2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
18 static void qed_aio_cancel(BlockDriverAIOCB
*blockacb
)
20 QEDAIOCB
*acb
= (QEDAIOCB
*)blockacb
;
21 bool finished
= false;
23 /* Wait for the request to finish */
24 acb
->finished
= &finished
;
30 static AIOPool qed_aio_pool
= {
31 .aiocb_size
= sizeof(QEDAIOCB
),
32 .cancel
= qed_aio_cancel
,
35 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
38 const QEDHeader
*header
= (const QEDHeader
*)buf
;
40 if (buf_size
< sizeof(*header
)) {
43 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
50 * Check whether an image format is raw
52 * @fmt: Backing file format, may be NULL
54 static bool qed_fmt_is_raw(const char *fmt
)
56 return fmt
&& strcmp(fmt
, "raw") == 0;
59 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
61 cpu
->magic
= le32_to_cpu(le
->magic
);
62 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
63 cpu
->table_size
= le32_to_cpu(le
->table_size
);
64 cpu
->header_size
= le32_to_cpu(le
->header_size
);
65 cpu
->features
= le64_to_cpu(le
->features
);
66 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
67 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
68 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
69 cpu
->image_size
= le64_to_cpu(le
->image_size
);
70 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
71 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
74 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
76 le
->magic
= cpu_to_le32(cpu
->magic
);
77 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
78 le
->table_size
= cpu_to_le32(cpu
->table_size
);
79 le
->header_size
= cpu_to_le32(cpu
->header_size
);
80 le
->features
= cpu_to_le64(cpu
->features
);
81 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
82 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
83 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
84 le
->image_size
= cpu_to_le64(cpu
->image_size
);
85 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
86 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
89 static int qed_write_header_sync(BDRVQEDState
*s
)
94 qed_header_cpu_to_le(&s
->header
, &le
);
95 ret
= bdrv_pwrite(s
->bs
->file
, 0, &le
, sizeof(le
));
96 if (ret
!= sizeof(le
)) {
111 static void qed_write_header_cb(void *opaque
, int ret
)
113 QEDWriteHeaderCB
*write_header_cb
= opaque
;
115 qemu_vfree(write_header_cb
->buf
);
116 gencb_complete(write_header_cb
, ret
);
119 static void qed_write_header_read_cb(void *opaque
, int ret
)
121 QEDWriteHeaderCB
*write_header_cb
= opaque
;
122 BDRVQEDState
*s
= write_header_cb
->s
;
123 BlockDriverAIOCB
*acb
;
126 qed_write_header_cb(write_header_cb
, ret
);
131 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*)write_header_cb
->buf
);
133 acb
= bdrv_aio_writev(s
->bs
->file
, 0, &write_header_cb
->qiov
,
134 write_header_cb
->nsectors
, qed_write_header_cb
,
137 qed_write_header_cb(write_header_cb
, -EIO
);
142 * Update header in-place (does not rewrite backing filename or other strings)
144 * This function only updates known header fields in-place and does not affect
145 * extra data after the QED header.
147 static void qed_write_header(BDRVQEDState
*s
, BlockDriverCompletionFunc cb
,
150 /* We must write full sectors for O_DIRECT but cannot necessarily generate
151 * the data following the header if an unrecognized compat feature is
152 * active. Therefore, first read the sectors containing the header, update
153 * them, and write back.
156 BlockDriverAIOCB
*acb
;
157 int nsectors
= (sizeof(QEDHeader
) + BDRV_SECTOR_SIZE
- 1) /
159 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
160 QEDWriteHeaderCB
*write_header_cb
= gencb_alloc(sizeof(*write_header_cb
),
163 write_header_cb
->s
= s
;
164 write_header_cb
->nsectors
= nsectors
;
165 write_header_cb
->buf
= qemu_blockalign(s
->bs
, len
);
166 write_header_cb
->iov
.iov_base
= write_header_cb
->buf
;
167 write_header_cb
->iov
.iov_len
= len
;
168 qemu_iovec_init_external(&write_header_cb
->qiov
, &write_header_cb
->iov
, 1);
170 acb
= bdrv_aio_readv(s
->bs
->file
, 0, &write_header_cb
->qiov
, nsectors
,
171 qed_write_header_read_cb
, write_header_cb
);
173 qed_write_header_cb(write_header_cb
, -EIO
);
177 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
179 uint64_t table_entries
;
182 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
183 l2_size
= table_entries
* cluster_size
;
185 return l2_size
* table_entries
;
188 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
190 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
191 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
194 if (cluster_size
& (cluster_size
- 1)) {
195 return false; /* not power of 2 */
200 static bool qed_is_table_size_valid(uint32_t table_size
)
202 if (table_size
< QED_MIN_TABLE_SIZE
||
203 table_size
> QED_MAX_TABLE_SIZE
) {
206 if (table_size
& (table_size
- 1)) {
207 return false; /* not power of 2 */
212 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
215 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
216 return false; /* not multiple of sector size */
218 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
219 return false; /* image is too large */
225 * Read a string of known length from the image file
228 * @offset: File offset to start of string, in bytes
229 * @n: String length in bytes
230 * @buf: Destination buffer
231 * @buflen: Destination buffer length in bytes
232 * @ret: 0 on success, -errno on failure
234 * The string is NUL-terminated.
