Out off array access in usb-net
[qemu/lumag.git] / target-i386 / ops_sse.h
blob3232abd9657c2f1189a160fbdb27b7ef2d4b361d
1 /*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #if SHIFT == 0
21 #define Reg MMXReg
22 #define XMM_ONLY(...)
23 #define B(n) MMX_B(n)
24 #define W(n) MMX_W(n)
25 #define L(n) MMX_L(n)
26 #define Q(n) q
27 #define SUFFIX _mmx
28 #else
29 #define Reg XMMReg
30 #define XMM_ONLY(...) __VA_ARGS__
31 #define B(n) XMM_B(n)
32 #define W(n) XMM_W(n)
33 #define L(n) XMM_L(n)
34 #define Q(n) XMM_Q(n)
35 #define SUFFIX _xmm
36 #endif
38 void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
40 int shift;
42 if (s->Q(0) > 15) {
43 d->Q(0) = 0;
44 #if SHIFT == 1
45 d->Q(1) = 0;
46 #endif
47 } else {
48 shift = s->B(0);
49 d->W(0) >>= shift;
50 d->W(1) >>= shift;
51 d->W(2) >>= shift;
52 d->W(3) >>= shift;
53 #if SHIFT == 1
54 d->W(4) >>= shift;
55 d->W(5) >>= shift;
56 d->W(6) >>= shift;
57 d->W(7) >>= shift;
58 #endif
62 void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
64 int shift;
66 if (s->Q(0) > 15) {
67 shift = 15;
68 } else {
69 shift = s->B(0);
71 d->W(0) = (int16_t)d->W(0) >> shift;
72 d->W(1) = (int16_t)d->W(1) >> shift;
73 d->W(2) = (int16_t)d->W(2) >> shift;
74 d->W(3) = (int16_t)d->W(3) >> shift;
75 #if SHIFT == 1
76 d->W(4) = (int16_t)d->W(4) >> shift;
77 d->W(5) = (int16_t)d->W(5) >> shift;
78 d->W(6) = (int16_t)d->W(6) >> shift;
79 d->W(7) = (int16_t)d->W(7) >> shift;
80 #endif
83 void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
85 int shift;
87 if (s->Q(0) > 15) {
88 d->Q(0) = 0;
89 #if SHIFT == 1
90 d->Q(1) = 0;
91 #endif
92 } else {
93 shift = s->B(0);
94 d->W(0) <<= shift;
95 d->W(1) <<= shift;
96 d->W(2) <<= shift;
97 d->W(3) <<= shift;
98 #if SHIFT == 1
99 d->W(4) <<= shift;
100 d->W(5) <<= shift;
101 d->W(6) <<= shift;
102 d->W(7) <<= shift;
103 #endif
107 void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
109 int shift;
111 if (s->Q(0) > 31) {
112 d->Q(0) = 0;
113 #if SHIFT == 1
114 d->Q(1) = 0;
115 #endif
116 } else {
117 shift = s->B(0);
118 d->L(0) >>= shift;
119 d->L(1) >>= shift;
120 #if SHIFT == 1
121 d->L(2) >>= shift;
122 d->L(3) >>= shift;
123 #endif
127 void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
129 int shift;
131 if (s->Q(0) > 31) {
132 shift = 31;
133 } else {
134 shift = s->B(0);
136 d->L(0) = (int32_t)d->L(0) >> shift;
137 d->L(1) = (int32_t)d->L(1) >> shift;
138 #if SHIFT == 1
139 d->L(2) = (int32_t)d->L(2) >> shift;
140 d->L(3) = (int32_t)d->L(3) >> shift;
141 #endif
144 void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
146 int shift;
148 if (s->Q(0) > 31) {
149 d->Q(0) = 0;
150 #if SHIFT == 1
151 d->Q(1) = 0;
152 #endif
153 } else {
154 shift = s->B(0);
155 d->L(0) <<= shift;
156 d->L(1) <<= shift;
157 #if SHIFT == 1
158 d->L(2) <<= shift;
159 d->L(3) <<= shift;
160 #endif
164 void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
166 int shift;
168 if (s->Q(0) > 63) {
169 d->Q(0) = 0;
170 #if SHIFT == 1
171 d->Q(1) = 0;
172 #endif
173 } else {
174 shift = s->B(0);
175 d->Q(0) >>= shift;
176 #if SHIFT == 1
177 d->Q(1) >>= shift;
178 #endif
182 void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
184 int shift;
186 if (s->Q(0) > 63) {
187 d->Q(0) = 0;
188 #if SHIFT == 1
189 d->Q(1) = 0;
190 #endif
191 } else {
192 shift = s->B(0);
193 d->Q(0) <<= shift;
194 #if SHIFT == 1
195 d->Q(1) <<= shift;
196 #endif
200 #if SHIFT == 1
201 void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
203 int shift, i;
205 shift = s->L(0);
206 if (shift > 16)
207 shift = 16;
208 for(i = 0; i < 16 - shift; i++)
209 d->B(i) = d->B(i + shift);
210 for(i = 16 - shift; i < 16; i++)
211 d->B(i) = 0;
214 void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
216 int shift, i;
218 shift = s->L(0);
219 if (shift > 16)
220 shift = 16;
221 for(i = 15; i >= shift; i--)
222 d->B(i) = d->B(i - shift);
223 for(i = 0; i < shift; i++)
224 d->B(i) = 0;
226 #endif
228 #define SSE_HELPER_B(name, F)\
229 void glue(name, SUFFIX) (Reg *d, Reg *s)\
231 d->B(0) = F(d->B(0), s->B(0));\
232 d->B(1) = F(d->B(1), s->B(1));\
233 d->B(2) = F(d->B(2), s->B(2));\
234 d->B(3) = F(d->B(3), s->B(3));\
235 d->B(4) = F(d->B(4), s->B(4));\
236 d->B(5) = F(d->B(5), s->B(5));\
237 d->B(6) = F(d->B(6), s->B(6));\
238 d->B(7) = F(d->B(7), s->B(7));\
239 XMM_ONLY(\
240 d->B(8) = F(d->B(8), s->B(8));\
241 d->B(9) = F(d->B(9), s->B(9));\
242 d->B(10) = F(d->B(10), s->B(10));\
243 d->B(11) = F(d->B(11), s->B(11));\
244 d->B(12) = F(d->B(12), s->B(12));\
245 d->B(13) = F(d->B(13), s->B(13));\
246 d->B(14) = F(d->B(14), s->B(14));\
247 d->B(15) = F(d->B(15), s->B(15));\
251 #define SSE_HELPER_W(name, F)\
252 void glue(name, SUFFIX) (Reg *d, Reg *s)\
254 d->W(0) = F(d->W(0), s->W(0));\
255 d->W(1) = F(d->W(1), s->W(1));\
256 d->W(2) = F(d->W(2), s->W(2));\
257 d->W(3) = F(d->W(3), s->W(3));\
258 XMM_ONLY(\
259 d->W(4) = F(d->W(4), s->W(4));\
260 d->W(5) = F(d->W(5), s->W(5));\
261 d->W(6) = F(d->W(6), s->W(6));\
262 d->W(7) = F(d->W(7), s->W(7));\
266 #define SSE_HELPER_L(name, F)\
267 void glue(name, SUFFIX) (Reg *d, Reg *s)\
269 d->L(0) = F(d->L(0), s->L(0));\
270 d->L(1) = F(d->L(1), s->L(1));\
271 XMM_ONLY(\
272 d->L(2) = F(d->L(2), s->L(2));\
273 d->L(3) = F(d->L(3), s->L(3));\
277 #define SSE_HELPER_Q(name, F)\
278 void glue(name, SUFFIX) (Reg *d, Reg *s)\
280 d->Q(0) = F(d->Q(0), s->Q(0));\
281 XMM_ONLY(\
282 d->Q(1) = F(d->Q(1), s->Q(1));\
286 #if SHIFT == 0
287 static inline int satub(int x)
289 if (x < 0)
290 return 0;
291 else if (x > 255)
292 return 255;
293 else
294 return x;
297 static inline int satuw(int x)
299 if (x < 0)
300 return 0;
301 else if (x > 65535)
302 return 65535;
303 else
304 return x;
307 static inline int satsb(int x)
309 if (x < -128)
310 return -128;
311 else if (x > 127)
312 return 127;
313 else
314 return x;
317 static inline int satsw(int x)
319 if (x < -32768)
320 return -32768;
321 else if (x > 32767)
322 return 32767;
323 else
324 return x;
327 #define FADD(a, b) ((a) + (b))
328 #define FADDUB(a, b) satub((a) + (b))
329 #define FADDUW(a, b) satuw((a) + (b))
330 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
331 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
333 #define FSUB(a, b) ((a) - (b))
334 #define FSUBUB(a, b) satub((a) - (b))
335 #define FSUBUW(a, b) satuw((a) - (b))
336 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
337 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
338 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
339 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
340 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
341 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
343 #define FAND(a, b) (a) & (b)
344 #define FANDN(a, b) ((~(a)) & (b))
345 #define FOR(a, b) (a) | (b)
346 #define FXOR(a, b) (a) ^ (b)
348 #define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
