "Unaligned Memory Access",
1757 [TT_PRIV_ACT
] = "Privileged Action",
1758 [TT_EXTINT
| 0x1] = "External Interrupt 1",
1759 [TT_EXTINT
| 0x2] = "External Interrupt 2",
1760 [TT_EXTINT
| 0x3] = "External Interrupt 3",
1761 [TT_EXTINT
| 0x4] = "External Interrupt 4",
1762 [TT_EXTINT
| 0x5] = "External Interrupt 5",
1763 [TT_EXTINT
| 0x6] = "External Interrupt 6",
1764 [TT_EXTINT
| 0x7] = "External Interrupt 7",
1765 [TT_EXTINT
| 0x8] = "External Interrupt 8",
1766 [TT_EXTINT
| 0x9] = "External Interrupt 9",
1767 [TT_EXTINT
| 0xa] = "External Interrupt 10",
1768 [TT_EXTINT
| 0xb] = "External Interrupt 11",
1769 [TT_EXTINT
| 0xc] = "External Interrupt 12",
1770 [TT_EXTINT
| 0xd] = "External Interrupt 13",
1771 [TT_EXTINT
| 0xe] = "External Interrupt 14",
1772 [TT_EXTINT
| 0xf] = "External Interrupt 15",
1776 void do_interrupt(int intno
)
1779 if (loglevel
& CPU_LOG_INT
) {
1783 if (intno
< 0 || intno
>= 0x180 || (intno
> 0x4f && intno
< 0x80))
1785 else if (intno
>= 0x100)
1786 name
= "Trap Instruction";
1787 else if (intno
>= 0xc0)
1788 name
= "Window Fill";
1789 else if (intno
>= 0x80)
1790 name
= "Window Spill";
1792 name
= excp_names
[intno
];
1797 fprintf(logfile
, "%6d: %s (v=%04x) pc=%016" PRIx64
" npc=%016" PRIx64
1798 " SP=%016" PRIx64
"\n",
1801 env
->npc
, env
->regwptr
[6]);
1802 cpu_dump_state(env
, logfile
, fprintf
, 0);
1808 fprintf(logfile
, " code=");
1809 ptr
= (uint8_t *)env
->pc
;
1810 for(i
= 0; i
< 16; i
++) {
1811 fprintf(logfile
, " %02x", ldub(ptr
+ i
));
1813 fprintf(logfile
, "\n");
1819 #if !defined(CONFIG_USER_ONLY)
1820 if (env
->tl
== MAXTL
) {
1821 cpu_abort(env
, "Trap 0x%04x while trap level is MAXTL, Error state", env
->exception_index
);
1825 env
->tstate
[env
->tl
] = ((uint64_t)GET_CCR(env
) << 32) | ((env
->asi
& 0xff) << 24) |
1826 ((env
->pstate
& 0xf3f) << 8) | GET_CWP64(env
);
1827 env
->tpc
[env
->tl
] = env
->pc
;
1828 env
->tnpc
[env
->tl
] = env
->npc
;
1829 env
->tt
[env
->tl
] = intno
;
1830 change_pstate(PS_PEF
| PS_PRIV
| PS_AG
);
1832 if (intno
== TT_CLRWIN
)
1833 set_cwp((env
->cwp
- 1) & (NWINDOWS
- 1));
1834 else if ((intno
& 0x1c0) == TT_SPILL
)
1835 set_cwp((env
->cwp
- env
->cansave
- 2) & (NWINDOWS
- 1));
1836 else if ((intno
& 0x1c0) == TT_FILL
)
1837 set_cwp((env
->cwp
+ 1) & (NWINDOWS
- 1));
1838 env
->tbr
&= ~0x7fffULL
;
1839 env
->tbr
|= ((env
->tl
> 1) ? 1 << 14 : 0) | (intno
<< 5);
1840 if (env
->tl
< MAXTL
- 1) {
1843 env
->pstate
|= PS_RED
;
1844 if (env
->tl
!= MAXTL
)
1848 env
->npc
= env
->pc
+ 4;
1849 env
->exception_index
= 0;
1853 static const char * const excp_names
[0x80] = {
1854 [TT_TFAULT
] = "Instruction Access Fault",
1855 [TT_ILL_INSN
] = "Illegal Instruction",
1856 [TT_PRIV_INSN
] = "Privileged Instruction",
1857 [TT_NFPU_INSN
] = "FPU Disabled",
1858 [TT_WIN_OVF
] = "Window Overflow",
1859 [TT_WIN_UNF
] = "Window Underflow",
1860 [TT_UNALIGNED
] = "Unaligned Memory Access",
1861 [TT_FP_EXCP
] = "FPU Exception",
1862 [TT_DFAULT
] = "Data Access Fault",
1863 [TT_TOVF
] = "Tag Overflow",
1864 [TT_EXTINT
| 0x1] = "External Interrupt 1",
1865 [TT_EXTINT
| 0x2] = "External Interrupt 2",
1866 [TT_EXTINT
| 0x3] = "External Interrupt 3",
1867 [TT_EXTINT
| 0x4] = "External Interrupt 4",
1868 [TT_EXTINT
| 0x5] = "External Interrupt 5",
1869 [TT_EXTINT
| 0x6] = "External Interrupt 6",
1870 [TT_EXTINT
| 0x7] = "External Interrupt 7",
1871 [TT_EXTINT
| 0x8] = "External Interrupt 8",
1872 [TT_EXTINT
| 0x9] = "External Interrupt 9",
1873 [TT_EXTINT
| 0xa] = "External Interrupt 10",
1874 [TT_EXTINT
| 0xb] = "External Interrupt 11",
1875 [TT_EXTINT
| 0xc] = "External Interrupt 12",
1876 [TT_EXTINT
| 0xd] = "External Interrupt 13",
1877 [TT_EXTINT
| 0xe] = "External Interrupt 14",
1878 [TT_EXTINT
| 0xf] = "External Interrupt 15",
1879 [TT_TOVF
] = "Tag Overflow",
1880 [TT_CODE_ACCESS
] = "Instruction Access Error",
1881 [TT_DATA_ACCESS
] = "Data Access Error",
1882 [TT_DIV_ZERO
