mipsnet: Fix compiler warning in debug code
[qemu/lumag.git] / hw / virtio.c
blobfbef788854a9a633b01fee07fbd15bfc6fce223b
1 /*
2 * Virtio Support
4 * Copyright IBM, Corp. 2007
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #include <inttypes.h>
16 #include "trace.h"
17 #include "virtio.h"
18 #include "sysemu.h"
20 /* The alignment to use between consumer and producer parts of vring.
21 * x86 pagesize again. */
22 #define VIRTIO_PCI_VRING_ALIGN 4096
24 /* QEMU doesn't strictly need write barriers since everything runs in
25 * lock-step. We'll leave the calls to wmb() in though to make it obvious for
26 * KVM or if kqemu gets SMP support.
27 * In any case, we must prevent the compiler from reordering the code.
28 * TODO: we likely need some rmb()/mb() as well.
31 #define wmb() __asm__ __volatile__("": : :"memory")
33 typedef struct VRingDesc
35 uint64_t addr;
36 uint32_t len;
37 uint16_t flags;
38 uint16_t next;
39 } VRingDesc;
41 typedef struct VRingAvail
43 uint16_t flags;
44 uint16_t idx;
45 uint16_t ring[0];
46 } VRingAvail;
48 typedef struct VRingUsedElem
50 uint32_t id;
51 uint32_t len;
52 } VRingUsedElem;
54 typedef struct VRingUsed
56 uint16_t flags;
57 uint16_t idx;
58 VRingUsedElem ring[0];
59 } VRingUsed;
61 typedef struct VRing
63 unsigned int num;
64 target_phys_addr_t desc;
65 target_phys_addr_t avail;
66 target_phys_addr_t used;
67 } VRing;
69 struct VirtQueue
71 VRing vring;
72 target_phys_addr_t pa;
73 uint16_t last_avail_idx;
74 int inuse;
75 uint16_t vector;
76 void (*handle_output)(VirtIODevice *vdev, VirtQueue *vq);
77 VirtIODevice *vdev;
78 EventNotifier guest_notifier;
79 EventNotifier host_notifier;
82 /* virt queue functions */
83 static void virtqueue_init(VirtQueue *vq)
85 target_phys_addr_t pa = vq->pa;
87 vq->vring.desc = pa;
88 vq->vring.avail = pa + vq->vring.num * sizeof(VRingDesc);
89 vq->vring.used = vring_align(vq->vring.avail +
90 offsetof(VRingAvail, ring[vq->vring.num]),
91 VIRTIO_PCI_VRING_ALIGN);
94 static inline uint64_t vring_desc_addr(target_phys_addr_t desc_pa, int i)
96 target_phys_addr_t pa;
97 pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, addr);
98 return ldq_phys(pa);
101 static inline uint32_t vring_desc_len(target_phys_addr_t desc_pa, int i)
103 target_phys_addr_t pa;
104 pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, len);
105 return ldl_phys(pa);
108 static inline uint16_t vring_desc_flags(target_phys_addr_t desc_pa, int i)
110 target_phys_addr_t pa;
111 pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, flags);
112 return lduw_phys(pa);
115 static inline uint16_t vring_desc_next(target_phys_addr_t desc_pa, int i)
117 target_phys_addr_t pa;
118 pa = desc_pa + sizeof(VRingDesc) * i + offsetof(VRingDesc, next);
119 return lduw_phys(pa);
122 static inline uint16_t vring_avail_flags(VirtQueue *vq)
124 target_phys_addr_t pa;
125 pa = vq->vring.avail + offsetof(VRingAvail, flags);
126 return lduw_phys(pa);
129 static inline uint16_t vring_avail_idx(VirtQueue *vq)
131 target_phys_addr_t pa;
132 pa = vq->vring.avail + offsetof(VRingAvail, idx);
133 return lduw_phys(pa);
136 static inline uint16_t vring_avail_ring(VirtQueue *vq, int i)
138 target_phys_addr_t pa;
139 pa = vq->vring.avail + offsetof(VRingAvail, ring[i]);
140 return lduw_phys(pa);
143 static inline void vring_used_ring_id(VirtQueue *vq, int i, uint32_t val)
145 target_phys_addr_t pa;
