2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "host-utils.h"
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
28 void helper_raise_exception_err (uint32_t exception
, int error_code
)
31 if (exception
< 0x100)
32 qemu_log("%s: %d %d\n", __func__
, exception
, error_code
);
34 env
->exception_index
= exception
;
35 env
->error_code
= error_code
;
39 void helper_raise_exception (uint32_t exception
)
41 helper_raise_exception_err(exception
, 0);
44 void helper_interrupt_restart (void)
46 if (!(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
47 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
48 !(env
->hflags
& MIPS_HFLAG_DM
) &&
49 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
50 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
)) {
51 env
->CP0_Cause
&= ~(0x1f << CP0Ca_EC
);
52 helper_raise_exception(EXCP_EXT_INTERRUPT
);
56 #if !defined(CONFIG_USER_ONLY)
57 static void do_restore_state (void *pc_ptr
)
60 unsigned long pc
= (unsigned long) pc_ptr
;
64 cpu_restore_state (tb
, env
, pc
, NULL
);
69 target_ulong
helper_clo (target_ulong arg1
)
74 target_ulong
helper_clz (target_ulong arg1
)
79 #if defined(TARGET_MIPS64)
80 target_ulong
helper_dclo (target_ulong arg1
)
85 target_ulong
helper_dclz (target_ulong arg1
)
89 #endif /* TARGET_MIPS64 */
91 /* 64 bits arithmetic for 32 bits hosts */
92 static inline uint64_t get_HILO (void)
94 return ((uint64_t)(env
->active_tc
.HI
[0]) << 32) | (uint32_t)env
->active_tc
.LO
[0];
97 static inline void set_HILO (uint64_t HILO
)
99 env
->active_tc
.LO
[0] = (int32_t)HILO
;
100 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
103 static inline void set_HIT0_LO (target_ulong arg1
, uint64_t HILO
)
105 env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
106 arg1
= env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
109 static inline void set_HI_LOT0 (target_ulong arg1
, uint64_t HILO
)
111 arg1
= env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
112 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
115 /* Multiplication variants of the vr54xx. */
116 target_ulong
helper_muls (target_ulong arg1
, target_ulong arg2
)
118 set_HI_LOT0(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
123 target_ulong
helper_mulsu (target_ulong arg1
, target_ulong arg2
)
125 set_HI_LOT0(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
130 target_ulong
helper_macc (target_ulong arg1
, target_ulong arg2
)
132 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
137 target_ulong
helper_macchi (target_ulong arg1
, target_ulong arg2
)
139 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
144 target_ulong
helper_maccu (target_ulong arg1
, target_ulong arg2
)
146 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
151 target_ulong
helper_macchiu (target_ulong arg1
, target_ulong arg2
)
153 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
158 target_ulong
helper_msac (target_ulong arg1
, target_ulong arg2
)
160 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
165 target_ulong
helper_msachi (target_ulong arg1
, target_ulong arg2
)
167 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
172 target_ulong
helper_msacu (target_ulong arg1
, target_ulong arg2
)
174 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
179 target_ulong
helper_msachiu (target_ulong arg1
, target_ulong arg2
)
181 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
186 target_ulong
helper_mulhi (target_ulong arg1
, target_ulong arg2
)
188 set_HIT0_LO(arg1
, (int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
);
193 target_ulong
helper_mulhiu (target_ulong arg1
, target_ulong arg2
)
195 set_HIT0_LO(arg1
, (uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
);
200 target_ulong
helper_mulshi (target_ulong arg1
, target_ulong arg2
)
202 set_HIT0_LO(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
207 target_ulong
helper_mulshiu (target_ulong arg1
, target_ulong arg2
)
209 set_HIT0_LO(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
215 void helper_dmult (target_ulong arg1
, target_ulong arg2
)
217 muls64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
220 void helper_dmultu (target_ulong arg1
, target_ulong arg2
)
222 mulu64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
226 #ifdef TARGET_WORDS_BIGENDIAN
227 #define GET_LMASK(v) ((v) & 3)
228 #define GET_OFFSET(addr, offset) (addr + (offset))
230 #define GET_LMASK(v) (((v) & 3) ^ 3)
231 #define GET_OFFSET(addr, offset) (addr - (offset))
234 target_ulong
helper_lwl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
238 #ifdef CONFIG_USER_ONLY
239 #define ldfun ldub_raw
241 int (*ldfun
)(target_ulong
);
245 case 0: ldfun
= ldub_kernel
; break;
246 case 1: ldfun
= ldub_super
; break;
248 case 2: ldfun
= ldub_user
; break;
252 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
254 if (GET_LMASK(arg2
) <= 2) {
255 tmp
= ldfun(GET_OFFSET(arg2
, 1));
256 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
259 if (GET_LMASK(arg2
) <= 1) {
260 tmp
= ldfun(GET_OFFSET(arg2
, 2));
261 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
264 if (GET_LMASK(arg2
) == 0) {
265 tmp
= ldfun(GET_OFFSET(arg2
, 3));
266 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
268 return (int32_t)arg1
;
271 target_ulong
helper_lwr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
275 #ifdef CONFIG_USER_ONLY
276 #define ldfun ldub_raw
278 int (*ldfun
)(target_ulong
);
282 case 0: ldfun
= ldub_kernel
; break;
283 case 1: ldfun
= ldub_super
; break;
285 case 2: ldfun
= ldub_user
; break;
289 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
291 if (GET_LMASK(arg2
) >= 1) {
292 tmp
= ldfun(GET_OFFSET(arg2
, -1));
293 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
296 if (GET_LMASK(arg2
) >= 2) {
297 tmp
= ldfun(GET_OFFSET(arg2
, -2));
298 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
301 if (GET_LMASK(arg2
) == 3) {
302 tmp
= ldfun(GET_OFFSET(arg2
, -3));
303 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
305 return (int32_t)arg1
;
308 void helper_swl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
310 #ifdef CONFIG_USER_ONLY
311 #define stfun stb_raw
313 void (*stfun
)(target_ulong
, int);
317 case 0: stfun
= stb_kernel
; break;
318 case 1: stfun
= stb_super
; break;
320 case 2: stfun
= stb_user
; break;
323 stfun(arg2
, (uint8_t)(arg1
>> 24));
325 if (GET_LMASK(arg2
) <= 2)
326 stfun(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 16));
328 if (GET_LMASK(arg2
) <= 1)
329 stfun(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 8));
331 if (GET_LMASK(arg2
) == 0)
332 stfun(GET_OFFSET(arg2
, 3), (uint8_t)arg1
);
335 void helper_swr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
337 #ifdef CONFIG_USER_ONLY
338 #define stfun stb_raw
340 void (*stfun
)(target_ulong
, int);
344 case 0: stfun
= stb_kernel
; break;
345 case 1: stfun
= stb_super
; break;
347 case 2: stfun
= stb_user
; break;
350 stfun(arg2
, (uint8_t)arg1
);
352 if (GET_LMASK(arg2
) >= 1)
353 stfun(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8));
355 if (GET_LMASK(arg2
) >= 2)
356 stfun(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16));
358 if (GET_LMASK(arg2
) == 3)
359 stfun(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24));
362 #if defined(TARGET_MIPS64)
363 /* "half" load and stores. We must do the memory access inline,
364 or fault handling won't work. */
366 #ifdef TARGET_WORDS_BIGENDIAN
367 #define GET_LMASK64(v) ((v) & 7)
369 #define GET_LMASK64(v) (((v) & 7) ^ 7)
372 target_ulong
helper_ldl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
376 #ifdef CONFIG_USER_ONLY
377 #define ldfun ldub_raw
379 int (*ldfun
)(target_ulong
);
383 case 0: ldfun
= ldub_kernel
; break;
384 case 1: ldfun
= ldub_super
; break;
386 case 2: ldfun
= ldub_user
; break;
390 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
392 if (GET_LMASK64(arg2
) <= 6) {
393 tmp
= ldfun(GET_OFFSET(arg2
, 1));
394 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
397 if (GET_LMASK64(arg2
) <= 5) {
398 tmp
= ldfun(GET_OFFSET(arg2
, 2));
399 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
402 if (GET_LMASK64(arg2
) <= 4) {
403 tmp
= ldfun(GET_OFFSET(arg2
, 3));
404 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
407 if (GET_LMASK64(arg2
) <= 3) {
408 tmp
= ldfun(GET_OFFSET(arg2
, 4));
409 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
412 if (GET_LMASK64(arg2
) <= 2) {
413 tmp
= ldfun(GET_OFFSET(arg2
, 5));
414 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
417 if (GET_LMASK64(arg2
) <= 1) {
418 tmp
= ldfun(GET_OFFSET(arg2
, 6));
419 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
422 if (GET_LMASK64(arg2
) == 0) {
423 tmp
= ldfun(GET_OFFSET(arg2
, 7));
424 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
430 target_ulong