236 static int qed_read_string(BlockDriverState
*file
, uint64_t offset
, size_t n
,
237 char *buf
, size_t buflen
)
243 ret
= bdrv_pread(file
, offset
, buf
, n
);
252 * Allocate new clusters
255 * @n: Number of contiguous clusters to allocate
256 * @ret: Offset of first allocated cluster
258 * This function only produces the offset where the new clusters should be
259 * written. It updates BDRVQEDState but does not make any changes to the image
262 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
264 uint64_t offset
= s
->file_size
;
265 s
->file_size
+= n
* s
->header
.cluster_size
;
269 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
271 /* Honor O_DIRECT memory alignment requirements */
272 return qemu_blockalign(s
->bs
,
273 s
->header
.cluster_size
* s
->header
.table_size
);
277 * Allocate a new zeroed L2 table
279 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
281 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
283 l2_table
->table
= qed_alloc_table(s
);
284 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
286 memset(l2_table
->table
->offsets
, 0,
287 s
->header
.cluster_size
* s
->header
.table_size
);
291 static void qed_aio_next_io(void *opaque
, int ret
);
293 static int bdrv_qed_open(BlockDriverState
*bs
, int flags
)
295 BDRVQEDState
*s
= bs
->opaque
;
301 QSIMPLEQ_INIT(&s
->allocating_write_reqs
);
303 ret
= bdrv_pread(bs
->file
, 0, &le_header
, sizeof(le_header
));
307 ret
= 0; /* ret should always be 0 or -errno */
308 qed_header_le_to_cpu(&le_header
, &s
->header
);
310 if (s
->header
.magic
!= QED_MAGIC
) {
313 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
314 return -ENOTSUP
; /* image uses unsupported feature bits */
316 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
320 /* Round down file size to the last cluster */
321 file_size
= bdrv_getlength(bs
->file
);
325 s
->file_size
= qed_start_of_cluster(s
, file_size
);
327 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
330 if (!qed_is_image_size_valid(s
->header
.image_size
,
331 s
->header
.cluster_size
,
332 s
->header
.table_size
)) {
335 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
339 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
341 s
->l2_shift
= ffs(s
->header
.cluster_size
) - 1;
342 s
->l2_mask
= s
->table_nelems
- 1;
343 s
->l1_shift
= s
->l2_shift
+ ffs(s
->table_nelems
) - 1;
345 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
346 if ((uint64_t)s
->header
.backing_filename_offset
+
347 s
->header
.backing_filename_size
>
348 s
->header
.cluster_size
* s
->header
.header_size
) {
352 ret
= qed_read_string(bs
->file
, s
->header
.backing_filename_offset
,
353 s
->header
.backing_filename_size
, bs
->backing_file
,
354 sizeof(bs
->backing_file
));
359 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
360 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
364 /* Reset unknown autoclear feature bits. This is a backwards
365 * compatibility mechanism that allows images to be opened by older
366 * programs, which "knock out" unknown feature bits. When an image is
367 * opened by a newer program again it can detect that the autoclear
368 * feature is no longer valid.
370 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
371 !bdrv_is_read_only(bs
->file
)) {
372 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
374 ret
= qed_write_header_sync(s
);
379 /* From here on only known autoclear feature bits are valid */
380 bdrv_flush(bs
->file
);
383 s
->l1_table
= qed_alloc_table(s
);
384 qed_init_l2_cache(&s
->l2_cache
);
386 ret
= qed_read_l1_table_sync(s
);
391 /* If image was not closed cleanly, check consistency */
392 if (s
->header
.features
& QED_F_NEED_CHECK
) {
393 /* Read-only images cannot be fixed. There is no risk of corruption
394 * since write operations are not possible. Therefore, allow
395 * potentially inconsistent images to be opened read-only. This can
396 * aid data recovery from an otherwise inconsistent image.
