A first small step to convert the CRIS translator to TCG.
[qemu/malc.git] / exec-all.h
bloba35b7d6c2e65beac4a36eae1e1d7e5f48ec2befc
1 /*
2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
24 /* is_jmp field values */
25 #define DISAS_NEXT 0 /* next instruction can be analyzed */
26 #define DISAS_JUMP 1 /* only pc was modified dynamically */
27 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
28 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
30 struct TranslationBlock;
32 /* XXX: make safe guess about sizes */
33 #define MAX_OP_PER_INSTR 32
34 /* A Call op needs up to 6 + 2N parameters (N = number of arguments). */
35 #define MAX_OPC_PARAM 10
36 #define OPC_BUF_SIZE 512
37 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
39 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
41 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
42 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
43 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
44 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
45 extern target_ulong gen_opc_jump_pc[2];
46 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
48 typedef void (GenOpFunc)(void);
49 typedef void (GenOpFunc1)(long);
50 typedef void (GenOpFunc2)(long, long);
51 typedef void (GenOpFunc3)(long, long, long);
53 #if defined(TARGET_I386)
55 void optimize_flags_init(void);
57 #endif
59 extern FILE *logfile;
60 extern int loglevel;
62 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64 unsigned long code_gen_max_block_size(void);
65 void cpu_gen_init(void);
66 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
67 int *gen_code_size_ptr);
68 int cpu_restore_state(struct TranslationBlock *tb,
69 CPUState *env, unsigned long searched_pc,
70 void *puc);
71 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
72 int max_code_size, int *gen_code_size_ptr);
73 int cpu_restore_state_copy(struct TranslationBlock *tb,
74 CPUState *env, unsigned long searched_pc,
75 void *puc);
76 void cpu_resume_from_signal(CPUState *env1, void *puc);
77 void cpu_exec_init(CPUState *env);
78 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
79 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
80 int is_cpu_write_access);
81 void tb_invalidate_page_range(target_ulong start, target_ulong end);
82 void tlb_flush_page(CPUState *env, target_ulong addr);
83 void tlb_flush(CPUState *env, int flush_global);
84 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
85 target_phys_addr_t paddr, int prot,
86 int mmu_idx, int is_softmmu);
87 static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
88 target_phys_addr_t paddr, int prot,
89 int mmu_idx, int is_softmmu)
91 if (prot & PAGE_READ)
92 prot |= PAGE_EXEC;
93 return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
96 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
98 #define CODE_GEN_PHYS_HASH_BITS 15
99 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
101 /* maximum total translate dcode allocated */
103 /* NOTE: the translated code area cannot be too big because on some
104 archs the range of "fast" function calls is limited. Here is a
105 summary of the ranges:
107 i386 : signed 32 bits
108 arm : signed 26 bits
109 ppc : signed 24 bits
110 sparc : signed 32 bits
111 alpha : signed 23 bits
114 #if defined(__alpha__)
115 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
116 #elif defined(__ia64)
117 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
118 #elif defined(__powerpc__)
119 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
120 #else
121 /* XXX: make it dynamic on x86 */
122 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
123 #endif
125 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
127 /* estimated block size for TB allocation */
128 /* XXX: use a per code average code fragment size and modulate it
129 according to the host CPU */
130 #if defined(CONFIG_SOFTMMU)
131 #define CODE_GEN_AVG_BLOCK_SIZE 128
132 #else
133 #define CODE_GEN_AVG_BLOCK_SIZE 64
134 #endif
136 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
138 #if defined(__powerpc__) || defined(__x86_64__)
139 #define USE_DIRECT_JUMP
140 #endif
141 #if defined(__i386__) && !defined(_WIN32)
142 #define USE_DIRECT_JUMP
143 #endif
145 typedef struct TranslationBlock {
146 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
147 target_ulong cs_base; /* CS base for this block */
148 uint64_t flags; /* flags defining in which context the code was generated */
149 uint16_t size; /* size of target code for this block (1 <=
150 size <= TARGET_PAGE_SIZE) */
151 uint16_t cflags; /* compile flags */
152 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
153 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
154 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
155 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
157 uint8_t *tc_ptr; /* pointer to the translated code */