146 pa = vq->vring.used + offsetof(VRingUsed, ring[i].id);
147 stl_phys(pa, val);
150 static inline void vring_used_ring_len(VirtQueue *vq, int i, uint32_t val)
152 target_phys_addr_t pa;
153 pa = vq->vring.used + offsetof(VRingUsed, ring[i].len);
154 stl_phys(pa, val);
157 static uint16_t vring_used_idx(VirtQueue *vq)
159 target_phys_addr_t pa;
160 pa = vq->vring.used + offsetof(VRingUsed, idx);
161 return lduw_phys(pa);
164 static inline void vring_used_idx_increment(VirtQueue *vq, uint16_t val)
166 target_phys_addr_t pa;
167 pa = vq->vring.used + offsetof(VRingUsed, idx);
168 stw_phys(pa, vring_used_idx(vq) + val);
171 static inline void vring_used_flags_set_bit(VirtQueue *vq, int mask)
173 target_phys_addr_t pa;
174 pa = vq->vring.used + offsetof(VRingUsed, flags);
175 stw_phys(pa, lduw_phys(pa) | mask);
178 static inline void vring_used_flags_unset_bit(VirtQueue *vq, int mask)
180 target_phys_addr_t pa;
181 pa = vq->vring.used + offsetof(VRingUsed, flags);
182 stw_phys(pa, lduw_phys(pa) & ~mask);
185 void virtio_queue_set_notification(VirtQueue *vq, int enable)
187 if (enable)
188 vring_used_flags_unset_bit(vq, VRING_USED_F_NO_NOTIFY);
189 else
190 vring_used_flags_set_bit(vq, VRING_USED_F_NO_NOTIFY);
193 int virtio_queue_ready(VirtQueue *vq)
195 return vq->vring.avail != 0;
198 int virtio_queue_empty(VirtQueue *vq)
200 return vring_avail_idx(vq) == vq->last_avail_idx;
203 void virtqueue_fill(VirtQueue *vq, const VirtQueueElement *elem,
204 unsigned int len, unsigned int idx)
206 unsigned int offset;
207 int i;
209 trace_virtqueue_fill(vq, elem, len, idx);
211 offset = 0;
212 for (i = 0; i < elem->in_num; i++) {
213 size_t size = MIN(len - offset, elem->in_sg[i].iov_len);
215 cpu_physical_memory_unmap(elem->in_sg[i].iov_base,
216 elem->in_sg[i].iov_len,
217 1, size);
219 offset += elem->in_sg[i].iov_len;
222 for (i = 0; i < elem->out_num; i++)
223 cpu_physical_memory_unmap(elem->out_sg[i].iov_base,
224 elem->out_sg[i].iov_len,
225 0, elem->out_sg[i].iov_len);
227 idx = (idx + vring_used_idx(vq)) % vq->vring.num;
229 /* Get a pointer to the next entry in the used ring. */
230 vring_used_ring_id(vq, idx, elem->index);
231 vring_used_ring_len(vq, idx, len);
234 void virtqueue_flush(VirtQueue *vq, unsigned int count)
236 /* Make sure buffer is written before we update index. */
237 wmb();
238 trace_virtqueue_flush(vq, count);
239 vring_used_idx_increment(vq, count);
240 vq->inuse -= count;
243 void virtqueue_push(VirtQueue *vq, const VirtQueueElement *elem,
244 unsigned int len)
246 virtqueue_fill(vq, elem, len, 0);
247 virtqueue_flush(vq, 1);
250 static int virtqueue_num_heads(VirtQueue *vq, unsigned int idx)
252 uint16_t num_heads = vring_avail_idx(vq) - idx;
254 /* Check it isn't doing very strange things with descriptor numbers. */
255 if (num_heads > vq->vring.num) {
256 fprintf(stderr, "Guest moved used index from %u to %u",
257 idx, vring_avail_idx(vq));
258 exit(1);
261 return num_heads;
264 static unsigned int virtqueue_get_head(VirtQueue *vq, unsigned int idx)
266 unsigned int head;
268 /* Grab the next descriptor number they're advertising, and increment
269 * the index we've seen. */
270 head = vring_avail_ring(vq, idx % vq->vring.num);
272 /* If their number is silly, that's a fatal mistake. */
273 if (head >= vq->vring.num) {
274 fprintf(stderr, "Guest says index %u is available", head);
275 exit(1);
278 return head;