398 if (!bdrv_is_read_only(bs
->file
)) {
399 BdrvCheckResult result
= {0};
401 ret
= qed_check(s
, &result
, true);
402 if (!ret
&& !result
.corruptions
&& !result
.check_errors
) {
403 /* Ensure fixes reach storage before clearing check bit */
406 s
->header
.features
&= ~QED_F_NEED_CHECK
;
407 qed_write_header_sync(s
);
414 qed_free_l2_cache(&s
->l2_cache
);
415 qemu_vfree(s
->l1_table
);
420 static void bdrv_qed_close(BlockDriverState
*bs
)
422 BDRVQEDState
*s
= bs
->opaque
;
424 /* Ensure writes reach stable storage */
425 bdrv_flush(bs
->file
);
427 /* Clean shutdown, no check required on next open */
428 if (s
->header
.features
& QED_F_NEED_CHECK
) {
429 s
->header
.features
&= ~QED_F_NEED_CHECK
;
430 qed_write_header_sync(s
);
433 qed_free_l2_cache(&s
->l2_cache
);
434 qemu_vfree(s
->l1_table
);
437 static int bdrv_qed_flush(BlockDriverState
*bs
)
439 return bdrv_flush(bs
->file
);
442 static int qed_create(const char *filename
, uint32_t cluster_size
,
443 uint64_t image_size
, uint32_t table_size
,
444 const char *backing_file
, const char *backing_fmt
)
448 .cluster_size
= cluster_size
,
449 .table_size
= table_size
,
452 .compat_features
= 0,
453 .l1_table_offset
= cluster_size
,
454 .image_size
= image_size
,
457 uint8_t *l1_table
= NULL
;
458 size_t l1_size
= header
.cluster_size
* header
.table_size
;
460 BlockDriverState
*bs
= NULL
;
462 ret
= bdrv_create_file(filename
, NULL
);
467 ret
= bdrv_file_open(&bs
, filename
, BDRV_O_RDWR
| BDRV_O_CACHE_WB
);
473 header
.features
|= QED_F_BACKING_FILE
;
474 header
.backing_filename_offset
= sizeof(le_header
);
475 header
.backing_filename_size
= strlen(backing_file
);
477 if (qed_fmt_is_raw(backing_fmt
)) {
478 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
482 qed_header_cpu_to_le(&header
, &le_header
);
483 ret
= bdrv_pwrite(bs
, 0, &le_header
, sizeof(le_header
));
487 ret
= bdrv_pwrite(bs
, sizeof(le_header
), backing_file
,
488 header
.backing_filename_size
);
493 l1_table
= qemu_mallocz(l1_size
);
494 ret
= bdrv_pwrite(bs
, header
.l1_table_offset
, l1_table
, l1_size
);
499 ret
= 0; /* success */
506 static int bdrv_qed_create(const char *filename
, QEMUOptionParameter
*options
)
508 uint64_t image_size
= 0;
509 uint32_t cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
510 uint32_t table_size
= QED_DEFAULT_TABLE_SIZE
;
511 const char *backing_file
= NULL
;
512 const char *backing_fmt
= NULL
;
514 while (options
&& options
->name
) {
515 if (!strcmp(options
->name
, BLOCK_OPT_SIZE
)) {
516 image_size
= options
->value
.n
;
517 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FILE
)) {
518 backing_file
= options
->value
.s
;
519 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FMT
)) {
520 backing_fmt
= options
->value
.s
;
521 } else if (!strcmp(options
->name
, BLOCK_OPT_CLUSTER_SIZE
)) {
522 if (options
->value
.n
) {
523 cluster_size
= options
->value
.n
;
525 } else if (!strcmp(options
->name
, BLOCK_OPT_TABLE_SIZE
)) {
526 if (options
->value
.n
) {
527 table_size
= options
->value
.n
;
533 if (!qed_is_cluster_size_valid(cluster_size
)) {
534 fprintf(stderr
, "QED cluster size must be within range [%u, %u] and power of 2\n",
535 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
538 if (!qed_is_table_size_valid(table_size
)) {
539 fprintf(stderr
, "QED table size must be within range [%u, %u] and power of 2\n",
540 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
543 if (!qed_is_image_size_valid(image_size
, cluster_size
, table_size
)) {
544 fprintf(stderr
, "QED image size must be a non-zero multiple of "
545 "cluster size and less than %" PRIu64
" bytes\n",
546 qed_max_image_size(cluster_size
, table_size
));
550 return qed_create(filename
, cluster_size
, image_size
, table_size
,
551 backing_file
, backing_fmt
);
559 static void qed_is_allocated_cb(void *opaque
, int ret
, uint64_t offset
, size_t len
)
561 QEDIsAllocatedCB