349 #define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
350 #define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
351 #define FCMPEQ(a, b) (a) == (b) ? -1 : 0
353 #define FMULLW(a, b) (a) * (b)
354 #define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
355 #define FMULHUW(a, b) (a) * (b) >> 16
356 #define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
358 #define FAVG(a, b) ((a) + (b) + 1) >> 1
359 #endif
361 SSE_HELPER_B(helper_paddb, FADD)
362 SSE_HELPER_W(helper_paddw, FADD)
363 SSE_HELPER_L(helper_paddl, FADD)
364 SSE_HELPER_Q(helper_paddq, FADD)
366 SSE_HELPER_B(helper_psubb, FSUB)
367 SSE_HELPER_W(helper_psubw, FSUB)
368 SSE_HELPER_L(helper_psubl, FSUB)
369 SSE_HELPER_Q(helper_psubq, FSUB)
371 SSE_HELPER_B(helper_paddusb, FADDUB)
372 SSE_HELPER_B(helper_paddsb, FADDSB)
373 SSE_HELPER_B(helper_psubusb, FSUBUB)
374 SSE_HELPER_B(helper_psubsb, FSUBSB)
376 SSE_HELPER_W(helper_paddusw, FADDUW)
377 SSE_HELPER_W(helper_paddsw, FADDSW)
378 SSE_HELPER_W(helper_psubusw, FSUBUW)
379 SSE_HELPER_W(helper_psubsw, FSUBSW)
381 SSE_HELPER_B(helper_pminub, FMINUB)
382 SSE_HELPER_B(helper_pmaxub, FMAXUB)
384 SSE_HELPER_W(helper_pminsw, FMINSW)
385 SSE_HELPER_W(helper_pmaxsw, FMAXSW)
387 SSE_HELPER_Q(helper_pand, FAND)
388 SSE_HELPER_Q(helper_pandn, FANDN)
389 SSE_HELPER_Q(helper_por, FOR)
390 SSE_HELPER_Q(helper_pxor, FXOR)
392 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
393 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
394 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
396 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
397 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
398 SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
400 SSE_HELPER_W(helper_pmullw, FMULLW)
401 #if SHIFT == 0
402 SSE_HELPER_W(helper_pmulhrw, FMULHRW)
403 #endif
404 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
405 SSE_HELPER_W(helper_pmulhw, FMULHW)
407 SSE_HELPER_B(helper_pavgb, FAVG)
408 SSE_HELPER_W(helper_pavgw, FAVG)
410 void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
412 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
413 #if SHIFT == 1
414 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
415 #endif
418 void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
420 int i;
422 for(i = 0; i < (2 << SHIFT); i++) {
423 d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
424 (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
428 #if SHIFT == 0
429 static inline int abs1(int a)
431 if (a < 0)
432 return -a;
433 else
434 return a;
436 #endif
437 void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
439 unsigned int val;
441 val = 0;
442 val += abs1(d->B(0) - s->B(0));
443 val += abs1(d->B(1) - s->B(1));
444 val += abs1(d->B(2) - s->B(2));
445 val += abs1(d->B(3) - s->B(3));
446 val += abs1(d->B(4) - s->B(4));
447 val += abs1(d->B(5) - s->B(5));
448 val += abs1(d->B(6) - s->B(6));
449 val += abs1(d->B(7) - s->B(7));
450 d->Q(0) = val;
451 #if SHIFT == 1
452 val = 0;
453 val += abs1(d->B(8) - s->B(8));
454 val += abs1(d->B(9) - s->B(9));
455 val += abs1(d->B(10) - s->B(10));
456 val += abs1(d->B(11) - s->B(11));
457 val += abs1(d->B(12) - s->B(12));
458 val += abs1(d->B(13) - s->B(13));
459 val += abs1(d->B(14) - s->B(14));
460 val += abs1(d->B(15) - s->B(15));
461 d->Q(1) = val;
462 #endif
465 void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
467 int i;
468 for(i = 0; i < (8 << SHIFT); i++) {
469 if (s->B(i) & 0x80)
470 stb(a0 + i, d->B(i));
474 void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
476 d->L(0) = val;
477 d->L(1) = 0;
478 #if SHIFT == 1
479 d->Q(1) = 0;
480 #endif
483 #ifdef TARGET_X86_64
484 void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
486 d->Q(0) = val;
487 #if SHIFT == 1
488 d->Q(1) = 0;
489 #endif
491 #endif
493 #if SHIFT == 0
494 void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
496 Reg r;
497 r.W(0) = s->W(order & 3);
498 r.W(1) = s->W((order >> 2) & 3);
499 r.W(2) = s->W((order >> 4) & 3);
500 r.W(3) = s->W((order >> 6) & 3);
501 *d = r;
503 #else
504 void helper_shufps(Reg *d, Reg *s, int order)
506 Reg r;
507 r.L(0) = d->L(order & 3);
508 r.L(1) = d->L((order >> 2) & 3);
509 r.L(2) = s->L((order >> 4) & 3);
510 r.L(3) = s->L((order >> 6) & 3);
511 *d = r;
514 void helper_shufpd(Reg *d, Reg *s, int order)
516 Reg r;
517 r.Q(0) = d->Q(order & 1);
518 r.Q(1) = s->Q((order >> 1) & 1);
519 *d = r;
522 void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
524 Reg r;
525 r.L(0) = s->L(order & 3);
526 r.L(1) = s->L((order >> 2) & 3);
527 r.L(2) = s->L((order >> 4) & 3);
528 r.L(3) = s->L((order >> 6) & 3);
529 *d = r;
532 void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
534 Reg r;
535 r.W(0) = s->W(order & 3);
536 r.W(1) = s->W((order >> 2) & 3);
537 r.W(2) = s->W((order >> 4) & 3);
538 r.W(3) = s->W((order >> 6) & 3);
539 r.Q(1) = s->Q(1);
540 *d = r;
543 void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
545 Reg r;
546 r.Q(0) = s->Q(0);
547 r.W(4) = s->W(4 + (order & 3));
548 r.W(5) = s->W(4 + ((order >> 2) & 3));
549 r.W(6) = s->W(4 + ((order >> 4) & 3));
550 r.W(7) = s->W(4 + ((order >> 6) & 3));
551 *d = r;
553 #endif
555 #if SHIFT == 1
556 /* FPU ops */
557 /* XXX: not accurate */
559 #define SSE_HELPER_S(name, F)\
560 void helper_ ## name ## ps (Reg *d, Reg *s)\
562 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
563 d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
564 d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
565 d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
568 void helper_ ## name ## ss (Reg *d, Reg *s)\
570 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
572 void helper_ ## name ## pd (Reg *d, Reg *s)\
574 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
575 d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
578 void helper_ ## name ## sd (Reg *d, Reg *s)\
580 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
583 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
584 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
585 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
586 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
587 #define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
588 #define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
589 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
591 SSE_HELPER_S(add, FPU_ADD)
592 SSE_HELPER_S(sub, FPU_SUB)
593 SSE_HELPER_S(mul, FPU_MUL)
594 SSE_HELPER_S(div, FPU_DIV)
595 SSE_HELPER_S(min, FPU_MIN)
596 SSE_HELPER_S(max, FPU_MAX)
597 SSE_HELPER_S(sqrt, FPU_SQRT)
600 /* float to float conversions */
601 void helper_cvtps2pd(Reg *d, Reg *s)
603 float32 s0, s1;
604 s0 = s->XMM_S(0);
605 s1 = s->XMM_S(1);
606 d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
607 d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
610 void helper_cvtpd2ps(Reg *d, Reg *s)