281 static unsigned virtqueue_next_desc(target_phys_addr_t desc_pa,
282 unsigned int i, unsigned int max)
284 unsigned int next;
286 /* If this descriptor says it doesn't chain, we're done. */
287 if (!(vring_desc_flags(desc_pa, i) & VRING_DESC_F_NEXT))
288 return max;
290 /* Check they're not leading us off end of descriptors. */
291 next = vring_desc_next(desc_pa, i);
292 /* Make sure compiler knows to grab that: we don't want it changing! */
293 wmb();
295 if (next >= max) {
296 fprintf(stderr, "Desc next is %u", next);
297 exit(1);
300 return next;
303 int virtqueue_avail_bytes(VirtQueue *vq, int in_bytes, int out_bytes)
305 unsigned int idx;
306 int total_bufs, in_total, out_total;
308 idx = vq->last_avail_idx;
310 total_bufs = in_total = out_total = 0;
311 while (virtqueue_num_heads(vq, idx)) {
312 unsigned int max, num_bufs, indirect = 0;
313 target_phys_addr_t desc_pa;
314 int i;
316 max = vq->vring.num;
317 num_bufs = total_bufs;
318 i = virtqueue_get_head(vq, idx++);
319 desc_pa = vq->vring.desc;
321 if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_INDIRECT) {
322 if (vring_desc_len(desc_pa, i) % sizeof(VRingDesc)) {
323 fprintf(stderr, "Invalid size for indirect buffer table\n");
324 exit(1);
327 /* If we've got too many, that implies a descriptor loop. */
328 if (num_bufs >= max) {
329 fprintf(stderr, "Looped descriptor");
330 exit(1);
333 /* loop over the indirect descriptor table */
334 indirect = 1;
335 max = vring_desc_len(desc_pa, i) / sizeof(VRingDesc);
336 num_bufs = i = 0;
337 desc_pa = vring_desc_addr(desc_pa, i);
340 do {
341 /* If we've got too many, that implies a descriptor loop. */
342 if (++num_bufs > max) {
343 fprintf(stderr, "Looped descriptor");
344 exit(1);
347 if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_WRITE) {
348 if (in_bytes > 0 &&
349 (in_total += vring_desc_len(desc_pa, i)) >= in_bytes)
350 return 1;
351 } else {
352 if (out_bytes > 0 &&
353 (out_total += vring_desc_len(desc_pa, i)) >= out_bytes)
354 return 1;
356 } while ((i = virtqueue_next_desc(desc_pa, i, max)) != max);
358 if (!indirect)
359 total_bufs = num_bufs;
360 else
361 total_bufs++;
364 return 0;
367 void virtqueue_map_sg(struct iovec *sg, target_phys_addr_t *addr,
368 size_t num_sg, int is_write)
370 unsigned int i;
371 target_phys_addr_t len;
373 for (i = 0; i < num_sg; i++) {
374 len = sg[i].iov_len;
375 sg[i].iov_base = cpu_physical_memory_map(addr[i], &len, is_write);
376 if (sg[i].iov_base == NULL || len != sg[i].iov_len) {
377 fprintf(stderr, "virtio: trying to map MMIO memory\n");
378 exit(1);
383 int virtqueue_pop(VirtQueue *vq, VirtQueueElement *elem)
385 unsigned int i, head, max;
386 target_phys_addr_t desc_pa = vq->vring.desc;
388 if (!virtqueue_num_heads(vq, vq->last_avail_idx))
389 return 0;
391 /* When we start there are none of either input nor output. */
392 elem->out_num = elem->in_num = 0;
394 max = vq->vring.num;
396 i = head = virtqueue_get_head(vq, vq->last_avail_idx++);
398 if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_INDIRECT) {
399 if (vring_desc_len(desc_pa, i) % sizeof(VRingDesc)) {
400 fprintf(stderr, "Invalid size for indirect buffer table\n");
401 exit(1);
404 /* loop over the indirect descriptor table */
405 max = vring_desc_len(desc_pa, i) / sizeof(VRingDesc);
406 desc_pa = vring_desc_addr(desc_pa, i);
407 i = 0;
410 /* Collect all the descriptors */
411 do {
412 struct iovec *sg;