*cb
= opaque
;
562 *cb
->pnum
= len
/ BDRV_SECTOR_SIZE
;
563 cb
->is_allocated
= ret
== QED_CLUSTER_FOUND
;
566 static int bdrv_qed_is_allocated(BlockDriverState
*bs
, int64_t sector_num
,
567 int nb_sectors
, int *pnum
)
569 BDRVQEDState
*s
= bs
->opaque
;
570 uint64_t pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
571 size_t len
= (size_t)nb_sectors
* BDRV_SECTOR_SIZE
;
572 QEDIsAllocatedCB cb
= {
576 QEDRequest request
= { .l2_table
= NULL
};
578 async_context_push();
580 qed_find_cluster(s
, &request
, pos
, len
, qed_is_allocated_cb
, &cb
);
582 while (cb
.is_allocated
== -1) {
588 qed_unref_l2_cache_entry(request
.l2_table
);
590 return cb
.is_allocated
;
593 static int bdrv_qed_make_empty(BlockDriverState
*bs
)
598 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
600 return acb
->common
.bs
->opaque
;
604 * Read from the backing file or zero-fill if no backing file
607 * @pos: Byte position in device
608 * @qiov: Destination I/O vector
609 * @cb: Completion function
610 * @opaque: User data for completion function
612 * This function reads qiov->size bytes starting at pos from the backing file.
613 * If there is no backing file then zeroes are read.
615 static void qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
617 BlockDriverCompletionFunc
*cb
, void *opaque
)
619 BlockDriverAIOCB
*aiocb
;
620 uint64_t backing_length
= 0;
623 /* If there is a backing file, get its length. Treat the absence of a
624 * backing file like a zero length backing file.
626 if (s
->bs
->backing_hd
) {
627 int64_t l
= bdrv_getlength(s
->bs
->backing_hd
);
635 /* Zero all sectors if reading beyond the end of the backing file */
636 if (pos
>= backing_length
||
637 pos
+ qiov
->size
> backing_length
) {
638 qemu_iovec_memset(qiov
, 0, qiov
->size
);
641 /* Complete now if there are no backing file sectors to read */
642 if (pos
>= backing_length
) {
647 /* If the read straddles the end of the backing file, shorten it */
648 size
= MIN((uint64_t)backing_length
- pos
, qiov
->size
);
650 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING
);
651 aiocb
= bdrv_aio_readv(s
->bs
->backing_hd
, pos
/ BDRV_SECTOR_SIZE
,
652 qiov
, size
/ BDRV_SECTOR_SIZE
, cb
, opaque
);
664 } CopyFromBackingFileCB
;
666 static void qed_copy_from_backing_file_cb(void *opaque
, int ret
)
668 CopyFromBackingFileCB
*copy_cb
= opaque
;
669 qemu_vfree(copy_cb
->iov
.iov_base
);
670 gencb_complete(©_cb
->gencb
, ret
);
673 static void qed_copy_from_backing_file_write(void *opaque
, int ret
)
675 CopyFromBackingFileCB
*copy_cb
= opaque
;
676 BDRVQEDState
*s
= copy_cb
->s
;
677 BlockDriverAIOCB
*aiocb
;
680 qed_copy_from_backing_file_cb(copy_cb
, ret
);
684 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
685 aiocb
= bdrv_aio_writev(s
->bs
->file
, copy_cb
->offset
/ BDRV_SECTOR_SIZE
,
687 copy_cb
->qiov
.size
/ BDRV_SECTOR_SIZE
,
688 qed_copy_from_backing_file_cb
, copy_cb
);
690 qed_copy_from_backing_file_cb(copy_cb
, -EIO
);
695 * Copy data from backing file into the image
698 * @pos: Byte position in device
699 * @len: Number of bytes
700 * @offset: Byte offset in image file
701 * @cb: Completion function
702 * @opaque: User data for completion function
704 static void qed_copy_from_backing_file(BDRVQEDState
*s
, uint64_t pos
,
705 uint64_t len
, uint64_t offset
,
706 BlockDriverCompletionFunc
*cb
,
709 CopyFromBackingFileCB
*copy_cb
;
711 /* Skip copy entirely if there is no work to do */
717 copy_cb
= gencb_alloc(sizeof(*copy_cb
), cb
, opaque
);
719 copy_cb
->offset
= offset
;
720 copy_cb
->iov
.iov_base
= qemu_blockalign(s
->bs
, len
);
721 copy_cb
->iov
.iov_len
= len
;
722 qemu_iovec_init_external(©_cb
->qiov
, ©_cb
->iov
, 1);
724 qed_read_backing_file(s
, pos
, ©_cb
->qiov
,
725 qed_copy_from_backing_file_write
, copy_cb
);
729 * Link one or more contiguous clusters into a table
733 * @index: First cluster index