612 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
613 d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
614 d->Q(1) = 0;
617 void helper_cvtss2sd(Reg *d, Reg *s)
619 d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
622 void helper_cvtsd2ss(Reg *d, Reg *s)
624 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
627 /* integer to float */
628 void helper_cvtdq2ps(Reg *d, Reg *s)
630 d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
631 d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
632 d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
633 d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
636 void helper_cvtdq2pd(Reg *d, Reg *s)
638 int32_t l0, l1;
639 l0 = (int32_t)s->XMM_L(0);
640 l1 = (int32_t)s->XMM_L(1);
641 d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
642 d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
645 void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
647 d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
648 d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
651 void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
653 d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
654 d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
657 void helper_cvtsi2ss(XMMReg *d, uint32_t val)
659 d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
662 void helper_cvtsi2sd(XMMReg *d, uint32_t val)
664 d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
667 #ifdef TARGET_X86_64
668 void helper_cvtsq2ss(XMMReg *d, uint64_t val)
670 d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
673 void helper_cvtsq2sd(XMMReg *d, uint64_t val)
675 d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
677 #endif
679 /* float to integer */
680 void helper_cvtps2dq(XMMReg *d, XMMReg *s)
682 d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
683 d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
684 d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
685 d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
688 void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
690 d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
691 d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
692 d->XMM_Q(1) = 0;
695 void helper_cvtps2pi(MMXReg *d, XMMReg *s)
697 d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
698 d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
701 void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
703 d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
704 d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
707 int32_t helper_cvtss2si(XMMReg *s)
709 return float32_to_int32(s->XMM_S(0), &env->sse_status);
712 int32_t helper_cvtsd2si(XMMReg *s)
714 return float64_to_int32(s->XMM_D(0), &env->sse_status);
717 #ifdef TARGET_X86_64
718 int64_t helper_cvtss2sq(XMMReg *s)
720 return float32_to_int64(s->XMM_S(0), &env->sse_status);
723 int64_t helper_cvtsd2sq(XMMReg *s)
725 return float64_to_int64(s->XMM_D(0), &env->sse_status);
727 #endif
729 /* float to integer truncated */
730 void helper_cvttps2dq(XMMReg *d, XMMReg *s)
732 d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
733 d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
734 d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
735 d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
738 void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
740 d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
741 d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
742 d->XMM_Q(1) = 0;
745 void helper_cvttps2pi(MMXReg *d, XMMReg *s)
747 d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
748 d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
751 void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
753 d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
754 d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
757 int32_t helper_cvttss2si(XMMReg *s)
759 return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
762 int32_t helper_cvttsd2si(XMMReg *s)
764 return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
767 #ifdef TARGET_X86_64
768 int64_t helper_cvttss2sq(XMMReg *s)
770 return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
773 int64_t helper_cvttsd2sq(XMMReg *s)
775 return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
777 #endif
779 void helper_rsqrtps(XMMReg *d, XMMReg *s)
781 d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
782 d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
783 d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
784 d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
787 void helper_rsqrtss(XMMReg *d, XMMReg *s)
789 d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
792 void helper_rcpps(XMMReg *d, XMMReg *s)
794 d->XMM_S(0) = approx_rcp(s->XMM_S(0));
795 d->XMM_S(1) = approx_rcp(s->XMM_S(1));
796 d->XMM_S(2) = approx_rcp(s->XMM_S(2));
797 d->XMM_S(3) = approx_rcp(s->XMM_S(3));
800 void helper_rcpss(XMMReg *d, XMMReg *s)
802 d->XMM_S(0) = approx_rcp(s->XMM_S(0));
805 static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
807 uint64_t mask;
809 if (len == 0) {
810 mask = ~0LL;
811 } else {
812 mask = (1ULL << len) - 1;
814 return (src >> shift) & mask;
817 void helper_extrq_r(XMMReg *d, XMMReg *s)
819 d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), s->XMM_B(1), s->XMM_B(0));
822 void helper_extrq_i(XMMReg *d, int index, int length)
824 d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), index, length);
827 static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
829 uint64_t mask;
831 if (len == 0) {
832 mask = ~0ULL;
833 } else {
834 mask = (1ULL << len) - 1;
836 return (src & ~(mask << shift)) | ((src & mask) << shift);
839 void helper_insertq_r(XMMReg *d, XMMReg *s)
841 d->XMM_Q(0) = helper_insertq(s->XMM_Q(0), s->XMM_B(9), s->XMM_B(8));
844 void helper_insertq_i(XMMReg *d, int index, int length)
846 d->XMM_Q(0) = helper_insertq(d->XMM_Q(0), index, length);
849 void helper_haddps(XMMReg *d, XMMReg *s)
851 XMMReg r;
852 r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
853 r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
854 r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
855 r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
856 *d = r;
859 void helper_haddpd(XMMReg *d, XMMReg *s)
861 XMMReg r;
862 r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
863 r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
864 *d = r;
867 void helper_hsubps(XMMReg *d, XMMReg *s)
869 XMMReg r;
870 r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
871 r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
872 r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
873 r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
874 *d = r;
877 void helper_hsubpd(XMMReg *d, XMMReg *s)
879 XMMReg r;
880 r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