414 if (vring_desc_flags(desc_pa, i) & VRING_DESC_F_WRITE) {
415 elem->in_addr[elem->in_num] = vring_desc_addr(desc_pa, i);
416 sg = &elem->in_sg[elem->in_num++];
417 } else {
418 elem->out_addr[elem->out_num] = vring_desc_addr(desc_pa, i);
419 sg = &elem->out_sg[elem->out_num++];
422 sg->iov_len = vring_desc_len(desc_pa, i);
424 /* If we've got too many, that implies a descriptor loop. */
425 if ((elem->in_num + elem->out_num) > max) {
426 fprintf(stderr, "Looped descriptor");
427 exit(1);
429 } while ((i = virtqueue_next_desc(desc_pa, i, max)) != max);
431 /* Now map what we have collected */
432 virtqueue_map_sg(elem->in_sg, elem->in_addr, elem->in_num, 1);
433 virtqueue_map_sg(elem->out_sg, elem->out_addr, elem->out_num, 0);
435 elem->index = head;
437 vq->inuse++;
439 trace_virtqueue_pop(vq, elem, elem->in_num, elem->out_num);
440 return elem->in_num + elem->out_num;
443 /* virtio device */
444 static void virtio_notify_vector(VirtIODevice *vdev, uint16_t vector)
446 if (vdev->binding->notify) {
447 vdev->binding->notify(vdev->binding_opaque, vector);
451 void virtio_update_irq(VirtIODevice *vdev)
453 virtio_notify_vector(vdev, VIRTIO_NO_VECTOR);
456 void virtio_reset(void *opaque)
458 VirtIODevice *vdev = opaque;
459 int i;
461 if (vdev->reset)
462 vdev->reset(vdev);
464 vdev->guest_features = 0;
465 vdev->queue_sel = 0;
466 vdev->status = 0;
467 vdev->isr = 0;
468 vdev->config_vector = VIRTIO_NO_VECTOR;
469 virtio_notify_vector(vdev, vdev->config_vector);
471 for(i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
472 vdev->vq[i].vring.desc = 0;
473 vdev->vq[i].vring.avail = 0;
474 vdev->vq[i].vring.used = 0;
475 vdev->vq[i].last_avail_idx = 0;
476 vdev->vq[i].pa = 0;
477 vdev->vq[i].vector = VIRTIO_NO_VECTOR;
481 uint32_t virtio_config_readb(VirtIODevice *vdev, uint32_t addr)
483 uint8_t val;
485 vdev->get_config(vdev, vdev->config);
487 if (addr > (vdev->config_len - sizeof(val)))
488 return (uint32_t)-1;
490 memcpy(&val, vdev->config + addr, sizeof(val));
491 return val;
494 uint32_t virtio_config_readw(VirtIODevice *vdev, uint32_t addr)
496 uint16_t val;
498 vdev->get_config(vdev, vdev->config);
500 if (addr > (vdev->config_len - sizeof(val)))
501 return (uint32_t)-1;
503 memcpy(&val, vdev->config + addr, sizeof(val));
504 return val;
507 uint32_t virtio_config_readl(VirtIODevice *vdev, uint32_t addr)
509 uint32_t val;
511 vdev->get_config(vdev, vdev->config);
513 if (addr > (vdev->config_len - sizeof(val)))
514 return (uint32_t)-1;
516 memcpy(&val, vdev->config + addr, sizeof(val));
517 return val;
520 void virtio_config_writeb(VirtIODevice *vdev, uint32_t addr, uint32_t data)
522 uint8_t val = data;
524 if (addr > (vdev->config_len - sizeof(val)))
525 return;
527 memcpy(vdev->config + addr, &val, sizeof(val));
529 if (vdev->set_config)
530 vdev->set_config(vdev, vdev->config);
533 void virtio_config_writew(VirtIODevice *vdev, uint32_t addr, uint32_t data)
535 uint16_t val = data;
537 if (addr > (vdev->config_len - sizeof(val)))
538 return;
540 memcpy(vdev->config + addr, &val, sizeof(val));
542 if (vdev->set_config)
543 vdev->set_config(vdev, vdev->config);
546 void virtio_config_writel(VirtIODevice *vdev, uint32_t addr, uint32_t data)
548 uint32_t val = data;
550 if (addr > (vdev->config_len - sizeof(val)))
551 return;
553 memcpy(vdev->config + addr, &val, sizeof(val));
555 if (vdev->set_config)
556 vdev->set_config(vdev, vdev->config);