734 * @n: Number of contiguous clusters
735 * @cluster: First cluster byte offset in image file
737 static void qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
, int index
,
738 unsigned int n
, uint64_t cluster
)
741 for (i
= index
; i
< index
+ n
; i
++) {
742 table
->offsets
[i
] = cluster
;
743 cluster
+= s
->header
.cluster_size
;
747 static void qed_aio_complete_bh(void *opaque
)
749 QEDAIOCB
*acb
= opaque
;
750 BlockDriverCompletionFunc
*cb
= acb
->common
.cb
;
751 void *user_opaque
= acb
->common
.opaque
;
752 int ret
= acb
->bh_ret
;
753 bool *finished
= acb
->finished
;
755 qemu_bh_delete(acb
->bh
);
756 qemu_aio_release(acb
);
758 /* Invoke callback */
759 cb(user_opaque
, ret
);
761 /* Signal cancel completion */
767 static void qed_aio_complete(QEDAIOCB
*acb
, int ret
)
769 BDRVQEDState
*s
= acb_to_s(acb
);
771 trace_qed_aio_complete(s
, acb
, ret
);
774 qemu_iovec_destroy(&acb
->cur_qiov
);
775 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
777 /* Arrange for a bh to invoke the completion function */
779 acb
->bh
= qemu_bh_new(qed_aio_complete_bh
, acb
);
780 qemu_bh_schedule(acb
->bh
);
782 /* Start next allocating write request waiting behind this one. Note that
783 * requests enqueue themselves when they first hit an unallocated cluster
784 * but they wait until the entire request is finished before waking up the
785 * next request in the queue. This ensures that we don't cycle through
786 * requests multiple times but rather finish one at a time completely.
788 if (acb
== QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
789 QSIMPLEQ_REMOVE_HEAD(&s
->allocating_write_reqs
, next
);
790 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
792 qed_aio_next_io(acb
, 0);
798 * Commit the current L2 table to the cache
800 static void qed_commit_l2_update(void *opaque
, int ret
)
802 QEDAIOCB
*acb
= opaque
;
803 BDRVQEDState
*s
= acb_to_s(acb
);
804 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
806 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
808 /* This is guaranteed to succeed because we just committed the entry to the
811 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
,
813 assert(acb
->request
.l2_table
!= NULL
);
815 qed_aio_next_io(opaque
, ret
);
819 * Update L1 table with new L2 table offset and write it out
821 static void qed_aio_write_l1_update(void *opaque
, int ret
)
823 QEDAIOCB
*acb
= opaque
;
824 BDRVQEDState
*s
= acb_to_s(acb
);
828 qed_aio_complete(acb
, ret
);
832 index
= qed_l1_index(s
, acb
->cur_pos
);
833 s
->l1_table
->offsets
[index
] = acb
->request
.l2_table
->offset
;
835 qed_write_l1_table(s
, index
, 1, qed_commit_l2_update
, acb
);
839 * Update L2 table with new cluster offsets and write them out
841 static void qed_aio_write_l2_update(void *opaque
, int ret
)
843 QEDAIOCB
*acb
= opaque
;
844 BDRVQEDState
*s
= acb_to_s(acb
);
845 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
853 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
854 acb
->request
.l2_table
= qed_new_l2_table(s
);
857 index
= qed_l2_index(s
, acb
->cur_pos
);
858 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
862 /* Write out the whole new L2 table */
863 qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true,
864 qed_aio_write_l1_update
, acb
);
866 /* Write out only the updated part of the L2 table */
867 qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
, false,
868 qed_aio_next_io
, acb
);
873 qed_aio_complete(acb
, ret
);
877 * Flush new data clusters before updating the L2 table
879 * This flush is necessary when a backing file is in use. A crash during an
880 * allocating write could result in empty clusters in the image. If the write
881 * only touched a subregion of the cluster, then backing image sectors have
882 * been lost in the untouched region. The solution is to flush after writing a
883 * new data cluster and before updating the L2 table.