helper_ldr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
434 #ifdef CONFIG_USER_ONLY
435 #define ldfun ldub_raw
437 int (*ldfun
)(target_ulong
);
441 case 0: ldfun
= ldub_kernel
; break;
442 case 1: ldfun
= ldub_super
; break;
444 case 2: ldfun
= ldub_user
; break;
448 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
450 if (GET_LMASK64(arg2
) >= 1) {
451 tmp
= ldfun(GET_OFFSET(arg2
, -1));
452 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
455 if (GET_LMASK64(arg2
) >= 2) {
456 tmp
= ldfun(GET_OFFSET(arg2
, -2));
457 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
460 if (GET_LMASK64(arg2
) >= 3) {
461 tmp
= ldfun(GET_OFFSET(arg2
, -3));
462 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
465 if (GET_LMASK64(arg2
) >= 4) {
466 tmp
= ldfun(GET_OFFSET(arg2
, -4));
467 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
470 if (GET_LMASK64(arg2
) >= 5) {
471 tmp
= ldfun(GET_OFFSET(arg2
, -5));
472 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
475 if (GET_LMASK64(arg2
) >= 6) {
476 tmp
= ldfun(GET_OFFSET(arg2
, -6));
477 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
480 if (GET_LMASK64(arg2
) == 7) {
481 tmp
= ldfun(GET_OFFSET(arg2
, -7));
482 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
488 void helper_sdl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
490 #ifdef CONFIG_USER_ONLY
491 #define stfun stb_raw
493 void (*stfun
)(target_ulong
, int);
497 case 0: stfun
= stb_kernel
; break;
498 case 1: stfun
= stb_super
; break;
500 case 2: stfun
= stb_user
; break;
503 stfun(arg2
, (uint8_t)(arg1
>> 56));
505 if (GET_LMASK64(arg2
) <= 6)
506 stfun(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 48));
508 if (GET_LMASK64(arg2
) <= 5)
509 stfun(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 40));
511 if (GET_LMASK64(arg2
) <= 4)
512 stfun(GET_OFFSET(arg2
, 3), (uint8_t)(arg1
>> 32));
514 if (GET_LMASK64(arg2
) <= 3)
515 stfun(GET_OFFSET(arg2
, 4), (uint8_t)(arg1
>> 24));
517 if (GET_LMASK64(arg2
) <= 2)
518 stfun(GET_OFFSET(arg2
, 5), (uint8_t)(arg1
>> 16));
520 if (GET_LMASK64(arg2
) <= 1)
521 stfun(GET_OFFSET(arg2
, 6), (uint8_t)(arg1
>> 8));
523 if (GET_LMASK64(arg2
) <= 0)
524 stfun(GET_OFFSET(arg2
, 7), (uint8_t)arg1
);
527 void helper_sdr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
529 #ifdef CONFIG_USER_ONLY
530 #define stfun stb_raw
532 void (*stfun
)(target_ulong
, int);
536 case 0: stfun
= stb_kernel
; break;
537 case 1: stfun
= stb_super
; break;
539 case 2: stfun
= stb_user
; break;
542 stfun(arg2
, (uint8_t)arg1
);
544 if (GET_LMASK64(arg2
) >= 1)
545 stfun(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8));
547 if (GET_LMASK64(arg2
) >= 2)
548 stfun(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16));
550 if (GET_LMASK64(arg2
) >= 3)
551 stfun(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24));
553 if (GET_LMASK64(arg2
) >= 4)
554 stfun(GET_OFFSET(arg2
, -4), (uint8_t)(arg1
>> 32));
556 if (GET_LMASK64(arg2
) >= 5)
557 stfun(GET_OFFSET(arg2
, -5), (uint8_t)(arg1
>> 40));
559 if (GET_LMASK64(arg2
) >= 6)
560 stfun(GET_OFFSET(arg2
, -6), (uint8_t)(arg1
>> 48));
562 if (GET_LMASK64(arg2
) == 7)
563 stfun(GET_OFFSET(arg2
, -7), (uint8_t)(arg1
>> 56));
565 #endif /* TARGET_MIPS64 */
567 #ifndef CONFIG_USER_ONLY
569 target_ulong
helper_mfc0_mvpcontrol (void)
571 return env
->mvp
->CP0_MVPControl
;
574 target_ulong
helper_mfc0_mvpconf0 (void)
576 return env
->mvp
->CP0_MVPConf0
;
579 target_ulong
helper_mfc0_mvpconf1 (void)
581 return env
->mvp
->CP0_MVPConf1
;
584 target_ulong
helper_mfc0_random (void)
586 return (int32_t)cpu_mips_get_random(env
);
589 target_ulong
helper_mfc0_tcstatus (void)
591 return env
->active_tc
.CP0_TCStatus
;
594 target_ulong
helper_mftc0_tcstatus(void)
596 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
598 if (other_tc
== env
->current_tc
)
599 return env
->active_tc
.CP0_TCStatus
;
601 return env
->tcs
[other_tc
].CP0_TCStatus
;
604 target_ulong
helper_mfc0_tcbind (void)
606 return env
->active_tc
.CP0_TCBind
;
609 target_ulong
helper_mftc0_tcbind(void)
611 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
613 if (other_tc
== env
->current_tc
)
614 return env
->active_tc
.CP0_TCBind
;
616 return env
->tcs
[other_tc
].CP0_TCBind
;
619 target_ulong
helper_mfc0_tcrestart (void)
621 return env
->active_tc
.PC
;
624 target_ulong
helper_mftc0_tcrestart(void)
626 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
628 if (other_tc
== env
->current_tc
)
629 return env
->active_tc
.PC
;
631 return env
->tcs
[other_tc
].PC
;
634 target_ulong
helper_mfc0_tchalt (void)
636 return env
->active_tc
.CP0_TCHalt
;
639 target_ulong
helper_mftc0_tchalt(void)
641 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
643 if (other_tc
== env
->current_tc
)
644 return env
->active_tc
.CP0_TCHalt
;
646 return env
->tcs
[other_tc
].CP0_TCHalt
;
649 target_ulong
helper_mfc0_tccontext (void)
651 return env
->active_tc
.CP0_TCContext
;
654 target_ulong
helper_mftc0_tccontext(void)
656 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
658 if (other_tc
== env
->current_tc
)
659 return env
->active_tc
.CP0_TCContext
;
661 return env
->tcs
[other_tc
].CP0_TCContext
;
664 target_ulong
helper_mfc0_tcschedule (void)
666 return env
->active_tc
.CP0_TCSchedule
;
669 target_ulong
helper_mftc0_tcschedule(void)
671 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
673 if (other_tc
== env
->current_tc
)
674 return env
->active_tc
.CP0_TCSchedule
;
676 return env
->tcs
[other_tc
].CP0_TCSchedule
;
679 target_ulong
helper_mfc0_tcschefback (void)
681 return env
->active_tc
.CP0_TCScheFBack
;
684 target_ulong
helper_mftc0_tcschefback(void)
686 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
688 if (other_tc
== env
->current_tc
)
689 return env
->active_tc
.CP0_TCScheFBack
;
691 return env
->tcs
[other_tc
].CP0_TCScheFBack
;
694 target_ulong
helper_mfc0_count (void)
696 return (int32_t)cpu_mips_get_count(env
);
699 target_ulong
helper_mftc0_entryhi(void)
701 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
704 if (other_tc
== env
->current_tc
)
705 tcstatus
= env
->active_tc
.CP0_TCStatus
;
707 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
709 return (env
->CP0_EntryHi
& ~0xff) | (tcstatus
& 0xff);
712 target_ulong
helper_mftc0_status(void)
714 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
718 if (other_tc
== env
->current_tc
)
719 tcstatus
= env
->active_tc
.CP0_TCStatus
;
721 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
723 t0
= env
->CP0_Status
& ~0xf1000018;
724 t0
|= tcstatus
& (0xf << CP0TCSt_TCU0
);
725 t0
|= (tcstatus
& (1 << CP0TCSt_TMX
)) >> (CP0TCSt_TMX
- CP0St_MX
);
726 t0
|= (tcstatus
& (0x3 << CP0TCSt_TKSU
)) >> (CP0TCSt_TKSU
- CP0St_KSU
);
731 target_ulong
helper_mfc0_lladdr (void)
733 return (int32_t)env
->CP0_LLAddr
>> 4;
736 target_ulong
helper_mfc0_watchlo (uint32_t sel
)
738 return (int32_t)env
->CP0_WatchLo
[sel
];
741 target_ulong
helper_mfc0_watchhi (uint32_t sel
)
743 return env
->CP0_WatchHi
[sel
];
746 target_ulong
helper_mfc0_debug (void)
748 target_ulong t0
= env
->CP0_Debug
;
749 if (env
->hflags
& MIPS_HFLAG_DM
)
755 target_ulong
helper_mftc0_debug(void)
757 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
760 if (other_tc
== env
->current_tc
)
761 tcstatus
= env
->active_tc
.CP0_Debug_tcstatus
;
763 tcstatus
= env
->tcs
[other_tc
].CP0_Debug_tcstatus
;
765 /* XXX: Might be wrong, check with EJTAG spec. */
766 return (env
->CP0_Debug
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
767 (tcstatus
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
770 #if defined(TARGET_MIPS64)
771 target_ulong
helper_dmfc0_tcrestart (void)
773 return env
->active_tc
.PC
;
776 target_ulong
helper_dmfc0_tchalt (void)
778 return env
->active_tc
.CP0_TCHalt
;
781 target_ulong
helper_dmfc0_tccontext (void)
783 return env
->active_tc
.CP0_TCContext
;
786 target_ulong
helper_dmfc0_tcschedule (void)
788 return env
->active_tc
.CP0_TCSchedule
;
791 target_ulong
helper_dmfc0_tcschefback (void)
793 return env
->active_tc
.CP0_TCScheFBack
;
796 target_ulong
helper_dmfc0_lladdr (void)
798 return env
->CP0_LLAddr
>> 4;
801 target_ulong
helper_dmfc0_watchlo (uint32_t sel
)
803 return env
->CP0_WatchLo
[sel
];
805 #endif /* TARGET_MIPS64 */
807 void helper_mtc0_index (target_ulong arg1
)
810 unsigned int tmp
= env
->tlb
->nb_tlb
;
816 env
->CP0_Index
= (env
->CP0_Index
& 0x80000000) | (arg1
& (num
- 1));
819 void helper_mtc0_mvpcontrol (target_ulong arg1
)
824 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
))
825 mask
|= (1 << CP0MVPCo_CPA
) | (1 << CP0MVPCo_VPC
) |
827 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
828 mask
|= (1 << CP0MVPCo_STLB
);
829 newval
= (env
->mvp
->CP0_MVPControl
& ~mask
) | (arg1
& mask
);
831 // TODO: Enable/disable shared TLB, enable/disable VPEs.