881 r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
882 *d = r;
885 void helper_addsubps(XMMReg *d, XMMReg *s)
887 d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
888 d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
889 d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
890 d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
893 void helper_addsubpd(XMMReg *d, XMMReg *s)
895 d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
896 d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
899 /* XXX: unordered */
900 #define SSE_HELPER_CMP(name, F)\
901 void helper_ ## name ## ps (Reg *d, Reg *s)\
903 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
904 d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
905 d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
906 d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
909 void helper_ ## name ## ss (Reg *d, Reg *s)\
911 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
913 void helper_ ## name ## pd (Reg *d, Reg *s)\
915 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
916 d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
919 void helper_ ## name ## sd (Reg *d, Reg *s)\
921 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
924 #define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0
925 #define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
926 #define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
927 #define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0
928 #define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1
929 #define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
930 #define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
931 #define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1
933 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
934 SSE_HELPER_CMP(cmplt, FPU_CMPLT)
935 SSE_HELPER_CMP(cmple, FPU_CMPLE)
936 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
937 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
938 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
939 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
940 SSE_HELPER_CMP(cmpord, FPU_CMPORD)
942 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
944 void helper_ucomiss(Reg *d, Reg *s)
946 int ret;
947 float32 s0, s1;
949 s0 = d->XMM_S(0);
950 s1 = s->XMM_S(0);
951 ret = float32_compare_quiet(s0, s1, &env->sse_status);
952 CC_SRC = comis_eflags[ret + 1];
955 void helper_comiss(Reg *d, Reg *s)
957 int ret;
958 float32 s0, s1;
960 s0 = d->XMM_S(0);
961 s1 = s->XMM_S(0);
962 ret = float32_compare(s0, s1, &env->sse_status);
963 CC_SRC = comis_eflags[ret + 1];
966 void helper_ucomisd(Reg *d, Reg *s)
968 int ret;
969 float64 d0, d1;
971 d0 = d->XMM_D(0);
972 d1 = s->XMM_D(0);
973 ret = float64_compare_quiet(d0, d1, &env->sse_status);
974 CC_SRC = comis_eflags[ret + 1];
977 void helper_comisd(Reg *d, Reg *s)
979 int ret;
980 float64 d0, d1;
982 d0 = d->XMM_D(0);
983 d1 = s->XMM_D(0);
984 ret = float64_compare(d0, d1, &env->sse_status);
985 CC_SRC = comis_eflags[ret + 1];
988 uint32_t helper_movmskps(Reg *s)
990 int b0, b1, b2, b3;
991 b0 = s->XMM_L(0) >> 31;
992 b1 = s->XMM_L(1) >> 31;
993 b2 = s->XMM_L(2) >> 31;
994 b3 = s->XMM_L(3) >> 31;
995 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
998 uint32_t helper_movmskpd(Reg *s)
1000 int b0, b1;
1001 b0 = s->XMM_L(1) >> 31;
1002 b1 = s->XMM_L(3) >> 31;
1003 return b0 | (b1 << 1);
1006 #endif
1008 uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
1010 uint32_t val;
1011 val = 0;
1012 val |= (s->B(0) >> 7);
1013 val |= (s->B(1) >> 6) & 0x02;
1014 val |= (s->B(2) >> 5) & 0x04;
1015 val |= (s->B(3) >> 4) & 0x08;
1016 val |= (s->B(4) >> 3) & 0x10;
1017 val |= (s->B(5) >> 2) & 0x20;
1018 val |= (s->B(6) >> 1) & 0x40;
1019 val |= (s->B(7)) & 0x80;
1020 #if SHIFT == 1
1021 val |= (s->B(8) << 1) & 0x0100;
1022 val |= (s->B(9) << 2) & 0x0200;
1023 val |= (s->B(10) << 3) & 0x0400;
1024 val |= (s->B(11) << 4) & 0x0800;
1025 val |= (s->B(12) << 5) & 0x1000;
1026 val |= (s->B(13) << 6) & 0x2000;
1027 val |= (s->B(14) << 7) & 0x4000;
1028 val |= (s->B(15) << 8) & 0x8000;
1029 #endif
1030 return val;
1033 void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
1035 Reg r;
1037 r.B(0) = satsb((int16_t)d->W(0));
1038 r.B(1) = satsb((int16_t)d->W(1));
1039 r.B(2) = satsb((int16_t)d->W(2));
1040 r.B(3) = satsb((int16_t)d->W(3));
1041 #if SHIFT == 1
1042 r.B(4) = satsb((int16_t)d->W(4));
1043 r.B(5) = satsb((int16_t)d->W(5));
1044 r.B(6) = satsb((int16_t)d->W(6));
1045 r.B(7) = satsb((int16_t)d->W(7));
1046 #endif
1047 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1048 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1049 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1050 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1051 #if SHIFT == 1
1052 r.B(12) = satsb((int16_t)s->W(4));
1053 r.B(13) = satsb((int16_t)s->W(5));
1054 r.B(14) = satsb((int16_t)s->W(6));
1055 r.B(15) = satsb((int16_t)s->W(7));
1056 #endif
1057 *d = r;
1060 void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1062 Reg r;
1064 r.B(0) = satub((int16_t)d->W(0));
1065 r.B(1) = satub((int16_t)d->W(1));
1066 r.B(2) = satub((int16_t)d->W(2));
1067 r.B(3) = satub((int16_t)d->W(3));
1068 #if SHIFT == 1
1069 r.B(4) = satub((int16_t)d->W(4));
1070 r.B(5) = satub((int16_t)d->W(5));
1071 r.B(6) = satub((int16_t)d->W(6));
1072 r.B(7) = satub((int16_t)d->W(7));
1073 #endif
1074 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1075 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1076 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1077 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1078 #if SHIFT == 1
1079 r.B(12) = satub((int16_t)s->W(4));
1080 r.B(13) = satub((int16_t)s->W(5));
1081 r.B(14) = satub((int16_t)s->W(6));
1082 r.B(15) = satub((int16_t)s->W(7));
1083 #endif
1084 *d = r;
1087 void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1089 Reg r;
1091 r.W(0) = satsw(d->L(0));
1092 r.W(1) = satsw(d->L(1));
1093 #if SHIFT == 1
1094 r.W(2) = satsw(d->L(2));
1095 r.W(3) = satsw(d->L(3));
1096 #endif
1097 r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1098 r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1099 #if SHIFT == 1
1100 r.W(6) = satsw(s->L(2));
1101 r.W(7) = satsw(s->L(3));
1102 #endif
1103 *d = r;
1106 #define UNPCK_OP(base_name, base) \
1108 void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s) \
1110 Reg r; \
1112 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
1113 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
1114 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
1115 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
1116 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
1117 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
1118 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