885 static void qed_aio_write_flush_before_l2_update(void *opaque
, int ret
)
887 QEDAIOCB
*acb
= opaque
;
888 BDRVQEDState
*s
= acb_to_s(acb
);
890 if (!bdrv_aio_flush(s
->bs
->file
, qed_aio_write_l2_update
, opaque
)) {
891 qed_aio_complete(acb
, -EIO
);
896 * Write data to the image file
898 static void qed_aio_write_main(void *opaque
, int ret
)
900 QEDAIOCB
*acb
= opaque
;
901 BDRVQEDState
*s
= acb_to_s(acb
);
902 uint64_t offset
= acb
->cur_cluster
+
903 qed_offset_into_cluster(s
, acb
->cur_pos
);
904 BlockDriverCompletionFunc
*next_fn
;
905 BlockDriverAIOCB
*file_acb
;
907 trace_qed_aio_write_main(s
, acb
, ret
, offset
, acb
->cur_qiov
.size
);
910 qed_aio_complete(acb
, ret
);
914 if (acb
->find_cluster_ret
== QED_CLUSTER_FOUND
) {
915 next_fn
= qed_aio_next_io
;
917 if (s
->bs
->backing_hd
) {
918 next_fn
= qed_aio_write_flush_before_l2_update
;
920 next_fn
= qed_aio_write_l2_update
;
924 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
925 file_acb
= bdrv_aio_writev(s
->bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
927 acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
930 qed_aio_complete(acb
, -EIO
);
935 * Populate back untouched region of new data cluster
937 static void qed_aio_write_postfill(void *opaque
, int ret
)
939 QEDAIOCB
*acb
= opaque
;
940 BDRVQEDState
*s
= acb_to_s(acb
);
941 uint64_t start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
943 qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
944 uint64_t offset
= acb
->cur_cluster
+
945 qed_offset_into_cluster(s
, acb
->cur_pos
) +
949 qed_aio_complete(acb
, ret
);
953 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
954 qed_copy_from_backing_file(s
, start
, len
, offset
,
955 qed_aio_write_main
, acb
);
959 * Populate front untouched region of new data cluster
961 static void qed_aio_write_prefill(void *opaque
, int ret
)
963 QEDAIOCB
*acb
= opaque
;
964 BDRVQEDState
*s
= acb_to_s(acb
);
965 uint64_t start
= qed_start_of_cluster(s
, acb
->cur_pos
);
966 uint64_t len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
968 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
969 qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
,
970 qed_aio_write_postfill
, acb
);
974 * Write new data cluster
976 * @acb: Write request
977 * @len: Length in bytes
979 * This path is taken when writing to previously unallocated clusters.
981 static void qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
983 BDRVQEDState
*s
= acb_to_s(acb
);
985 /* Freeze this request if another allocating write is in progress */
986 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
987 QSIMPLEQ_INSERT_TAIL(&s
->allocating_write_reqs
, acb
, next
);
989 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
990 return; /* wait for existing request to finish */
993 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
994 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
995 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
996 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
998 /* Write new cluster if the image is already marked dirty */
999 if (s
->header
.features
& QED_F_NEED_CHECK
) {
1000 qed_aio_write_prefill(acb
, 0);
1004 /* Mark the image dirty before writing the new cluster */
1005 s
->header
.features
|= QED_F_NEED_CHECK
;
1006 qed_write_header(s
, qed_aio_write_prefill
, acb
);
1010 * Write data cluster in place
1012 * @acb: Write request
1013 * @offset: Cluster offset in bytes
1014 * @len: Length in bytes
1016 * This path is taken when writing to already allocated clusters.
1018 static void qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
, size_t len
)
1020 /* Calculate the I/O vector */
1021 acb
->cur_cluster
= offset
;
1022 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1024 /* Do the actual write */
1025 qed_aio_write_main(acb
, 0);
1029 * Write data cluster
1031 * @opaque: Write request
1032 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1034 * @offset: Cluster offset in bytes
1035 * @len: Length in bytes
1037 * Callback from qed_find_cluster().