833 env
->mvp
->CP0_MVPControl
= newval
;
836 void helper_mtc0_vpecontrol (target_ulong arg1
)
841 mask
= (1 << CP0VPECo_YSI
) | (1 << CP0VPECo_GSI
) |
842 (1 << CP0VPECo_TE
) | (0xff << CP0VPECo_TargTC
);
843 newval
= (env
->CP0_VPEControl
& ~mask
) | (arg1
& mask
);
845 /* Yield scheduler intercept not implemented. */
846 /* Gating storage scheduler intercept not implemented. */
848 // TODO: Enable/disable TCs.
850 env
->CP0_VPEControl
= newval
;
853 void helper_mtc0_vpeconf0 (target_ulong arg1
)
858 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
)) {
859 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))
860 mask
|= (0xff << CP0VPEC0_XTC
);
861 mask
|= (1 << CP0VPEC0_MVP
) | (1 << CP0VPEC0_VPA
);
863 newval
= (env
->CP0_VPEConf0
& ~mask
) | (arg1
& mask
);
865 // TODO: TC exclusive handling due to ERL/EXL.
867 env
->CP0_VPEConf0
= newval
;
870 void helper_mtc0_vpeconf1 (target_ulong arg1
)
875 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
876 mask
|= (0xff << CP0VPEC1_NCX
) | (0xff << CP0VPEC1_NCP2
) |
877 (0xff << CP0VPEC1_NCP1
);
878 newval
= (env
->CP0_VPEConf1
& ~mask
) | (arg1
& mask
);
880 /* UDI not implemented. */
881 /* CP2 not implemented. */
883 // TODO: Handle FPU (CP1) binding.
885 env
->CP0_VPEConf1
= newval
;
888 void helper_mtc0_yqmask (target_ulong arg1
)
890 /* Yield qualifier inputs not implemented. */
891 env
->CP0_YQMask
= 0x00000000;
894 void helper_mtc0_vpeopt (target_ulong arg1
)
896 env
->CP0_VPEOpt
= arg1
& 0x0000ffff;
899 void helper_mtc0_entrylo0 (target_ulong arg1
)
901 /* Large physaddr (PABITS) not implemented */
902 /* 1k pages not implemented */
903 env
->CP0_EntryLo0
= arg1
& 0x3FFFFFFF;
906 void helper_mtc0_tcstatus (target_ulong arg1
)
908 uint32_t mask
= env
->CP0_TCStatus_rw_bitmask
;
911 newval
= (env
->active_tc
.CP0_TCStatus
& ~mask
) | (arg1
& mask
);
913 // TODO: Sync with CP0_Status.
915 env
->active_tc
.CP0_TCStatus
= newval
;
918 void helper_mttc0_tcstatus (target_ulong arg1
)
920 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
922 // TODO: Sync with CP0_Status.
924 if (other_tc
== env
->current_tc
)
925 env
->active_tc
.CP0_TCStatus
= arg1
;
927 env
->tcs
[other_tc
].CP0_TCStatus
= arg1
;
930 void helper_mtc0_tcbind (target_ulong arg1
)
932 uint32_t mask
= (1 << CP0TCBd_TBE
);
935 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
936 mask
|= (1 << CP0TCBd_CurVPE
);
937 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
938 env
->active_tc
.CP0_TCBind
= newval
;
941 void helper_mttc0_tcbind (target_ulong arg1
)
943 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
944 uint32_t mask
= (1 << CP0TCBd_TBE
);
947 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
948 mask
|= (1 << CP0TCBd_CurVPE
);
949 if (other_tc
== env
->current_tc
) {
950 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
951 env
->active_tc
.CP0_TCBind
= newval
;
953 newval
= (env
->tcs
[other_tc
].CP0_TCBind
& ~mask
) | (arg1
& mask
);
954 env
->tcs
[other_tc
].CP0_TCBind
= newval
;
958 void helper_mtc0_tcrestart (target_ulong arg1
)
960 env
->active_tc
.PC
= arg1
;
961 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
962 env
->CP0_LLAddr
= 0ULL;
963 /* MIPS16 not implemented. */
966 void helper_mttc0_tcrestart (target_ulong arg1
)
968 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
970 if (other_tc
== env
->current_tc
) {
971 env
->active_tc
.PC
= arg1
;
972 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
973 env
->CP0_LLAddr
= 0ULL;
974 /* MIPS16 not implemented. */
976 env
->tcs
[other_tc
].PC
= arg1
;
977 env
->tcs
[other_tc
].CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
978 env
->CP0_LLAddr
= 0ULL;
979 /* MIPS16 not implemented. */
983 void helper_mtc0_tchalt (target_ulong arg1
)
985 env
->active_tc
.CP0_TCHalt
= arg1
& 0x1;
987 // TODO: Halt TC / Restart (if allocated+active) TC.
990 void helper_mttc0_tchalt (target_ulong arg1
)
992 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
994 // TODO: Halt TC / Restart (if allocated+active) TC.