1119 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
1120 XMM_ONLY( \
1121 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
1122 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
1123 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
1124 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
1125 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
1126 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
1127 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
1128 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
1130 *d = r; \
1133 void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s) \
1135 Reg r; \
1137 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
1138 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
1139 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
1140 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
1141 XMM_ONLY( \
1142 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
1143 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
1144 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
1145 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
1147 *d = r; \
1150 void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s) \
1152 Reg r; \
1154 r.L(0) = d->L((base << SHIFT) + 0); \
1155 r.L(1) = s->L((base << SHIFT) + 0); \
1156 XMM_ONLY( \
1157 r.L(2) = d->L((base << SHIFT) + 1); \
1158 r.L(3) = s->L((base << SHIFT) + 1); \
1160 *d = r; \
1163 XMM_ONLY( \
1164 void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s) \
1166 Reg r; \
1168 r.Q(0) = d->Q(base); \
1169 r.Q(1) = s->Q(base); \
1170 *d = r; \
1174 UNPCK_OP(l, 0)
1175 UNPCK_OP(h, 1)
1177 /* 3DNow! float ops */
1178 #if SHIFT == 0
1179 void helper_pi2fd(MMXReg *d, MMXReg *s)
1181 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1182 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1185 void helper_pi2fw(MMXReg *d, MMXReg *s)
1187 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1188 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1191 void helper_pf2id(MMXReg *d, MMXReg *s)
1193 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1194 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1197 void helper_pf2iw(MMXReg *d, MMXReg *s)
1199 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1200 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1203 void helper_pfacc(MMXReg *d, MMXReg *s)
1205 MMXReg r;
1206 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1207 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1208 *d = r;
1211 void helper_pfadd(MMXReg *d, MMXReg *s)
1213 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1214 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1217 void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1219 d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1220 d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1223 void helper_pfcmpge(MMXReg *d, MMXReg *s)
1225 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1226 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1229 void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1231 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1232 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1235 void helper_pfmax(MMXReg *d, MMXReg *s)
1237 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1238 d->MMX_S(0) = s->MMX_S(0);
1239 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1240 d->MMX_S(1) = s->MMX_S(1);
1243 void helper_pfmin(MMXReg *d, MMXReg *s)
1245 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1246 d->MMX_S(0) = s->MMX_S(0);
1247 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1248 d->MMX_S(1) = s->MMX_S(1);
1251 void helper_pfmul(MMXReg *d, MMXReg *s)
1253 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1254 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1257 void helper_pfnacc(MMXReg *d, MMXReg *s)
1259 MMXReg r;
1260 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1261 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1262 *d = r;
1265 void helper_pfpnacc(MMXReg *d, MMXReg *s)
1267 MMXReg r;
1268 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1269 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1270 *d = r;
1273 void helper_pfrcp(MMXReg *d, MMXReg *s)
1275 d->MMX_S(0) = approx_rcp(s->MMX_S(0));
1276 d->MMX_S(1) = d->MMX_S(0);
1279 void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1281 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1282 d->MMX_S(1) = approx_rsqrt(d->MMX_S(1));
1283 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1284 d->MMX_L(0) = d->MMX_L(1);
1287 void helper_pfsub(MMXReg *d, MMXReg *s)
1289 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1290 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1293 void helper_pfsubr(MMXReg *d, MMXReg *s)
1295 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1296 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1299 void helper_pswapd(MMXReg *d, MMXReg *s)
1301 MMXReg r;
1302 r.MMX_L(0) = s->MMX_L(1);
1303 r.MMX_L(1) = s->MMX_L(0);
1304 *d = r;
1306 #endif
1308 /* SSSE3 op helpers */
1309 void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1311 int i;
1312 Reg r;
1314 for (i = 0; i < (8 << SHIFT); i++)
1315 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1317 *d = r;
1320 void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1322 d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1323 d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1324 XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1325 XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1326 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1327 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1328 XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1329 XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1332 void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1334 d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1335 XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1336 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1337 XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1340 void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1342 d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1343 d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1344 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1345 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1346 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1347 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1348 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1349 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1352 void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1354 d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1355 (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1356 d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1357 (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1358 d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1359 (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1360 d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1361 (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1362 #if SHIFT == 1