1039 static void qed_aio_write_data(void *opaque
, int ret
,
1040 uint64_t offset
, size_t len
)
1042 QEDAIOCB
*acb
= opaque
;
1044 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1046 acb
->find_cluster_ret
= ret
;
1049 case QED_CLUSTER_FOUND
:
1050 qed_aio_write_inplace(acb
, offset
, len
);
1053 case QED_CLUSTER_L2
:
1054 case QED_CLUSTER_L1
:
1055 qed_aio_write_alloc(acb
, len
);
1059 qed_aio_complete(acb
, ret
);
1067 * @opaque: Read request
1068 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1070 * @offset: Cluster offset in bytes
1071 * @len: Length in bytes
1073 * Callback from qed_find_cluster().
1075 static void qed_aio_read_data(void *opaque
, int ret
,
1076 uint64_t offset
, size_t len
)
1078 QEDAIOCB
*acb
= opaque
;
1079 BDRVQEDState
*s
= acb_to_s(acb
);
1080 BlockDriverState
*bs
= acb
->common
.bs
;
1081 BlockDriverAIOCB
*file_acb
;
1083 /* Adjust offset into cluster */
1084 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1086 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1092 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1094 /* Handle backing file and unallocated sparse hole reads */
1095 if (ret
!= QED_CLUSTER_FOUND
) {
1096 qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
,
1097 qed_aio_next_io
, acb
);
1101 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1102 file_acb
= bdrv_aio_readv(bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1104 acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1105 qed_aio_next_io
, acb
);
1113 qed_aio_complete(acb
, ret
);
1117 * Begin next I/O or complete the request
1119 static void qed_aio_next_io(void *opaque
, int ret
)
1121 QEDAIOCB
*acb
= opaque
;
1122 BDRVQEDState
*s
= acb_to_s(acb
);
1123 QEDFindClusterFunc
*io_fn
=
1124 acb
->is_write
? qed_aio_write_data
: qed_aio_read_data
;
1126 trace_qed_aio_next_io(s
, acb
, ret
, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1128 /* Handle I/O error */
1130 qed_aio_complete(acb
, ret
);
1134 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1135 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1136 qemu_iovec_reset(&acb
->cur_qiov
);
1138 /* Complete request */
1139 if (acb
->cur_pos
>= acb
->end_pos
) {
1140 qed_aio_complete(acb
, 0);
1144 /* Find next cluster and start I/O */
1145 qed_find_cluster(s
, &acb
->request
,
1146 acb
->cur_pos
, acb
->end_pos
- acb
->cur_pos
,
1150 static BlockDriverAIOCB
*qed_aio_setup(BlockDriverState
*bs
,
1152 QEMUIOVector
*qiov
, int nb_sectors
,
1153 BlockDriverCompletionFunc
*cb
,
1154 void *opaque
, bool is_write
)
1156 QEDAIOCB
*acb
= qemu_aio_get(&qed_aio_pool
, bs
, cb
, opaque
);
1158 trace_qed_aio_setup(bs
->opaque
, acb
, sector_num
, nb_sectors
,
1161 acb
->is_write
= is_write
;
1162 acb
->finished
= NULL
;
1164 acb
->qiov_offset
= 0;
1165 acb
->cur_pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
1166 acb
->end_pos
= acb
->cur_pos
+ nb_sectors
* BDRV_SECTOR_SIZE
;
1167 acb
->request
.l2_table
= NULL
;
1168 qemu_iovec_init(&acb
->cur_qiov
, qiov
->niov
);
1171 qed_aio_next_io(acb
, 0);
1172 return &acb
->common
;
1175 static BlockDriverAIOCB
*bdrv_qed_aio_readv(BlockDriverState
*bs
,
1177 QEMUIOVector
*qiov
, int nb_sectors
,
1178 BlockDriverCompletionFunc
*cb
,
1181 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
, opaque
, false);
1184 static BlockDriverAIOCB
*bdrv_qed_aio_writev(BlockDriverState
*bs
,
1186 QEMUIOVector
*qiov
, int nb_sectors
,
1187 BlockDriverCompletionFunc
*cb
,
1190 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
, opaque
, true);
1193 static BlockDriverAIOCB
*bdrv_qed_aio_flush(BlockDriverState
*bs
,
1194 BlockDriverCompletionFunc
*cb
,
1197 return bdrv_aio_flush(bs
->file
, cb
, opaque
);