996 if (other_tc
== env
->current_tc
)
997 env
->active_tc
.CP0_TCHalt
= arg1
;
999 env
->tcs
[other_tc
].CP0_TCHalt
= arg1
;
1002 void helper_mtc0_tccontext (target_ulong arg1
)
1004 env
->active_tc
.CP0_TCContext
= arg1
;
1007 void helper_mttc0_tccontext (target_ulong arg1
)
1009 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1011 if (other_tc
== env
->current_tc
)
1012 env
->active_tc
.CP0_TCContext
= arg1
;
1014 env
->tcs
[other_tc
].CP0_TCContext
= arg1
;
1017 void helper_mtc0_tcschedule (target_ulong arg1
)
1019 env
->active_tc
.CP0_TCSchedule
= arg1
;
1022 void helper_mttc0_tcschedule (target_ulong arg1
)
1024 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1026 if (other_tc
== env
->current_tc
)
1027 env
->active_tc
.CP0_TCSchedule
= arg1
;
1029 env
->tcs
[other_tc
].CP0_TCSchedule
= arg1
;
1032 void helper_mtc0_tcschefback (target_ulong arg1
)
1034 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1037 void helper_mttc0_tcschefback (target_ulong arg1
)
1039 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1041 if (other_tc
== env
->current_tc
)
1042 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1044 env
->tcs
[other_tc
].CP0_TCScheFBack
= arg1
;
1047 void helper_mtc0_entrylo1 (target_ulong arg1
)
1049 /* Large physaddr (PABITS) not implemented */
1050 /* 1k pages not implemented */
1051 env
->CP0_EntryLo1
= arg1
& 0x3FFFFFFF;
1054 void helper_mtc0_context (target_ulong arg1
)
1056 env
->CP0_Context
= (env
->CP0_Context
& 0x007FFFFF) | (arg1
& ~0x007FFFFF);
1059 void helper_mtc0_pagemask (target_ulong arg1
)
1061 /* 1k pages not implemented */
1062 env
->CP0_PageMask
= arg1
& (0x1FFFFFFF & (TARGET_PAGE_MASK
<< 1));
1065 void helper_mtc0_pagegrain (target_ulong arg1
)
1067 /* SmartMIPS not implemented */
1068 /* Large physaddr (PABITS) not implemented */
1069 /* 1k pages not implemented */
1070 env
->CP0_PageGrain
= 0;
1073 void helper_mtc0_wired (target_ulong arg1
)
1075 env
->CP0_Wired
= arg1
% env
->tlb
->nb_tlb
;
1078 void helper_mtc0_srsconf0 (target_ulong arg1
)
1080 env
->CP0_SRSConf0
|= arg1
& env
->CP0_SRSConf0_rw_bitmask
;
1083 void helper_mtc0_srsconf1 (target_ulong arg1
)
1085 env
->CP0_SRSConf1
|= arg1
& env
->CP0_SRSConf1_rw_bitmask
;
1088 void helper_mtc0_srsconf2 (target_ulong arg1
)
1090 env
->CP0_SRSConf2
|= arg1
& env
->CP0_SRSConf2_rw_bitmask
;
1093 void helper_mtc0_srsconf3 (target_ulong arg1
)
1095 env
->CP0_SRSConf3
|= arg1
& env
->CP0_SRSConf3_rw_bitmask
;
1098 void helper_mtc0_srsconf4 (target_ulong arg1
)
1100 env
->CP0_SRSConf4
|= arg1
& env
->CP0_SRSConf4_rw_bitmask
;
1103 void helper_mtc0_hwrena (target_ulong arg1
)
1105 env
->CP0_HWREna
= arg1
& 0x0000000F;
1108 void helper_mtc0_count (target_ulong arg1
)
1110 cpu_mips_store_count(env
, arg1
);
1113 void helper_mtc0_entryhi (target_ulong arg1
)
1115 target_ulong old
, val
;
1117 /* 1k pages not implemented */
1118 val
= arg1
& ((TARGET_PAGE_MASK
<< 1) | 0xFF);
1119 #if defined(TARGET_MIPS64)
1120 val
&= env
->SEGMask
;
1122 old
= env
->CP0_EntryHi
;
1123 env
->CP0_EntryHi
= val
;
1124 if (env
->CP0_Config3
& (1 << CP0C3_MT
)) {
1125 uint32_t tcst
= env
->active_tc
.CP0_TCStatus
& ~0xff;
1126 env
->active_tc
.CP0_TCStatus
= tcst
| (val
& 0xff);
1128 /* If the ASID changes, flush qemu's TLB. */
1129 if ((old
& 0xFF) != (val
& 0xFF))
1130 cpu_mips_tlb_flush(env
, 1);
1133 void helper_mttc0_entryhi(target_ulong arg1
)
1135 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1138 env
->CP0_EntryHi
= (env
->CP0_EntryHi
& 0xff) | (arg1
& ~0xff);
1139 if (other_tc
== env
->current_tc
) {
1140 tcstatus
= (env
->active_tc
.CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1141 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1143 tcstatus
= (env
->tcs
[other_tc
].CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1144 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1148 void helper_mtc0_compare (target_ulong arg1
)
1150 cpu_mips_store_compare(env
, arg1
);
1153 void helper_mtc0_status (target_ulong arg1
)
1156 uint32_t mask
= env
->CP0_Status_rw_bitmask
;
1159 old
= env
->CP0_Status
;
1160 env
->CP0_Status
= (env
->CP0_Status
& ~mask
) | val
;
1161 compute_hflags(env
);
1162 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1163 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1164 old
, old
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1165 val
, val
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1167 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1168 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1169 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1170 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1171 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1174 cpu_mips_update_irq(env
);
1177 void helper_mttc0_status(target_ulong arg1
)
1179 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1180 int32_t tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
1182 env
->CP0_Status
= arg1
& ~0xf1000018;
1183 tcstatus
= (tcstatus
& ~(0xf << CP0TCSt_TCU0
)) | (arg1
& (0xf << CP0St_CU0
));
1184 tcstatus
= (tcstatus
& ~(1 << CP0TCSt_TMX
)) | ((arg1
& (1 << CP0St_MX
)) << (CP0TCSt_TMX
- CP0St_MX
));
1185 tcstatus
= (tcstatus
& ~(0x3 << CP0TCSt_TKSU
)) | ((arg1
& (0x3 << CP0St_KSU
)) << (CP0TCSt_TKSU
- CP0St_KSU
));
1186 if (other_tc
== env
->current_tc
)
1187 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1189 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1192 void helper_mtc0_intctl (target_ulong arg1
)
1194 /* vectored interrupts not implemented, no performance counters. */
1195 env
->CP0_IntCtl
= (env
->CP0_IntCtl
& ~0x000002e0) | (arg1
& 0x000002e0);
1198 void helper_mtc0_srsctl (target_ulong arg1
)
1200 uint32_t mask
= (0xf << CP0SRSCtl_ESS
) | (0xf << CP0SRSCtl_PSS
);
1201 env
->CP0_SRSCtl
= (env
->CP0_SRSCtl
& ~mask
) | (arg1
& mask
);
1204 void helper_mtc0_cause (target_ulong arg1
)
1206 uint32_t mask
= 0x00C00300;
1207 uint32_t old
= env
->CP0_Cause
;
1209 if (env
->insn_flags
& ISA_MIPS32R2
)
1210 mask
|= 1 << CP0Ca_DC
;
1212 env
->CP0_Cause
= (env
->CP0_Cause
& ~mask
) | (arg1
& mask
);
1214 if ((old
^ env
->CP0_Cause
) & (1 << CP0Ca_DC
)) {
1215 if (env
->CP0_Cause
& (1 << CP0Ca_DC
))
1216 cpu_mips_stop_count(env
);
1218 cpu_mips_start_count(env
);
1221 /* Handle the software interrupt as an hardware one, as they
1223 if (arg1
& CP0Ca_IP_mask
) {
1224 cpu_mips_update_irq(env
);
1228 void helper_mtc0_ebase (target_ulong arg1
)
1230 /* vectored interrupts not implemented */
1231 /* Multi-CPU not implemented */
1232 env
->CP0_EBase
= 0x80000000 | (arg1
& 0x3FFFF000);
1235 void helper_mtc0_config0 (target_ulong arg1
)
1237 env
->CP0_Config0
= (env
->CP0_Config0
& 0x81FFFFF8) | (arg1
& 0x00000007);
1240 void helper_mtc0_config2 (target_ulong arg1
)
1242 /* tertiary/secondary caches not implemented */
1243 env
->CP0_Config2
= (env
->CP0_Config2
& 0x8FFF0FFF);
1246 void helper_mtc0_watchlo (target_ulong arg1
, uint32_t sel
)
1248 /* Watch exceptions for instructions, data loads, data stores
1250 env
->CP0_WatchLo
[sel
] = (arg1
& ~0x7);
1253 void helper_mtc0_watchhi (target_ulong arg1
, uint32_t sel
)
1255 env
->CP0_WatchHi
[sel
] = (arg1
& 0x40FF0FF8);
1256 env
->CP0_WatchHi
[sel
] &= ~(env
->CP0_WatchHi
[sel
] & arg1
& 0x7);
1259 void helper_mtc0_xcontext (target_ulong arg1
)
1261 target_ulong mask
= (1ULL << (env
->SEGBITS
- 7)) - 1;
1262 env
->CP0_XContext
= (env
->CP0_XContext
& mask
) | (arg1
& ~mask
);
1265 void helper_mtc0_framemask (target_ulong arg1
)
1267 env
->CP0_Framemask
= arg1
; /* XXX */
1270 void helper_mtc0_debug (target_ulong arg1
)
1272 env
->CP0_Debug
= (env
->CP0_Debug
& 0x8C03FC1F) | (arg1
& 0x13300120);
1273 if (arg1
& (1 << CP0DB_DM
))
1274 env
->hflags
|= MIPS_HFLAG_DM
;
1276 env
->hflags
&= ~MIPS_HFLAG_DM
;
1279 void helper_mttc0_debug(target_ulong arg1
)
1281 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1282 uint32_t val
= arg1
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
));
1284 /* XXX: Might be wrong, check with EJTAG spec. */
1285 if (other_tc
== env
->current_tc
)
1286 env
->active_tc
.CP0_Debug_tcstatus
= val
;
1288 env
->tcs
[other_tc
].CP0_Debug_tcstatus
= val
;
1289 env
->CP0_Debug
= (env
->CP0_Debug
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
1290 (arg1
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
1293 void helper_mtc0_performance0 (target_ulong arg1
)
1295 env
->CP0_Performance0
= arg1
& 0x000007ff;
1298 void helper_mtc0_taglo (target_ulong arg1
)
1300 env
->CP0_TagLo
= arg1
& 0xFFFFFCF6;
1303 void helper_mtc0_datalo (target_ulong arg1
)
1305 env
->CP0_DataLo
= arg1
; /* XXX */
1308 void helper_mtc0_taghi (target_ulong arg1
)
1310 env
->CP0_TagHi
= arg1
; /* XXX */
1313 void helper_mtc0_datahi (target_ulong arg1
)
1315 env
->CP0_DataHi
= arg1
; /* XXX */
1318 /* MIPS MT functions */
1319 target_ulong
helper_mftgpr(uint32_t sel
)
1321 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1323 if (other_tc
== env
->current_tc
)
1324 return env
->active_tc
.gpr
[sel
];
1326 return env
->tcs
[other_tc
].gpr
[sel
];
1329 target_ulong
helper_mftlo(uint32_t sel
)
1331 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1333 if (other_tc
== env
->current_tc
)
1334 return env
->active_tc
.LO
[sel
];
1336 return env
->tcs
[other_tc
].LO
[sel
];
1339 target_ulong
helper_mfthi(uint32_t sel
)
1341 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1343 if (other_tc
== env
->current_tc
)
1344 return env
->active_tc
.HI
[sel
];
1346 return env
->tcs
[other_tc
].HI
[sel
];
1349 target_ulong
helper_mftacx(uint32_t sel
)
1351 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1353 if (other_tc
== env
->current_tc
)
1354 return env
->active_tc
.ACX
[sel
];