559 void virtio_queue_set_addr(VirtIODevice *vdev, int n, target_phys_addr_t addr)
561 vdev->vq[n].pa = addr;
562 virtqueue_init(&vdev->vq[n]);
565 target_phys_addr_t virtio_queue_get_addr(VirtIODevice *vdev, int n)
567 return vdev->vq[n].pa;
570 int virtio_queue_get_num(VirtIODevice *vdev, int n)
572 return vdev->vq[n].vring.num;
575 void virtio_queue_notify(VirtIODevice *vdev, int n)
577 if (n < VIRTIO_PCI_QUEUE_MAX && vdev->vq[n].vring.desc) {
578 trace_virtio_queue_notify(vdev, n, &vdev->vq[n]);
579 vdev->vq[n].handle_output(vdev, &vdev->vq[n]);
583 uint16_t virtio_queue_vector(VirtIODevice *vdev, int n)
585 return n < VIRTIO_PCI_QUEUE_MAX ? vdev->vq[n].vector :
586 VIRTIO_NO_VECTOR;
589 void virtio_queue_set_vector(VirtIODevice *vdev, int n, uint16_t vector)
591 if (n < VIRTIO_PCI_QUEUE_MAX)
592 vdev->vq[n].vector = vector;
595 VirtQueue *virtio_add_queue(VirtIODevice *vdev, int queue_size,
596 void (*handle_output)(VirtIODevice *, VirtQueue *))
598 int i;
600 for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
601 if (vdev->vq[i].vring.num == 0)
602 break;
605 if (i == VIRTIO_PCI_QUEUE_MAX || queue_size > VIRTQUEUE_MAX_SIZE)
606 abort();
608 vdev->vq[i].vring.num = queue_size;
609 vdev->vq[i].handle_output = handle_output;
611 return &vdev->vq[i];
614 void virtio_irq(VirtQueue *vq)
616 trace_virtio_irq(vq);
617 vq->vdev->isr |= 0x01;
618 virtio_notify_vector(vq->vdev, vq->vector);
621 void virtio_notify(VirtIODevice *vdev, VirtQueue *vq)
623 /* Always notify when queue is empty (when feature acknowledge) */
624 if ((vring_avail_flags(vq) & VRING_AVAIL_F_NO_INTERRUPT) &&
625 (!(vdev->guest_features & (1 << VIRTIO_F_NOTIFY_ON_EMPTY)) ||
626 (vq->inuse || vring_avail_idx(vq) != vq->last_avail_idx)))
627 return;
629 trace_virtio_notify(vdev, vq);
630 vdev->isr |= 0x01;
631 virtio_notify_vector(vdev, vq->vector);
634 void virtio_notify_config(VirtIODevice *vdev)
636 if (!(vdev->status & VIRTIO_CONFIG_S_DRIVER_OK))
637 return;
639 vdev->isr |= 0x03;
640 virtio_notify_vector(vdev, vdev->config_vector);
643 void virtio_save(VirtIODevice *vdev, QEMUFile *f)
645 int i;
647 if (vdev->binding->save_config)
648 vdev->binding->save_config(vdev->binding_opaque, f);
650 qemu_put_8s(f, &vdev->status);
651 qemu_put_8s(f, &vdev->isr);
652 qemu_put_be16s(f, &vdev->queue_sel);
653 qemu_put_be32s(f, &vdev->guest_features);
654 qemu_put_be32(f, vdev->config_len);
655 qemu_put_buffer(f, vdev->config, vdev->config_len);
657 for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
658 if (vdev->vq[i].vring.num == 0)
659 break;
662 qemu_put_be32(f, i);
664 for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
665 if (vdev->vq[i].vring.num == 0)
666 break;
668 qemu_put_be32(f, vdev->vq[i].vring.num);
669 qemu_put_be64(f, vdev->vq[i].pa);
670 qemu_put_be16s(f, &vdev->vq[i].last_avail_idx);
671 if (vdev->binding->save_queue)
672 vdev->binding->save_queue(vdev->binding_opaque, i, f);
676 int virtio_load(VirtIODevice *vdev, QEMUFile *f)
678 int num, i, ret;
679 uint32_t features;
680 uint32_t supported_features =
681 vdev->binding->get_features(vdev->binding_opaque);
683 if (vdev->binding->load_config) {
684 ret = vdev->binding->load_config(vdev->binding_opaque, f);
685 if (ret)
686 return ret;
689 qemu_get_8s(f, &vdev->status);
690 qemu_get_8s(f, &vdev->isr);
691 qemu_get_be16s(f, &vdev->queue_sel);
692 qemu_get_be32s(f, &features);
693 if (features & ~supported_features) {