1363 d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1364 (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1365 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1366 (int8_t)s->B(11) * (uint8_t)d->B(11));
1367 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1368 (int8_t)s->B(13) * (uint8_t)d->B(13));
1369 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1370 (int8_t)s->B(15) * (uint8_t)d->B(15));
1371 #endif
1374 void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1376 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1377 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1378 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1379 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1380 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1381 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1382 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1383 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1386 void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1388 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1389 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1390 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1391 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1394 void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1396 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1397 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1398 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1399 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1400 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1401 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1402 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1403 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1406 #define FABSB(_, x) x > INT8_MAX ? -(int8_t ) x : x
1407 #define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1408 #define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1409 SSE_HELPER_B(helper_pabsb, FABSB)
1410 SSE_HELPER_W(helper_pabsw, FABSW)
1411 SSE_HELPER_L(helper_pabsd, FABSL)
1413 #define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1414 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1416 #define FSIGNB(d, s) s <= INT8_MAX ? s ? d : 0 : -(int8_t ) d
1417 #define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1418 #define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1419 SSE_HELPER_B(helper_psignb, FSIGNB)
1420 SSE_HELPER_W(helper_psignw, FSIGNW)
1421 SSE_HELPER_L(helper_psignd, FSIGNL)
1423 void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1425 Reg r;
1427 /* XXX could be checked during translation */
1428 if (shift >= (16 << SHIFT)) {
1429 r.Q(0) = 0;
1430 XMM_ONLY(r.Q(1) = 0);
1431 } else {
1432 shift <<= 3;
1433 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1434 #if SHIFT == 0
1435 r.Q(0) = SHR(s->Q(0), shift - 0) |
1436 SHR(d->Q(0), shift - 64);
1437 #else
1438 r.Q(0) = SHR(s->Q(0), shift - 0) |
1439 SHR(s->Q(1), shift - 64) |
1440 SHR(d->Q(0), shift - 128) |
1441 SHR(d->Q(1), shift - 192);
1442 r.Q(1) = SHR(s->Q(0), shift + 64) |
1443 SHR(s->Q(1), shift - 0) |
1444 SHR(d->Q(0), shift - 64) |
1445 SHR(d->Q(1), shift - 128);
1446 #endif
1447 #undef SHR
1450 *d = r;
1453 #define XMM0 env->xmm_regs[0]
1455 #if SHIFT == 1
1456 #define SSE_HELPER_V(name, elem, num, F)\
1457 void glue(name, SUFFIX) (Reg *d, Reg *s)\
1459 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1460 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1461 if (num > 2) {\
1462 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1463 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1464 if (num > 4) {\
1465 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1466 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1467 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1468 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1469 if (num > 8) {\
1470 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1471 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1472 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1473 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1474 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1475 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1476 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1477 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1483 #define SSE_HELPER_I(name, elem, num, F)\
1484 void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1486 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1487 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1488 if (num > 2) {\
1489 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1490 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1491 if (num > 4) {\
1492 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1493 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1494 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1495 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1496 if (num > 8) {\
1497 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1498 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1499 d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1500 d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1501 d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1502 d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1503 d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1504 d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1510 /* SSE4.1 op helpers */
1511 #define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1512 #define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1513 #define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d
1514 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1515 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1516 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1518 void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1520 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1));
1521 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1523 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1526 #define SSE_HELPER_F(name, elem, num, F)\
1527 void glue(name, SUFFIX) (Reg *d, Reg *s)\
1529 d->elem(0) = F(0);\
1530 d->elem(1) = F(1);\
1531 if (num > 2) {\
1532 d->elem(2) = F(2);\
1533 d->elem(3) = F(3);\
1534 if (num > 4) {\
1535 d->elem(4) = F(4);\
1536 d->elem(5) = F(5);\
1537 d->elem(6) = F(6);\
1538 d->elem(7) = F(7);\