1356 return env
->tcs
[other_tc
].ACX
[sel
];
1359 target_ulong
helper_mftdsp(void)
1361 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1363 if (other_tc
== env
->current_tc
)
1364 return env
->active_tc
.DSPControl
;
1366 return env
->tcs
[other_tc
].DSPControl
;
1369 void helper_mttgpr(target_ulong arg1
, uint32_t sel
)
1371 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1373 if (other_tc
== env
->current_tc
)
1374 env
->active_tc
.gpr
[sel
] = arg1
;
1376 env
->tcs
[other_tc
].gpr
[sel
] = arg1
;
1379 void helper_mttlo(target_ulong arg1
, uint32_t sel
)
1381 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1383 if (other_tc
== env
->current_tc
)
1384 env
->active_tc
.LO
[sel
] = arg1
;
1386 env
->tcs
[other_tc
].LO
[sel
] = arg1
;
1389 void helper_mtthi(target_ulong arg1
, uint32_t sel
)
1391 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1393 if (other_tc
== env
->current_tc
)
1394 env
->active_tc
.HI
[sel
] = arg1
;
1396 env
->tcs
[other_tc
].HI
[sel
] = arg1
;
1399 void helper_mttacx(target_ulong arg1
, uint32_t sel
)
1401 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1403 if (other_tc
== env
->current_tc
)
1404 env
->active_tc
.ACX
[sel
] = arg1
;
1406 env
->tcs
[other_tc
].ACX
[sel
] = arg1
;
1409 void helper_mttdsp(target_ulong arg1
)
1411 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1413 if (other_tc
== env
->current_tc
)
1414 env
->active_tc
.DSPControl
= arg1
;
1416 env
->tcs
[other_tc
].DSPControl
= arg1
;
1419 /* MIPS MT functions */
1420 target_ulong
helper_dmt(target_ulong arg1
)
1429 target_ulong
helper_emt(target_ulong arg1
)
1438 target_ulong
helper_dvpe(target_ulong arg1
)
1447 target_ulong
helper_evpe(target_ulong arg1
)
1455 #endif /* !CONFIG_USER_ONLY */
1457 void helper_fork(target_ulong arg1
, target_ulong arg2
)
1459 // arg1 = rt, arg2 = rs
1461 // TODO: store to TC register
1464 target_ulong
helper_yield(target_ulong arg1
)
1467 /* No scheduling policy implemented. */
1469 if (env
->CP0_VPEControl
& (1 << CP0VPECo_YSI
) &&
1470 env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_DT
)) {
1471 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1472 env
->CP0_VPEControl
|= 4 << CP0VPECo_EXCPT
;
1473 helper_raise_exception(EXCP_THREAD
);
1476 } else if (arg1
== 0) {
1477 if (0 /* TODO: TC underflow */) {
1478 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1479 helper_raise_exception(EXCP_THREAD
);
1481 // TODO: Deallocate TC
1483 } else if (arg1
> 0) {
1484 /* Yield qualifier inputs not implemented. */
1485 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1486 env
->CP0_VPEControl
|= 2 << CP0VPECo_EXCPT
;
1487 helper_raise_exception(EXCP_THREAD
);
1489 return env
->CP0_YQMask
;
1492 #ifndef CONFIG_USER_ONLY
1493 /* TLB management */
1494 void cpu_mips_tlb_flush (CPUState
*env
, int flush_global
)
1496 /* Flush qemu's TLB and discard all shadowed entries. */
1497 tlb_flush (env
, flush_global
);
1498 env
->tlb
->tlb_in_use
= env
->tlb
->nb_tlb
;
1501 static void r4k_mips_tlb_flush_extra (CPUState
*env
, int first
)
1503 /* Discard entries from env->tlb[first] onwards. */
1504 while (env
->tlb
->tlb_in_use
> first
) {
1505 r4k_invalidate_tlb(env
, --env
->tlb
->tlb_in_use
, 0);
1509 static void r4k_fill_tlb (int idx
)
1513 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1514 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1515 tlb
->VPN
= env
->CP0_EntryHi
& (TARGET_PAGE_MASK
<< 1);
1516 #if defined(TARGET_MIPS64)
1517 tlb
->VPN
&= env
->SEGMask
;
1519 tlb
->ASID
= env
->CP0_EntryHi
& 0xFF;
1520 tlb
->PageMask
= env
->CP0_PageMask
;
1521 tlb
->G
= env
->CP0_EntryLo0
& env
->CP0_EntryLo1
& 1;
1522 tlb
->V0
= (env
->CP0_EntryLo0
& 2) != 0;
1523 tlb
->D0
= (env
->CP0_EntryLo0
& 4) != 0;
1524 tlb
->C0
= (env
->CP0_EntryLo0
>> 3) & 0x7;
1525 tlb
->PFN
[0] = (env
->CP0_EntryLo0
>> 6) << 12;
1526 tlb
->V1
= (env
->CP0_EntryLo1
& 2) != 0;
1527 tlb
->D1
= (env
->CP0_EntryLo1
& 4) != 0;
1528 tlb
->C1
= (env
->CP0_EntryLo1
>> 3) & 0x7;
1529 tlb
->PFN
[1] = (env
->CP0_EntryLo1
>> 6) << 12;
1532 void r4k_helper_tlbwi (void)
1536 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1538 /* Discard cached TLB entries. We could avoid doing this if the
1539 tlbwi is just upgrading access permissions on the current entry;
1540 that might be a further win. */
1541 r4k_mips_tlb_flush_extra (env
, env
->tlb
->nb_tlb
);
1543 r4k_invalidate_tlb(env
, idx
, 0);
1547 void r4k_helper_tlbwr (void)
1549 int r
= cpu_mips_get_random(env
);
1551 r4k_invalidate_tlb(env
, r
, 1);
1555 void r4k_helper_tlbp (void)
1564 ASID
= env
->CP0_EntryHi
& 0xFF;
1565 for (i
= 0; i
< env
->tlb
->nb_tlb
; i
++) {
1566 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1567 /* 1k pages are not supported. */
1568 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1569 tag
= env
->CP0_EntryHi
& ~mask
;
1570 VPN
= tlb
->VPN
& ~mask
;
1571 /* Check ASID, virtual page number & size */
1572 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1578 if (i
== env
->tlb
->nb_tlb
) {
1579 /* No match. Discard any shadow entries, if any of them match. */
1580 for (i
= env
->tlb
->nb_tlb
; i
< env
->tlb
->tlb_in_use
; i
++) {
1581 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1582 /* 1k pages are not supported. */
1583 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1584 tag
= env
->CP0_EntryHi
& ~mask
;
1585 VPN
= tlb
->VPN
& ~mask
;
1586 /* Check ASID, virtual page number & size */
1587 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1588 r4k_mips_tlb_flush_extra (env
, i
);
1593 env
->CP0_Index
|= 0x80000000;
1597 void r4k_helper_tlbr (void)
1603 ASID
= env
->CP0_EntryHi
& 0xFF;
1604 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1605 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1607 /* If this will change the current ASID, flush qemu's TLB. */
1608 if (ASID
!= tlb
->ASID
)
1609 cpu_mips_tlb_flush (env
, 1);
1611 r4k_mips_tlb_flush_extra(env
, env
->tlb
->nb_tlb
);
1613 env
->CP0_EntryHi
= tlb
->VPN
| tlb
->ASID
;
1614 env
->CP0_PageMask
= tlb
->PageMask
;
1615 env
->CP0_EntryLo0
= tlb
->G
| (tlb
->V0
<< 1) | (tlb
->D0
<< 2) |
1616 (tlb
->C0
<< 3) | (tlb
->PFN
[0] >> 6);
1617 env
->CP0_EntryLo1
= tlb
->G
| (tlb
->V1
<< 1) | (tlb
->D1
<< 2) |
1618 (tlb
->C1
<< 3) | (tlb
->PFN
[1] >> 6);
1621 void helper_tlbwi(void)
1623 env
->tlb
->helper_tlbwi();
1626 void helper_tlbwr(void)
1628 env
->tlb
->helper_tlbwr();
1631 void helper_tlbp(void)
1633 env
->tlb
->helper_tlbp();
1636 void helper_tlbr(void)
1638 env
->tlb
->helper_tlbr();
1642 target_ulong
helper_di (void)
1644 target_ulong t0
= env
->CP0_Status
;
1646 env
->CP0_Status
= t0
& ~(1 << CP0St_IE
);
1647 cpu_mips_update_irq(env
);
1652 target_ulong
helper_ei (void)
1654 target_ulong t0
= env
->CP0_Status
;
1656 env
->CP0_Status
= t0
| (1 << CP0St_IE
);
1657 cpu_mips_update_irq(env
);
1662 static void debug_pre_eret (void)
1664 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1665 qemu_log("ERET: PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1666 env
->active_tc
.PC
, env
->CP0_EPC
);
1667 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1668 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1669 if (env
->hflags
& MIPS_HFLAG_DM
)
1670 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1675 static void debug_post_eret (void)
1677 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1678 qemu_log(" => PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1679 env
->active_tc
.PC
, env
->CP0_EPC
);
1680 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1681 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1682 if (env
->hflags
& MIPS_HFLAG_DM
)
1683 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1684 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1685 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1686 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1687 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1688 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1693 void helper_eret (void)
1696 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
1697 env
->active_tc
.PC
= env
->CP0_ErrorEPC
;
1698 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1700 env
->active_tc
.PC
= env
->CP0_EPC
;
1701 env
->CP0_Status
&= ~(1 << CP0St_EXL
);
1703 compute_hflags(env
);
1705 env
->CP0_LLAddr
= 1;
1708 void helper_deret (void)
1711 env
->active_tc
.PC
= env
->CP0_DEPC
;
1712 env
->hflags
&= MIPS_HFLAG_DM
;
1713 compute_hflags(env
);
1715 env
->CP0_LLAddr
= 1;
1717 #endif /* !CONFIG_USER_ONLY */
1719 target_ulong
helper_rdhwr_cpunum(void)
1721 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1722 (env
->CP0_HWREna
& (1 << 0)))
1723 return env
->CP0_EBase
& 0x3ff;
1725 helper_raise_exception(EXCP_RI
);
1730 target_ulong
helper_rdhwr_synci_step(void)
1732 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1733 (env
->CP0_HWREna
& (1 << 1)))
1734 return env
->SYNCI_Step
;
1736 helper_raise_exception(EXCP_RI
);
1741 target_ulong
helper_rdhwr_cc(void)
1743 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1744 (env
->CP0_HWREna
& (1 << 2)))
1745 return env
->CP0_Count
;
1747 helper_raise_exception(EXCP_RI
);
1752 target_ulong
helper_rdhwr_ccres(void)
1754 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1755 (env
->CP0_HWREna
& (1 << 3)))
1758 helper_raise_exception(EXCP_RI
);
1763 void helper_pmon (int function
)
1767 case 2: /* TODO: char inbyte(int waitflag); */
1768 if (env
->active_tc
.gpr
[4] == 0)
1769 env
->active_tc
.gpr
[2] = -1;
1771 case 11: /* TODO: char inbyte (void); */
1772 env
->active_tc
.gpr
[2] = -1;
1776 printf("%c", (char)(env
->active_tc
.gpr
[4] & 0xFF));
1782 unsigned char *fmt
= (void *)(unsigned long)env