158 /* next matching tb for physical address. */
159 struct TranslationBlock *phys_hash_next;
160 /* first and second physical page containing code. The lower bit
161 of the pointer tells the index in page_next[] */
162 struct TranslationBlock *page_next[2];
163 target_ulong page_addr[2];
165 /* the following data are used to directly call another TB from
166 the code of this one. */
167 uint16_t tb_next_offset[2]; /* offset of original jump target */
168 #ifdef USE_DIRECT_JUMP
169 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
170 #else
171 unsigned long tb_next[2]; /* address of jump generated code */
172 #endif
173 /* list of TBs jumping to this one. This is a circular list using
174 the two least significant bits of the pointers to tell what is
175 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
176 jmp_first */
177 struct TranslationBlock *jmp_next[2];
178 struct TranslationBlock *jmp_first;
179 } TranslationBlock;
181 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
183 target_ulong tmp;
184 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
185 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
188 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
190 target_ulong tmp;
191 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
192 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
193 (tmp & TB_JMP_ADDR_MASK));
196 static inline unsigned int tb_phys_hash_func(unsigned long pc)
198 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
201 TranslationBlock *tb_alloc(target_ulong pc);
202 void tb_flush(CPUState *env);
203 void tb_link_phys(TranslationBlock *tb,
204 target_ulong phys_pc, target_ulong phys_page2);
206 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
208 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
209 extern uint8_t *code_gen_ptr;
211 #if defined(USE_DIRECT_JUMP)
213 #if defined(__powerpc__)
214 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
216 uint32_t val, *ptr;
218 /* patch the branch destination */
219 ptr = (uint32_t *)jmp_addr;
220 val = *ptr;
221 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
222 *ptr = val;
223 /* flush icache */
224 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
225 asm volatile ("sync" : : : "memory");
226 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
227 asm volatile ("sync" : : : "memory");
228 asm volatile ("isync" : : : "memory");
230 #elif defined(__i386__) || defined(__x86_64__)
231 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
233 /* patch the branch destination */
234 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
235 /* no need to flush icache explicitely */
237 #endif
239 static inline void tb_set_jmp_target(TranslationBlock *tb,
240 int n, unsigned long addr)
242 unsigned long offset;
244 offset = tb->tb_jmp_offset[n];
245 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
246 offset = tb->tb_jmp_offset[n + 2];
247 if (offset != 0xffff)
248 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
251 #else
253 /* set the jump target */
254 static inline void tb_set_jmp_target(TranslationBlock *tb,
255 int n, unsigned long addr)
257 tb->tb_next[n] = addr;
260 #endif
262 static inline void tb_add_jump(TranslationBlock *tb, int n,
263 TranslationBlock *tb_next)
265 /* NOTE: this test is only needed for thread safety */
266 if (!tb->jmp_next[n]) {
267 /* patch the native jump address */
268 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
270 /* add in TB jmp circular list */
271 tb->jmp_next[n] = tb_next->jmp_first;
272 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
276 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
278 #ifndef offsetof
279 #define offsetof(type, field) ((size_t) &((type *)0)->field)
280 #endif
282 #if defined(_WIN32)
283 #define ASM_DATA_SECTION ".section \".data\"\n"
284 #define ASM_PREVIOUS_SECTION ".section .text\n"
285 #elif defined(__APPLE__)
286 #define ASM_DATA_SECTION ".data\n"
287 #define ASM_PREVIOUS_SECTION ".text\n"
288 #else
289 #define ASM_DATA_SECTION ".section \".data\"\n"
290 #define ASM_PREVIOUS_SECTION ".previous\n"
291 #endif
293 #define ASM_OP_LABEL_NAME(n, opname) \
294 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
296 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
297 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
298 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
300 #if defined(__powerpc__)
301 static inline int testandset (int *p)
303 int ret;
304 __asm__ __volatile__ (
305 "0: lwarx %0,0,%1\n"
306 " xor. %0,%3,%0\n"
307 " bne 1f\n"
308 " stwcx. %2,0,%1\n"
309 " bne- 0b\n"
310 "1: "
311 : "=&r" (ret)
312 : "r" (p), "r" (1), "r" (0)
313 : "cr0", "memory");
314 return ret;
316 #elif defined(__i386__)
317 static inline int testandset (int *p)
319 long int readval = 0;
321 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
322 : "+m" (*p), "+a" (readval)