1543 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1544 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1545 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1546 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1547 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1548 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1549 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1550 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1551 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1552 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1553 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1554 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1556 void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1558 d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1559 d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1562 #define FCMPEQQ(d, s) d == s ? -1 : 0
1563 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1565 void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1567 d->W(0) = satuw((int32_t) d->L(0));
1568 d->W(1) = satuw((int32_t) d->L(1));
1569 d->W(2) = satuw((int32_t) d->L(2));
1570 d->W(3) = satuw((int32_t) d->L(3));
1571 d->W(4) = satuw((int32_t) s->L(0));
1572 d->W(5) = satuw((int32_t) s->L(1));
1573 d->W(6) = satuw((int32_t) s->L(2));
1574 d->W(7) = satuw((int32_t) s->L(3));
1577 #define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1578 #define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1579 #define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1580 #define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1581 SSE_HELPER_B(helper_pminsb, FMINSB)
1582 SSE_HELPER_L(helper_pminsd, FMINSD)
1583 SSE_HELPER_W(helper_pminuw, MIN)
1584 SSE_HELPER_L(helper_pminud, MIN)
1585 SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1586 SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1587 SSE_HELPER_W(helper_pmaxuw, MAX)
1588 SSE_HELPER_L(helper_pmaxud, MAX)
1590 #define FMULLD(d, s) (int32_t) d * (int32_t) s
1591 SSE_HELPER_L(helper_pmulld, FMULLD)
1593 void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1595 int idx = 0;
1597 if (s->W(1) < s->W(idx))
1598 idx = 1;
1599 if (s->W(2) < s->W(idx))
1600 idx = 2;
1601 if (s->W(3) < s->W(idx))
1602 idx = 3;
1603 if (s->W(4) < s->W(idx))
1604 idx = 4;
1605 if (s->W(5) < s->W(idx))
1606 idx = 5;
1607 if (s->W(6) < s->W(idx))
1608 idx = 6;
1609 if (s->W(7) < s->W(idx))
1610 idx = 7;
1612 d->Q(1) = 0;
1613 d->L(1) = 0;
1614 d->W(1) = idx;
1615 d->W(0) = s->W(idx);
1618 void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1620 signed char prev_rounding_mode;
1622 prev_rounding_mode = env->sse_status.float_rounding_mode;
1623 if (!(mode & (1 << 2)))
1624 switch (mode & 3) {
1625 case 0:
1626 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1627 break;
1628 case 1:
1629 set_float_rounding_mode(float_round_down, &env->sse_status);
1630 break;
1631 case 2:
1632 set_float_rounding_mode(float_round_up, &env->sse_status);
1633 break;
1634 case 3:
1635 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1636 break;
1639 d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1640 d->L(1) = float64_round_to_int(s->L(1), &env->sse_status);
1641 d->L(2) = float64_round_to_int(s->L(2), &env->sse_status);
1642 d->L(3) = float64_round_to_int(s->L(3), &env->sse_status);
1644 #if 0 /* TODO */
1645 if (mode & (1 << 3))
1646 set_float_exception_flags(
1647 get_float_exception_flags(&env->sse_status) &
1648 ~float_flag_inexact,
1649 &env->sse_status);
1650 #endif
1651 env->sse_status.float_rounding_mode = prev_rounding_mode;
1654 void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1656 signed char prev_rounding_mode;
1658 prev_rounding_mode = env->sse_status.float_rounding_mode;
1659 if (!(mode & (1 << 2)))
1660 switch (mode & 3) {
1661 case 0:
1662 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1663 break;
1664 case 1:
1665 set_float_rounding_mode(float_round_down, &env->sse_status);
1666 break;
1667 case 2:
1668 set_float_rounding_mode(float_round_up, &env->sse_status);
1669 break;
1670 case 3:
1671 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1672 break;
1675 d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1676 d->Q(1) = float64_round_to_int(s->Q(1), &env->sse_status);
1678 #if 0 /* TODO */
1679 if (mode & (1 << 3))
1680 set_float_exception_flags(
1681 get_float_exception_flags(&env->sse_status) &
1682 ~float_flag_inexact,
1683 &env->sse_status);
1684 #endif
1685 env->sse_status.float_rounding_mode = prev_rounding_mode;
1688 void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1690 signed char prev_rounding_mode;
1692 prev_rounding_mode = env->sse_status.float_rounding_mode;
1693 if (!(mode & (1 << 2)))
1694 switch (mode & 3) {
1695 case 0:
1696 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1697 break;
1698 case 1:
1699 set_float_rounding_mode(float_round_down, &env->sse_status);
1700 break;
1701 case 2:
1702 set_float_rounding_mode(float_round_up, &env->sse_status);
1703 break;
1704 case 3:
1705 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1706 break;
1709 d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1711 #if 0 /* TODO */
1712 if (mode & (1 << 3))
1713 set_float_exception_flags(
1714 get_float_exception_flags(&env->sse_status) &
1715 ~float_flag_inexact,
1716 &env->sse_status);
1717 #endif
1718 env->sse_status.float_rounding_mode = prev_rounding_mode;
1721 void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1723 signed char prev_rounding_mode;
1725 prev_rounding_mode = env->sse_status.float_rounding_mode;
1726 if (!(mode & (1 << 2)))
1727 switch (mode & 3) {
1728 case 0:
1729 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1730 break;
1731 case 1:
1732 set_float_rounding_mode(float_round_down, &env->sse_status);
1733 break;
1734 case 2:
1735 set_float_rounding_mode(float_round_up, &env->sse_status);
1736 break;
1737 case 3:
1738 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1739 break;
1742 d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1744 #if 0 /* TODO */
1745 if (mode & (1 << 3))
1746 set_float_exception_flags(
1747 get_float_exception_flags(&env->sse_status) &
1748 ~float_flag_inexact,
1749 &env->sse_status);
1750 #endif
1751 env->sse_status.float_rounding_mode = prev_rounding_mode;
1754 #define FBLENDP(d, s, m) m ? s : d
1755 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1756 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1757 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1759 void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1761 float32 iresult = 0 /*float32_zero*/;
1763 if (mask & (1 << 4))
1764 iresult = float32_add(iresult,
1765 float32_mul(d->L(0), s->L(0), &env->sse_status),
1766 &env->sse_status);
1767 if (mask & (1 << 5))
1768 iresult = float32_add(iresult,
1769 float32_mul(d->L(1), s->L(1), &env->sse_status),
1770 &env->sse_status);
1771 if (mask & (1 << 6))