->active_tc
.gpr
[4];
1789 void helper_wait (void)
1792 helper_raise_exception(EXCP_HLT
);
1795 #if !defined(CONFIG_USER_ONLY)
1797 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
);
1799 #define MMUSUFFIX _mmu
1800 #define ALIGNED_ONLY
1803 #include "softmmu_template.h"
1806 #include "softmmu_template.h"
1809 #include "softmmu_template.h"
1812 #include "softmmu_template.h"
1814 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
)
1816 env
->CP0_BadVAddr
= addr
;
1817 do_restore_state (retaddr
);
1818 helper_raise_exception ((is_write
== 1) ? EXCP_AdES
: EXCP_AdEL
);
1821 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
1823 TranslationBlock
*tb
;
1824 CPUState
*saved_env
;
1828 /* XXX: hack to restore env in all cases, even if not called from
1831 env
= cpu_single_env
;
1832 ret
= cpu_mips_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
1835 /* now we have a real cpu fault */
1836 pc
= (unsigned long)retaddr
;
1837 tb
= tb_find_pc(pc
);
1839 /* the PC is inside the translated code. It means that we have
1840 a virtual CPU fault */
1841 cpu_restore_state(tb
, env
, pc
, NULL
);
1844 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
1849 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
1850 int unused
, int size
)
1853 helper_raise_exception(EXCP_IBE
);
1855 helper_raise_exception(EXCP_DBE
);
1857 #endif /* !CONFIG_USER_ONLY */
1859 /* Complex FPU operations which may need stack space. */
1861 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1862 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1863 #define FLOAT_TWO32 make_float32(1 << 30)
1864 #define FLOAT_TWO64 make_float64(1ULL << 62)
1865 #define FLOAT_QNAN32 0x7fbfffff
1866 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1867 #define FLOAT_SNAN32 0x7fffffff
1868 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1870 /* convert MIPS rounding mode in FCR31 to IEEE library */
1871 static unsigned int ieee_rm
[] = {
1872 float_round_nearest_even
,
1873 float_round_to_zero
,
1878 #define RESTORE_ROUNDING_MODE \
1879 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1881 #define RESTORE_FLUSH_MODE \
1882 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
1884 target_ulong
helper_cfc1 (uint32_t reg
)
1890 arg1
= (int32_t)env
->active_fpu
.fcr0
;
1893 arg1
= ((env
->active_fpu
.fcr31
>> 24) & 0xfe) | ((env
->active_fpu
.fcr31
>> 23) & 0x1);
1896 arg1
= env
->active_fpu
.fcr31
& 0x0003f07c;
1899 arg1
= (env
->active_fpu
.fcr31
& 0x00000f83) | ((env
->active_fpu
.fcr31
>> 22) & 0x4);
1902 arg1
= (int32_t)env
->active_fpu
.fcr31
;
1909 void helper_ctc1 (target_ulong arg1
, uint32_t reg
)
1913 if (arg1
& 0xffffff00)
1915 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0x017fffff) | ((arg1
& 0xfe) << 24) |
1916 ((arg1
& 0x1) << 23);
1919 if (arg1
& 0x007c0000)
1921 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfffc0f83) | (arg1
& 0x0003f07c);
1924 if (arg1
& 0x007c0000)
1926 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfefff07c) | (arg1
& 0x00000f83) |
1927 ((arg1
& 0x4) << 22);
1930 if (arg1
& 0x007c0000)
1932 env
->active_fpu
.fcr31
= arg1
;
1937 /* set rounding mode */
1938 RESTORE_ROUNDING_MODE
;
1939 /* set flush-to-zero mode */
1941 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
1942 if ((GET_FP_ENABLE(env
->active_fpu
.fcr31
) | 0x20) & GET_FP_CAUSE(env
->active_fpu
.fcr31
))
1943 helper_raise_exception(EXCP_FPE
);
1946 static inline char ieee_ex_to_mips(char xcpt
)
1948 return (xcpt
& float_flag_inexact
) >> 5 |
1949 (xcpt
& float_flag_underflow
) >> 3 |
1950 (xcpt
& float_flag_overflow
) >> 1 |
1951 (xcpt
& float_flag_divbyzero
) << 1 |
1952 (xcpt
& float_flag_invalid
) << 4;
1955 static inline char mips_ex_to_ieee(char xcpt
)
1957 return (xcpt
& FP_INEXACT
) << 5 |
1958 (xcpt
& FP_UNDERFLOW
) << 3 |
1959 (xcpt
& FP_OVERFLOW
) << 1 |
1960 (xcpt
& FP_DIV0
) >> 1 |
1961 (xcpt
& FP_INVALID
) >> 4;
1964 static inline void update_fcr31(void)
1966 int tmp
= ieee_ex_to_mips(get_float_exception_flags(&env
->active_fpu
.fp_status
));
1968 SET_FP_CAUSE(env
->active_fpu
.fcr31
, tmp
);
1969 if (GET_FP_ENABLE(env
->active_fpu
.fcr31
) & tmp
)
1970 helper_raise_exception(EXCP_FPE
);
1972 UPDATE_FP_FLAGS(env
->active_fpu
.fcr31
, tmp
);
1976 Single precition routines have a "s" suffix, double precision a
1977 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
1978 paired single lower "pl", paired single upper "pu". */
1980 /* unary operations, modifying fp status */
1981 uint64_t helper_float_sqrt_d(uint64_t fdt0
)
1983 return float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
1986 uint32_t helper_float_sqrt_s(uint32_t fst0
)
1988 return float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
1991 uint64_t helper_float_cvtd_s(uint32_t fst0
)
1995 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
1996 fdt2
= float32_to_float64(fst0
, &env
->active_fpu
.fp_status
);
2001 uint64_t helper_float_cvtd_w(uint32_t wt0
)
2005 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2006 fdt2
= int32_to_float64(wt0
, &env
->active_fpu
.fp_status
);
2011 uint64_t helper_float_cvtd_l(uint64_t dt0
)
2015 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2016 fdt2
= int64_to_float64(dt0
, &env
->active_fpu
.fp_status
);
2021 uint64_t helper_float_cvtl_d(uint64_t fdt0
)
2025 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2026 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2028 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2033 uint64_t helper_float_cvtl_s(uint32_t fst0
)
2037 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2038 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2040 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2045 uint64_t helper_float_cvtps_pw(uint64_t dt0
)
2050 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2051 fst2
= int32_to_float32(dt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2052 fsth2
= int32_to_float32(dt0
>> 32, &env
->active_fpu
.fp_status
);
2054 return ((uint64_t)fsth2
<< 32) | fst2
;
2057 uint64_t helper_float_cvtpw_ps(uint64_t fdt0
)
2062 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2063 wt2
= float32_to_int32(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2064 wth2
= float32_to_int32(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2066 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
)) {
2068 wth2
= FLOAT_SNAN32
;
2070 return ((uint64_t)wth2
<< 32) | wt2
;
2073 uint32_t helper_float_cvts_d(uint64_t fdt0
)
2077 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2078 fst2
= float64_to_float32(fdt0
, &env
->active_fpu
.fp_status
);
2083 uint32_t helper_float_cvts_w(uint32_t wt0
)
2087 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2088 fst2
= int32_to_float32(wt0
, &env
->active_fpu
.fp_status
);
2093 uint32_t helper_float_cvts_l(uint64_t dt0
)
2097 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2098 fst2
= int64_to_float32(dt0
, &env
->active_fpu
.fp_status
);
2103 uint32_t helper_float_cvts_pl(uint32_t wt0
)
2107 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2113 uint32_t helper_float_cvts_pu(uint32_t wth0
)
2117 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2123 uint32_t helper_float_cvtw_s(uint32_t fst0
)
2127 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2128 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2130 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2135 uint32_t helper_float_cvtw_d(uint64_t fdt0
)
2139 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2140 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2142 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2147 uint64_t helper_float_roundl_d(uint64_t fdt0
)
2151 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2152 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2153 RESTORE_ROUNDING_MODE
;
2155 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2160 uint64_t helper_float_roundl_s(uint32_t fst0
)
2164 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2165 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2166 RESTORE_ROUNDING_MODE
;
2168 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2173 uint32_t helper_float_roundw_d(uint64_t fdt0
)
2177 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2178 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2179 RESTORE_ROUNDING_MODE
;
2181 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2186 uint32_t helper_float_roundw_s(uint32_t fst0
)
2190 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2191 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2192 RESTORE_ROUNDING_MODE
;
2194 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2199 uint64_t helper_float_truncl_d(uint64_t fdt0
)
2203 dt2
= float64_to_int64_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2205 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2210 uint64_t helper_float_truncl_s(uint32_t fst0
)
2214 dt2
= float32_to_int64_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2216 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2221 uint32_t helper_float_truncw_d(uint64_t fdt0
)
2225 wt2
= float64_to_int32_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2227 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2232 uint32_t helper_float_truncw_s(uint32_t fst0
)
2236 wt2
= float32_to_int32_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2238 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2243 uint64_t helper_float_ceill_d(uint64_t fdt0
)
2247 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2248 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2249 RESTORE_ROUNDING_MODE
;
2251 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2256 uint64_t helper_float_ceill_s(uint32_t fst0