694 fprintf(stderr, "Features 0x%x unsupported. Allowed features: 0x%x\n",
695 features, supported_features);
696 return -1;
698 if (vdev->set_features)
699 vdev->set_features(vdev, features);
700 vdev->guest_features = features;
701 vdev->config_len = qemu_get_be32(f);
702 qemu_get_buffer(f, vdev->config, vdev->config_len);
704 num = qemu_get_be32(f);
706 for (i = 0; i < num; i++) {
707 vdev->vq[i].vring.num = qemu_get_be32(f);
708 vdev->vq[i].pa = qemu_get_be64(f);
709 qemu_get_be16s(f, &vdev->vq[i].last_avail_idx);
711 if (vdev->vq[i].pa) {
712 virtqueue_init(&vdev->vq[i]);
714 if (vdev->binding->load_queue) {
715 ret = vdev->binding->load_queue(vdev->binding_opaque, i, f);
716 if (ret)
717 return ret;
721 virtio_notify_vector(vdev, VIRTIO_NO_VECTOR);
722 return 0;
725 void virtio_cleanup(VirtIODevice *vdev)
727 if (vdev->config)
728 qemu_free(vdev->config);
729 qemu_free(vdev->vq);
732 VirtIODevice *virtio_common_init(const char *name, uint16_t device_id,
733 size_t config_size, size_t struct_size)
735 VirtIODevice *vdev;
736 int i;
738 vdev = qemu_mallocz(struct_size);
740 vdev->device_id = device_id;
741 vdev->status = 0;
742 vdev->isr = 0;
743 vdev->queue_sel = 0;
744 vdev->config_vector = VIRTIO_NO_VECTOR;
745 vdev->vq = qemu_mallocz(sizeof(VirtQueue) * VIRTIO_PCI_QUEUE_MAX);
746 for(i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) {
747 vdev->vq[i].vector = VIRTIO_NO_VECTOR;
748 vdev->vq[i].vdev = vdev;
751 vdev->name = name;
752 vdev->config_len = config_size;
753 if (vdev->config_len)
754 vdev->config = qemu_mallocz(config_size);
755 else
756 vdev->config = NULL;
758 return vdev;
761 void virtio_bind_device(VirtIODevice *vdev, const VirtIOBindings *binding,
762 void *opaque)
764 vdev->binding = binding;
765 vdev->binding_opaque = opaque;
768 target_phys_addr_t virtio_queue_get_desc_addr(VirtIODevice *vdev, int n)
770 return vdev->vq[n].vring.desc;
773 target_phys_addr_t virtio_queue_get_avail_addr(VirtIODevice *vdev, int n)
775 return vdev->vq[n].vring.avail;
778 target_phys_addr_t virtio_queue_get_used_addr(VirtIODevice *vdev, int n)
780 return vdev->vq[n].vring.used;
783 target_phys_addr_t virtio_queue_get_ring_addr(VirtIODevice *vdev, int n)
785 return vdev->vq[n].vring.desc;
788 target_phys_addr_t virtio_queue_get_desc_size(VirtIODevice *vdev, int n)
790 return sizeof(VRingDesc) * vdev->vq[n].vring.num;
793 target_phys_addr_t virtio_queue_get_avail_size(VirtIODevice *vdev, int n)
795 return offsetof(VRingAvail, ring) +
796 sizeof(uint64_t) * vdev->vq[n].vring.num;
799 target_phys_addr_t virtio_queue_get_used_size(VirtIODevice *vdev, int n)
801 return offsetof(VRingUsed, ring) +
802 sizeof(VRingUsedElem) * vdev->vq[n].vring.num;
805 target_phys_addr_t virtio_queue_get_ring_size(VirtIODevice *vdev, int n)
807 return vdev->vq[n].vring.used - vdev->vq[n].vring.desc +
808 virtio_queue_get_used_size(vdev, n);
811 uint16_t virtio_queue_get_last_avail_idx(VirtIODevice *vdev, int n)
813 return vdev->vq[n].last_avail_idx;
816 void virtio_queue_set_last_avail_idx(VirtIODevice *vdev, int n, uint16_t idx)
818 vdev->vq[n].last_avail_idx = idx;
821 VirtQueue *virtio_get_queue(VirtIODevice *vdev, int n)
823 return vdev->vq + n;
826 EventNotifier *virtio_queue_get_guest_notifier(VirtQueue *vq)
828 return &vq->guest_notifier;
830 EventNotifier *virtio_queue_get_host_notifier(VirtQueue *vq)
832 return &vq->host_notifier;