1772 iresult = float32_add(iresult,
1773 float32_mul(d->L(2), s->L(2), &env->sse_status),
1774 &env->sse_status);
1775 if (mask & (1 << 7))
1776 iresult = float32_add(iresult,
1777 float32_mul(d->L(3), s->L(3), &env->sse_status),
1778 &env->sse_status);
1779 d->L(0) = (mask & (1 << 0)) ? iresult : 0 /*float32_zero*/;
1780 d->L(1) = (mask & (1 << 1)) ? iresult : 0 /*float32_zero*/;
1781 d->L(2) = (mask & (1 << 2)) ? iresult : 0 /*float32_zero*/;
1782 d->L(3) = (mask & (1 << 3)) ? iresult : 0 /*float32_zero*/;
1785 void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1787 float64 iresult = 0 /*float64_zero*/;
1789 if (mask & (1 << 4))
1790 iresult = float64_add(iresult,
1791 float64_mul(d->Q(0), s->Q(0), &env->sse_status),
1792 &env->sse_status);
1793 if (mask & (1 << 5))
1794 iresult = float64_add(iresult,
1795 float64_mul(d->Q(1), s->Q(1), &env->sse_status),
1796 &env->sse_status);
1797 d->Q(0) = (mask & (1 << 0)) ? iresult : 0 /*float64_zero*/;
1798 d->Q(1) = (mask & (1 << 1)) ? iresult : 0 /*float64_zero*/;
1801 void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1803 int s0 = (offset & 3) << 2;
1804 int d0 = (offset & 4) << 0;
1805 int i;
1806 Reg r;
1808 for (i = 0; i < 8; i++, d0++) {
1809 r.W(i) = 0;
1810 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1811 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1812 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1813 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1816 *d = r;
1819 /* SSE4.2 op helpers */
1820 /* it's unclear whether signed or unsigned */
1821 #define FCMPGTQ(d, s) d > s ? -1 : 0
1822 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1824 static inline int pcmp_elen(int reg, uint32_t ctrl)
1826 int val;
1828 /* Presence of REX.W is indicated by a bit higher than 7 set */
1829 if (ctrl >> 8)
1830 val = abs1((int64_t) env->regs[reg]);
1831 else
1832 val = abs1((int32_t) env->regs[reg]);
1834 if (ctrl & 1) {
1835 if (val > 8)
1836 return 8;
1837 } else
1838 if (val > 16)
1839 return 16;
1841 return val;
1844 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1846 int val = 0;
1848 if (ctrl & 1) {
1849 while (val < 8 && r->W(val))
1850 val++;
1851 } else
1852 while (val < 16 && r->B(val))
1853 val++;
1855 return val;
1858 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1860 switch ((ctrl >> 0) & 3) {
1861 case 0:
1862 return r->B(i);
1863 case 1:
1864 return r->W(i);
1865 case 2:
1866 return (int8_t) r->B(i);
1867 case 3:
1868 default:
1869 return (int16_t) r->W(i);
1873 static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1874 int8_t ctrl, int valids, int validd)
1876 unsigned int res = 0;
1877 int v;
1878 int j, i;
1879 int upper = (ctrl & 1) ? 7 : 15;
1881 valids--;
1882 validd--;
1884 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1886 switch ((ctrl >> 2) & 3) {
1887 case 0:
1888 for (j = valids; j >= 0; j--) {
1889 res <<= 1;
1890 v = pcmp_val(s, ctrl, j);
1891 for (i = validd; i >= 0; i--)
1892 res |= (v == pcmp_val(d, ctrl, i));
1894 break;
1895 case 1:
1896 for (j = valids; j >= 0; j--) {
1897 res <<= 1;
1898 v = pcmp_val(s, ctrl, j);
1899 for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1900 res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1901 pcmp_val(d, ctrl, i - 1) >= v);
1903 break;
1904 case 2:
1905 res = (2 << (upper - MAX(valids, validd))) - 1;
1906 res <<= MAX(valids, validd) - MIN(valids, validd);
1907 for (i = MIN(valids, validd); i >= 0; i--) {
1908 res <<= 1;
1909 v = pcmp_val(s, ctrl, i);
1910 res |= (v == pcmp_val(d, ctrl, i));
1912 break;
1913 case 3:
1914 for (j = valids - validd; j >= 0; j--) {
1915 res <<= 1;
1916 res |= 1;
1917 for (i = MIN(upper - j, validd); i >= 0; i--)
1918 res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1920 break;
1923 switch ((ctrl >> 4) & 3) {
1924 case 1:
1925 res ^= (2 << upper) - 1;
1926 break;
1927 case 3:
1928 res ^= (2 << valids) - 1;
1929 break;
1932 if (res)
1933 CC_SRC |= CC_C;
1934 if (res & 1)
1935 CC_SRC |= CC_O;
1937 return res;
1940 static inline int rffs1(unsigned int val)
1942 int ret = 1, hi;
1944 for (hi = sizeof(val) * 4; hi; hi /= 2)
1945 if (val >> hi) {
1946 val >>= hi;
1947 ret += hi;
1950 return ret;
1953 static inline int ffs1(unsigned int val)
1955 int ret = 1, hi;
1957 for (hi = sizeof(val) * 4; hi; hi /= 2)
1958 if (val << hi) {
1959 val <<= hi;
1960 ret += hi;
1963 return ret;
1966 void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1968 unsigned int res = pcmpxstrx(d, s, ctrl,
1969 pcmp_elen(R_EDX, ctrl),
1970 pcmp_elen(R_EAX, ctrl));
1972 if (res)
1973 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1974 else
1975 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1978 void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1980 int i;
1981 unsigned int res = pcmpxstrx(d, s, ctrl,
1982 pcmp_elen(R_EDX, ctrl),
1983 pcmp_elen(R_EAX, ctrl));
1985 if ((ctrl >> 6) & 1) {
1986 if (ctrl & 1)
1987 for (i = 0; i <= 8; i--, res >>= 1)
1988 d->W(i) = (res & 1) ? ~0 : 0;
1989 else
1990 for (i = 0; i <= 16; i--, res >>= 1)
1991 d->B(i) = (res & 1) ? ~0 : 0;
1992 } else {
1993 d->Q(1) = 0;
1994 d->Q(0) = res;
1998 void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2000 unsigned int res = pcmpxstrx(d, s, ctrl,
2001 pcmp_ilen(s, ctrl),
2002 pcmp_ilen(d, ctrl));
2004 if (res)
2005 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
2006 else
2007 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2010 void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2012 int i;
2013 unsigned int res = pcmpxstrx(d, s, ctrl,
2014 pcmp_ilen(s, ctrl),
2015 pcmp_ilen(d, ctrl));
2017 if ((ctrl >> 6) & 1) {
2018 if (ctrl & 1)
2019 for (i = 0; i <= 8; i--, res >>= 1)
2020 d->W(i) = (res & 1) ? ~0 : 0;
2021 else
2022 for (i = 0; i <= 16; i--, res >>= 1)
2023 d->B(i) = (res & 1) ? ~0 : 0;
2024 } else {
2025 d->Q(1) = 0;
2026 d->Q(0) = res;
2030 #define CRCPOLY 0x1edc6f41
2031 #define CRCPOLY_BITREV 0x82f63b78
2032 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2034 target_ulong crc = (msg & ((target_ulong) -1 >>
2035 (TARGET_LONG_BITS - len))) ^ crc1;
2037 while (len--)
2038 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2040 return crc;
2043 #define POPMASK(i) ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2044 #define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2045 target_ulong helper_popcnt(target_ulong n, uint32_t type)
2047 CC_SRC = n ? 0 : CC_Z;
2049 n = POPCOUNT(n, 0);
2050 n = POPCOUNT(n, 1);
2051 n = POPCOUNT(n, 2);
2052 n = POPCOUNT(n, 3);
2053 if (type == 1)
2054 return n & 0xff;
2056 n = POPCOUNT(n, 4);
2057 #ifndef TARGET_X86_64
2058 return n;
2059 #else
2060 if (type == 2)
2061 return n & 0xff;
2063 return POPCOUNT(n, 5);
2064 #endif
2066 #endif
2068 #undef SHIFT
2069 #undef XMM_ONLY
2070 #undef Reg
2071 #undef B
2072 #undef W
2073 #undef L
2074 #undef Q
2075 #undef SUFFIX