)
2260 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2261 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2262 RESTORE_ROUNDING_MODE
;
2264 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2269 uint32_t helper_float_ceilw_d(uint64_t fdt0
)
2273 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2274 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2275 RESTORE_ROUNDING_MODE
;
2277 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2282 uint32_t helper_float_ceilw_s(uint32_t fst0
)
2286 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2287 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2288 RESTORE_ROUNDING_MODE
;
2290 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2295 uint64_t helper_float_floorl_d(uint64_t fdt0
)
2299 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2300 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2301 RESTORE_ROUNDING_MODE
;
2303 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2308 uint64_t helper_float_floorl_s(uint32_t fst0
)
2312 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2313 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2314 RESTORE_ROUNDING_MODE
;
2316 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2321 uint32_t helper_float_floorw_d(uint64_t fdt0
)
2325 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2326 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2327 RESTORE_ROUNDING_MODE
;
2329 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2334 uint32_t helper_float_floorw_s(uint32_t fst0
)
2338 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2339 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2340 RESTORE_ROUNDING_MODE
;
2342 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2347 /* unary operations, not modifying fp status */
2348 #define FLOAT_UNOP(name) \
2349 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2351 return float64_ ## name(fdt0); \
2353 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2355 return float32_ ## name(fst0); \
2357 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2362 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2363 wth0 = float32_ ## name(fdt0 >> 32); \
2364 return ((uint64_t)wth0 << 32) | wt0; \
2370 /* MIPS specific unary operations */
2371 uint64_t helper_float_recip_d(uint64_t fdt0
)
2375 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2376 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2381 uint32_t helper_float_recip_s(uint32_t fst0
)
2385 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2386 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2391 uint64_t helper_float_rsqrt_d(uint64_t fdt0
)
2395 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2396 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2397 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2402 uint32_t helper_float_rsqrt_s(uint32_t fst0
)
2406 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2407 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2408 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2413 uint64_t helper_float_recip1_d(uint64_t fdt0
)
2417 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2418 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2423 uint32_t helper_float_recip1_s(uint32_t fst0
)
2427 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2428 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2433 uint64_t helper_float_recip1_ps(uint64_t fdt0
)
2438 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2439 fst2
= float32_div(FLOAT_ONE32
, fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2440 fsth2
= float32_div(FLOAT_ONE32
, fdt0
>> 32, &env
->active_fpu
.fp_status
);
2442 return ((uint64_t)fsth2
<< 32) | fst2
;
2445 uint64_t helper_float_rsqrt1_d(uint64_t fdt0
)
2449 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2450 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2451 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2456 uint32_t helper_float_rsqrt1_s(uint32_t fst0
)
2460 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2461 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2462 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2467 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0
)
2472 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2473 fst2
= float32_sqrt(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2474 fsth2
= float32_sqrt(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2475 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2476 fsth2
= float32_div(FLOAT_ONE32
, fsth2
, &env
->active_fpu
.fp_status
);
2478 return ((uint64_t)fsth2
<< 32) | fst2
;
2481 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2483 /* binary operations */
2484 #define FLOAT_BINOP(name) \
2485 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2489 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2490 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2492 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2493 dt2 = FLOAT_QNAN64; \
2497 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2501 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2502 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2504 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2505 wt2 = FLOAT_QNAN32; \
2509 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2511 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2512 uint32_t fsth0 = fdt0 >> 32; \
2513 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2514 uint32_t fsth1 = fdt1 >> 32; \
2518 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2519 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2520 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2522 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2523 wt2 = FLOAT_QNAN32; \
2524 wth2 = FLOAT_QNAN32; \
2526 return ((uint64_t)wth2 << 32) | wt2; \
2535 /* ternary operations */
2536 #define FLOAT_TERNOP(name1, name2) \
2537 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2540 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2541 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2544 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2547 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2548 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2551 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2554 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2555 uint32_t fsth0 = fdt0 >> 32; \
2556 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2557 uint32_t fsth1 = fdt1 >> 32; \
2558 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2559 uint32_t fsth2 = fdt2 >> 32; \
2561 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2562 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2563 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2564 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2565 return ((uint64_t)fsth2 << 32) | fst2; \
2568 FLOAT_TERNOP(mul
, add
)
2569 FLOAT_TERNOP(mul
, sub
)
2572 /* negated ternary operations */
2573 #define FLOAT_NTERNOP(name1, name2) \
2574 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2577 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2578 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2579 return float64_chs(fdt2); \
2582 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2585 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2586 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2587 return float32_chs(fst2); \
2590 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2593 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2594 uint32_t fsth0 = fdt0 >> 32; \
2595 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2596 uint32_t fsth1 = fdt1 >> 32; \
2597 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2598 uint32_t fsth2 = fdt2 >> 32; \
2600 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2601 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2602 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2603 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2604 fst2 = float32_chs(fst2); \
2605 fsth2 = float32_chs(fsth2); \
2606 return ((uint64_t)fsth2 << 32) | fst2; \
2609 FLOAT_NTERNOP(mul
, add
)
2610 FLOAT_NTERNOP(mul
, sub
)
2611 #undef FLOAT_NTERNOP
2613 /* MIPS specific binary operations */
2614 uint64_t helper_float_recip2_d(uint64_t fdt0
, uint64_t fdt2
)
2616 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2617 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2618 fdt2
= float64_chs(float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
));
2623 uint32_t helper_float_recip2_s(uint32_t fst0
, uint32_t fst2
)
2625 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2626 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2627 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2632 uint64_t helper_float_recip2_ps(uint64_t fdt0
, uint64_t fdt2
)
2634 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2635 uint32_t fsth0
= fdt0
>> 32;
2636 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2637 uint32_t fsth2
= fdt2
>> 32;
2639 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2640 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2641 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2642 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2643 fsth2
= float32_chs(float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2645 return ((uint64_t)fsth2
<< 32) | fst2
;
2648 uint64_t helper_float_rsqrt2_d(uint64_t fdt0
, uint64_t fdt2
)
2650 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2651 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2652 fdt2
= float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
);
2653 fdt2
= float64_chs(float64_div(fdt2
, FLOAT_TWO64