1200 static int bdrv_qed_truncate(BlockDriverState
*bs
, int64_t offset
)
1205 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1207 BDRVQEDState
*s
= bs
->opaque
;
1208 return s
->header
.image_size
;
1211 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1213 BDRVQEDState
*s
= bs
->opaque
;
1215 memset(bdi
, 0, sizeof(*bdi
));
1216 bdi
->cluster_size
= s
->header
.cluster_size
;
1220 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1221 const char *backing_file
,
1222 const char *backing_fmt
)
1224 BDRVQEDState
*s
= bs
->opaque
;
1225 QEDHeader new_header
, le_header
;
1227 size_t buffer_len
, backing_file_len
;
1230 /* Refuse to set backing filename if unknown compat feature bits are
1231 * active. If the image uses an unknown compat feature then we may not
1232 * know the layout of data following the header structure and cannot safely
1235 if (backing_file
&& (s
->header
.compat_features
&
1236 ~QED_COMPAT_FEATURE_MASK
)) {
1240 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1242 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1243 QED_F_BACKING_FORMAT_NO_PROBE
);
1245 /* Adjust feature flags */
1247 new_header
.features
|= QED_F_BACKING_FILE
;
1249 if (qed_fmt_is_raw(backing_fmt
)) {
1250 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1254 /* Calculate new header size */
1255 backing_file_len
= 0;
1258 backing_file_len
= strlen(backing_file
);
1261 buffer_len
= sizeof(new_header
);
1262 new_header
.backing_filename_offset
= buffer_len
;
1263 new_header
.backing_filename_size
= backing_file_len
;
1264 buffer_len
+= backing_file_len
;
1266 /* Make sure we can rewrite header without failing */
1267 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1271 /* Prepare new header */
1272 buffer
= qemu_malloc(buffer_len
);
1274 qed_header_cpu_to_le(&new_header
, &le_header
);
1275 memcpy(buffer
, &le_header
, sizeof(le_header
));
1276 buffer_len
= sizeof(le_header
);
1278 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1279 buffer_len
+= backing_file_len
;
1281 /* Write new header */
1282 ret
= bdrv_pwrite_sync(bs
->file
, 0, buffer
, buffer_len
);
1285 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1290 static int bdrv_qed_check(BlockDriverState
*bs
, BdrvCheckResult
*result
)
1292 BDRVQEDState
*s
= bs
->opaque
;
1294 return qed_check(s
, result
, false);
1297 static QEMUOptionParameter qed_create_options
[] = {
1299 .name
= BLOCK_OPT_SIZE
,
1301 .help
= "Virtual disk size (in bytes)"
1303 .name
= BLOCK_OPT_BACKING_FILE
,
1305 .help
= "File name of a base image"
1307 .name
= BLOCK_OPT_BACKING_FMT
,
1309 .help
= "Image format of the base image"
1311 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1313 .help
= "Cluster size (in bytes)"
1315 .name
= BLOCK_OPT_TABLE_SIZE
,
1317 .help
= "L1/L2 table size (in clusters)"
1319 { /* end of list */ }
1322 static BlockDriver bdrv_qed
= {
1323 .format_name
= "qed",
1324 .instance_size
= sizeof(BDRVQEDState
),
1325 .create_options
= qed_create_options
,
1327 .bdrv_probe
= bdrv_qed_probe
,
1328 .bdrv_open
= bdrv_qed_open
,
1329 .bdrv_close
= bdrv_qed_close
,
1330 .bdrv_create
= bdrv_qed_create
,
1331 .bdrv_flush
= bdrv_qed_flush
,
1332 .bdrv_is_allocated
= bdrv_qed_is_allocated
,
1333 .bdrv_make_empty
= bdrv_qed_make_empty
,
1334 .bdrv_aio_readv
= bdrv_qed_aio_readv
,
1335 .bdrv_aio_writev
= bdrv_qed_aio_writev
,
1336 .bdrv_aio_flush
= bdrv_qed_aio_flush
,
1337 .bdrv_truncate
= bdrv_qed_truncate
,
1338 .bdrv_getlength
= bdrv_qed_getlength
,
1339 .bdrv_get_info
= bdrv_qed_get_info
,
1340 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1341 .bdrv_check
= bdrv_qed_check
,
1344 static void bdrv_qed_init(void)
1346 bdrv_register(&bdrv_qed
);
1349 block_init(bdrv_qed_init
);