] = "Division By Zero",
1883 [TT_NCP_INSN
] = "Coprocessor Disabled",
1887 void do_interrupt(int intno
)
1892 if (loglevel
& CPU_LOG_INT
) {
1896 if (intno
< 0 || intno
>= 0x100)
1898 else if (intno
>= 0x80)
1899 name
= "Trap Instruction";
1901 name
= excp_names
[intno
];
1906 fprintf(logfile
, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
1909 env
->npc
, env
->regwptr
[6]);
1910 cpu_dump_state(env
, logfile
, fprintf
, 0);
1916 fprintf(logfile
, " code=");
1917 ptr
= (uint8_t *)env
->pc
;
1918 for(i
= 0; i
< 16; i
++) {
1919 fprintf(logfile
, " %02x", ldub(ptr
+ i
));
1921 fprintf(logfile
, "\n");
1927 #if !defined(CONFIG_USER_ONLY)
1928 if (env
->psret
== 0) {
1929 cpu_abort(env
, "Trap 0x%02x while interrupts disabled, Error state", env
->exception_index
);
1934 cwp
= (env
->cwp
- 1) & (NWINDOWS
- 1);
1936 env
->regwptr
[9] = env
->pc
;
1937 env
->regwptr
[10] = env
->npc
;
1938 env
->psrps
= env
->psrs
;
1940 env
->tbr
= (env
->tbr
& TBR_BASE_MASK
) | (intno
<< 4);
1942 env
->npc
= env
->pc
+ 4;
1943 env
->exception_index
= 0;
1947 #if !defined(CONFIG_USER_ONLY)
1949 static void do_unaligned_access(target_ulong addr
, int is_write
, int is_user
,
1952 #define MMUSUFFIX _mmu
1953 #define ALIGNED_ONLY
1955 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
1957 # define GETPC() (__builtin_return_address(0))
1961 #include "softmmu_template.h"
1964 #include "softmmu_template.h"
1967 #include "softmmu_template.h"
1970 #include "softmmu_template.h"
1972 static void do_unaligned_access(target_ulong addr
, int is_write
, int is_user
,
1975 #ifdef DEBUG_UNALIGNED
1976 printf("Unaligned access to 0x%x from 0x%x\n", addr
, env
->pc
);
1978 raise_exception(TT_UNALIGNED
);
1981 /* try to fill the TLB and return an exception if error. If retaddr is
1982 NULL, it means that the function was called in C code (i.e. not
1983 from generated code or from helper.c) */
1984 /* XXX: fix it to restore all registers */
1985 void tlb_fill(target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
1987 TranslationBlock
*tb
;
1990 CPUState
*saved_env
;
1992 /* XXX: hack to restore env in all cases, even if not called from
1995 env
= cpu_single_env
;
1997 ret
= cpu_sparc_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
2000 /* now we have a real cpu fault */
2001 pc
= (unsigned long)retaddr
;
2002 tb
= tb_find_pc(pc
);
2004 /* the PC is inside the translated code. It means that we have
2005 a virtual CPU fault */
2006 cpu_restore_state(tb
, env
, pc
, (void *)T2
);
2016 #ifndef TARGET_SPARC64
2017 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
2020 CPUState
*saved_env
;
2022 /* XXX: hack to restore env in all cases, even if not called from
2025 env
= cpu_single_env
;
2026 #ifdef DEBUG_UNASSIGNED
2028 printf("Unassigned mem %s access to " TARGET_FMT_plx
" asi 0x%02x from "
2030 is_exec
? "exec" : is_write
? "write" : "read", addr
, is_asi
,
2033 printf("Unassigned mem %s access to " TARGET_FMT_plx
" from "
2035 is_exec
? "exec" : is_write
? "write" : "read", addr
, env
->pc
);
2037 if (env
->mmuregs
[3]) /* Fault status register */
2038 env
->mmuregs
[3] = 1; /* overflow (not read before another fault) */
2040 env
->mmuregs
[3] |= 1 << 16;
2042 env
->mmuregs
[3] |= 1 << 5;
2044 env
->mmuregs
[3] |= 1 << 6;
2046 env
->mmuregs
[3] |= 1 << 7;
2047 env
->mmuregs
[3] |= (5 << 2) | 2;
2048 env
->mmuregs
[4] = addr
; /* Fault address register */
2049 if ((env
->mmuregs
[0] & MMU_E
) && !(env
->mmuregs
[0] & MMU_NF
)) {
2051 raise_exception(TT_CODE_ACCESS
);
2053 raise_exception(TT_DATA_ACCESS
);
2058 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
2061 #ifdef DEBUG_UNASSIGNED
2062 CPUState
*saved_env
;
2064 /* XXX: hack to restore env in all cases, even if not called from
2067 env
= cpu_single_env
;
2068 printf("Unassigned mem access to " TARGET_FMT_plx
" from " TARGET_FMT_lx
"\n",
2073 raise_exception(TT_CODE_ACCESS
);
2075 raise_exception(TT_DATA_ACCESS
);