, &env
->active_fpu
.fp_status
));
2658 uint32_t helper_float_rsqrt2_s(uint32_t fst0
, uint32_t fst2
)
2660 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2661 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2662 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2663 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2668 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0
, uint64_t fdt2
)
2670 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2671 uint32_t fsth0
= fdt0
>> 32;
2672 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2673 uint32_t fsth2
= fdt2
>> 32;
2675 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2676 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2677 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2678 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2679 fsth2
= float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2680 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2681 fsth2
= float32_chs(float32_div(fsth2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2683 return ((uint64_t)fsth2
<< 32) | fst2
;
2686 uint64_t helper_float_addr_ps(uint64_t fdt0
, uint64_t fdt1
)
2688 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2689 uint32_t fsth0
= fdt0
>> 32;
2690 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2691 uint32_t fsth1
= fdt1
>> 32;
2695 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2696 fst2
= float32_add (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2697 fsth2
= float32_add (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2699 return ((uint64_t)fsth2
<< 32) | fst2
;
2702 uint64_t helper_float_mulr_ps(uint64_t fdt0
, uint64_t fdt1
)
2704 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2705 uint32_t fsth0
= fdt0
>> 32;
2706 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2707 uint32_t fsth1
= fdt1
>> 32;
2711 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2712 fst2
= float32_mul (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2713 fsth2
= float32_mul (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2715 return ((uint64_t)fsth2
<< 32) | fst2
;
2718 /* compare operations */
2719 #define FOP_COND_D(op, cond) \
2720 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2725 SET_FP_COND(cc, env->active_fpu); \
2727 CLEAR_FP_COND(cc, env->active_fpu); \
2729 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2732 fdt0 = float64_abs(fdt0); \
2733 fdt1 = float64_abs(fdt1); \
2737 SET_FP_COND(cc, env->active_fpu); \
2739 CLEAR_FP_COND(cc, env->active_fpu); \
2742 static int float64_is_unordered(int sig
, float64 a
, float64 b STATUS_PARAM
)
2744 if (float64_is_signaling_nan(a
) ||
2745 float64_is_signaling_nan(b
) ||
2746 (sig
&& (float64_is_nan(a
) || float64_is_nan(b
)))) {
2747 float_raise(float_flag_invalid
, status
);
2749 } else if (float64_is_nan(a
) || float64_is_nan(b
)) {
2756 /* NOTE: the comma operator will make "cond" to eval to false,
2757 * but float*_is_unordered() is still called. */
2758 FOP_COND_D(f
, (float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2759 FOP_COND_D(un
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2760 FOP_COND_D(eq
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2761 FOP_COND_D(ueq
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2762 FOP_COND_D(olt
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2763 FOP_COND_D(ult
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2764 FOP_COND_D(ole
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2765 FOP_COND_D(ule
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2766 /* NOTE: the comma operator will make "cond" to eval to false,
2767 * but float*_is_unordered() is still called. */
2768 FOP_COND_D(sf
, (float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2769 FOP_COND_D(ngle
,float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2770 FOP_COND_D(seq
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2771 FOP_COND_D(ngl
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2772 FOP_COND_D(lt
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2773 FOP_COND_D(nge
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2774 FOP_COND_D(le
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2775 FOP_COND_D(ngt
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2777 #define FOP_COND_S(op, cond) \
2778 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2783 SET_FP_COND(cc, env->active_fpu); \
2785 CLEAR_FP_COND(cc, env->active_fpu); \
2787 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2790 fst0 = float32_abs(fst0); \
2791 fst1 = float32_abs(fst1); \
2795 SET_FP_COND(cc, env->active_fpu); \
2797 CLEAR_FP_COND(cc, env->active_fpu); \
2800 static flag
float32_is_unordered(int sig
, float32 a
, float32 b STATUS_PARAM
)
2802 if (float32_is_signaling_nan(a
) ||
2803 float32_is_signaling_nan(b
) ||
2804 (sig
&& (float32_is_nan(a
) || float32_is_nan(b
)))) {
2805 float_raise(float_flag_invalid
, status
);
2807 } else if (float32_is_nan(a
) || float32_is_nan(b
)) {
2814 /* NOTE: the comma operator will make "cond" to eval to false,
2815 * but float*_is_unordered() is still called. */
2816 FOP_COND_S(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2817 FOP_COND_S(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2818 FOP_COND_S(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2819 FOP_COND_S(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2820 FOP_COND_S(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2821 FOP_COND_S(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2822 FOP_COND_S(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2823 FOP_COND_S(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2824 /* NOTE: the comma operator will make "cond" to eval to false,
2825 * but float*_is_unordered() is still called. */
2826 FOP_COND_S(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2827 FOP_COND_S(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2828 FOP_COND_S(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2829 FOP_COND_S(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2830 FOP_COND_S(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2831 FOP_COND_S(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2832 FOP_COND_S(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2833 FOP_COND_S(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2835 #define FOP_COND_PS(op, condl, condh) \
2836 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2838 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2839 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2840 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2841 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2847 SET_FP_COND(cc, env->active_fpu); \
2849 CLEAR_FP_COND(cc, env->active_fpu); \
2851 SET_FP_COND(cc + 1, env->active_fpu); \
2853 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2855 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2857 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2858 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2859 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2860 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2866 SET_FP_COND(cc, env->active_fpu); \
2868 CLEAR_FP_COND(cc, env->active_fpu); \
2870 SET_FP_COND(cc + 1, env->active_fpu); \
2872 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2875 /* NOTE: the comma operator will make "cond" to eval to false,
2876 * but float*_is_unordered() is still called. */
2877 FOP_COND_PS(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
2878 (float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
2879 FOP_COND_PS(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
),
2880 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
2881 FOP_COND_PS(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2882 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2883 FOP_COND_PS(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2884 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2885 FOP_COND_PS(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2886 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2887 FOP_COND_PS(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2888 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2889 FOP_COND_PS(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2890 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2891 FOP_COND_PS(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2892 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2893 /* NOTE: the comma operator will make "cond" to eval to false,
2894 * but float*_is_unordered() is still called. */
2895 FOP_COND_PS(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
2896 (float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
2897 FOP_COND_PS(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
),
2898 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
2899 FOP_COND_PS(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2900 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2901 FOP_COND_PS(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2902 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2903 FOP_COND_PS(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2904 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2905 FOP_COND_PS(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2906 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2907 FOP_COND_PS(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2908 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2909 FOP_COND_PS(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2910 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))