323 : "r" (1)
324 : "cc");
325 return readval;
327 #elif defined(__x86_64__)
328 static inline int testandset (int *p)
330 long int readval = 0;
332 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
333 : "+m" (*p), "+a" (readval)
334 : "r" (1)
335 : "cc");
336 return readval;
338 #elif defined(__s390__)
339 static inline int testandset (int *p)
341 int ret;
343 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
344 " jl 0b"
345 : "=&d" (ret)
346 : "r" (1), "a" (p), "0" (*p)
347 : "cc", "memory" );
348 return ret;
350 #elif defined(__alpha__)
351 static inline int testandset (int *p)
353 int ret;
354 unsigned long one;
356 __asm__ __volatile__ ("0: mov 1,%2\n"
357 " ldl_l %0,%1\n"
358 " stl_c %2,%1\n"
359 " beq %2,1f\n"
360 ".subsection 2\n"
361 "1: br 0b\n"
362 ".previous"
363 : "=r" (ret), "=m" (*p), "=r" (one)
364 : "m" (*p));
365 return ret;
367 #elif defined(__sparc__)
368 static inline int testandset (int *p)
370 int ret;
372 __asm__ __volatile__("ldstub [%1], %0"
373 : "=r" (ret)
374 : "r" (p)
375 : "memory");
377 return (ret ? 1 : 0);
379 #elif defined(__arm__)
380 static inline int testandset (int *spinlock)
382 register unsigned int ret;
383 __asm__ __volatile__("swp %0, %1, [%2]"
384 : "=r"(ret)
385 : "0"(1), "r"(spinlock));
387 return ret;
389 #elif defined(__mc68000)
390 static inline int testandset (int *p)
392 char ret;
393 __asm__ __volatile__("tas %1; sne %0"
394 : "=r" (ret)
395 : "m" (p)
396 : "cc","memory");
397 return ret;
399 #elif defined(__ia64)
401 #include <ia64intrin.h>
403 static inline int testandset (int *p)
405 return __sync_lock_test_and_set (p, 1);
407 #elif defined(__mips__)
408 static inline int testandset (int *p)
410 int ret;
412 __asm__ __volatile__ (
413 " .set push \n"
414 " .set noat \n"
415 " .set mips2 \n"
416 "1: li $1, 1 \n"
417 " ll %0, %1 \n"
418 " sc $1, %1 \n"
419 " beqz $1, 1b \n"
420 " .set pop "
421 : "=r" (ret), "+R" (*p)
423 : "memory");
425 return ret;
427 #else
428 #error unimplemented CPU support
429 #endif
431 typedef int spinlock_t;
433 #define SPIN_LOCK_UNLOCKED 0
435 #if defined(CONFIG_USER_ONLY)
436 static inline void spin_lock(spinlock_t *lock)
438 while (testandset(lock));
441 static inline void spin_unlock(spinlock_t *lock)
443 *lock = 0;
446 static inline int spin_trylock(spinlock_t *lock)
448 return !testandset(lock);
450 #else
451 static inline void spin_lock(spinlock_t *lock)
455 static inline void spin_unlock(spinlock_t *lock)
459 static inline int spin_trylock(spinlock_t *lock)
461 return 1;
463 #endif
465 extern spinlock_t tb_lock;
467 extern int tb_invalidated_flag;
469 #if !defined(CONFIG_USER_ONLY)
471 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
472 void *retaddr);
474 #define ACCESS_TYPE (NB_MMU_MODES + 1)
475 #define MEMSUFFIX _code
476 #define env cpu_single_env
478 #define DATA_SIZE 1
479 #include "softmmu_header.h"
481 #define DATA_SIZE 2
482 #include "softmmu_header.h"
484 #define DATA_SIZE 4
485 #include "softmmu_header.h"
487 #define DATA_SIZE 8
488 #include "softmmu_header.h"
490 #undef ACCESS_TYPE
491 #undef MEMSUFFIX
492 #undef env
494 #endif
496 #if defined(CONFIG_USER_ONLY)
497 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
499 return addr;
501 #else
502 /* NOTE: this function can trigger an exception */
503 /* NOTE2: the returned address is not exactly the physical address: it
504 is the offset relative to phys_ram_base */
505 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
507 int mmu_idx, index, pd;
509 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
510 mmu_idx = cpu_mmu_index(env);
511 if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
512 (addr & TARGET_PAGE_MASK), 0)) {
513 ldub_code(addr);
515 pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
516 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
517 #if defined(TARGET_SPARC) || defined(TARGET_MIPS)
518 do_unassigned_access(addr, 0, 1, 0);
519 #else
520 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
521 #endif
523 return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
525 #endif
527 #ifdef USE_KQEMU
528 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
530 int kqemu_init(CPUState *env);
531 int kqemu_cpu_exec(CPUState *env);
532 void kqemu_flush_page(CPUState *env, target_ulong addr);
533 void kqemu_flush(CPUState *env, int global);
534 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
535 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
536 void kqemu_cpu_interrupt(CPUState *env);
537 void kqemu_record_dump(void);
539 static inline int kqemu_is_ok(CPUState *env)
541 return(env->kqemu_enabled &&
542 (env->cr[0] & CR0_PE_MASK) &&
543 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
544 (env->eflags & IF_MASK) &&
545 !(env->eflags & VM_MASK) &&
546 (env->kqemu_enabled == 2 ||
547 ((env->hflags & HF_CPL_MASK) == 3 &&
548 (env->eflags & IOPL_MASK) != IOPL_MASK)));
551 #endif