target-sh4: MMU: simplify call to tlb_set_page()
[qemu/kraxel.git] / exec.c
blob0fb363b49d184e0a4cc91b6e85b27e3ca6e9b2f8
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
80 #endif
82 static TranslationBlock *tbs;
83 int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
117 typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122 } RAMBlock;
124 static RAMBlock *ram_blocks;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset;
129 #endif
131 CPUState *first_cpu;
132 /* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134 CPUState *cpu_single_env;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138 int use_icount = 0;
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141 int64_t qemu_icount;
143 typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150 #if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152 #endif
153 } PageDesc;
155 typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159 } PhysPageDesc;
161 #define L2_BITS 10
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #else
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170 #endif
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
175 unsigned long qemu_real_host_page_size;
176 unsigned long qemu_host_page_bits;
177 unsigned long qemu_host_page_size;
178 unsigned long qemu_host_page_mask;
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc *l1_map[L1_SIZE];
182 static PhysPageDesc **l1_phys_map;
184 #if !defined(CONFIG_USER_ONLY)
185 static void io_mem_init(void);
187 /* io memory support */
188 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
190 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
191 static char io_mem_used[IO_MEM_NB_ENTRIES];
192 static int io_mem_watch;
193 #endif
195 /* log support */
196 #ifdef WIN32
197 static const char *logfilename = "qemu.log";
198 #else
199 static const char *logfilename = "/tmp/qemu.log";
200 #endif
201 FILE *logfile;
202 int loglevel;
203 static int log_append = 0;
205 /* statistics */
206 static int tlb_flush_count;
207 static int tb_flush_count;
208 static int tb_phys_invalidate_count;
210 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
211 typedef struct subpage_t {
212 target_phys_addr_t base;
213 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
214 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
215 void *opaque[TARGET_PAGE_SIZE][2][4];
216 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
217 } subpage_t;
219 #ifdef _WIN32
220 static void map_exec(void *addr, long size)
222 DWORD old_protect;
223 VirtualProtect(addr, size,
224 PAGE_EXECUTE_READWRITE, &old_protect);
227 #else
228 static void map_exec(void *addr, long size)
230 unsigned long start, end, page_size;
232 page_size = getpagesize();
233 start = (unsigned long)addr;
234 start &= ~(page_size - 1);
236 end = (unsigned long)addr + size;
237 end += page_size - 1;
238 end &= ~(page_size - 1);
240 mprotect((void *)start, end - start,
241 PROT_READ | PROT_WRITE | PROT_EXEC);
243 #endif
245 static void page_init(void)
247 /* NOTE: we can always suppose that qemu_host_page_size >=
248 TARGET_PAGE_SIZE */
249 #ifdef _WIN32
251 SYSTEM_INFO system_info;
253 GetSystemInfo(&system_info);
254 qemu_real_host_page_size = system_info.dwPageSize;
256 #else
257 qemu_real_host_page_size = getpagesize();
258 #endif
259 if (qemu_host_page_size == 0)
260 qemu_host_page_size = qemu_real_host_page_size;
261 if (qemu_host_page_size < TARGET_PAGE_SIZE)
262 qemu_host_page_size = TARGET_PAGE_SIZE;
263 qemu_host_page_bits = 0;
264 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
265 qemu_host_page_bits++;
266 qemu_host_page_mask = ~(qemu_host_page_size - 1);
267 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
268 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
270 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
272 long long startaddr, endaddr;
273 FILE *f;
274 int n;
276 mmap_lock();
277 last_brk = (unsigned long)sbrk(0);
278 f = fopen("/proc/self/maps", "r");
279 if (f) {
280 do {
281 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
282 if (n == 2) {
283 startaddr = MIN(startaddr,
284 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
285 endaddr = MIN(endaddr,
286 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
287 page_set_flags(startaddr & TARGET_PAGE_MASK,
288 TARGET_PAGE_ALIGN(endaddr),
289 PAGE_RESERVED);
291 } while (!feof(f));
292 fclose(f);
294 mmap_unlock();
296 #endif
299 static inline PageDesc **page_l1_map(target_ulong index)
301 #if TARGET_LONG_BITS > 32
302 /* Host memory outside guest VM. For 32-bit targets we have already
303 excluded high addresses. */
304 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
305 return NULL;
306 #endif
307 return &l1_map[index >> L2_BITS];
310 static inline PageDesc *page_find_alloc(target_ulong index)
312 PageDesc **lp, *p;
313 lp = page_l1_map(index);
314 if (!lp)
315 return NULL;
317 p = *lp;
318 if (!p) {
319 /* allocate if not found */
320 #if defined(CONFIG_USER_ONLY)
321 size_t len = sizeof(PageDesc) * L2_SIZE;
322 /* Don't use qemu_malloc because it may recurse. */
323 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
324 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
325 *lp = p;
326 if (h2g_valid(p)) {
327 unsigned long addr = h2g(p);
328 page_set_flags(addr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(addr + len),
330 PAGE_RESERVED);
332 #else
333 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
334 *lp = p;
335 #endif
337 return p + (index & (L2_SIZE - 1));
340 static inline PageDesc *page_find(target_ulong index)
342 PageDesc **lp, *p;
343 lp = page_l1_map(index);
344 if (!lp)
345 return NULL;
347 p = *lp;
348 if (!p) {
349 return NULL;
351 return p + (index & (L2_SIZE - 1));
354 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
356 void **lp, **p;
357 PhysPageDesc *pd;
359 p = (void **)l1_phys_map;
360 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
362 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
364 #endif
365 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
366 p = *lp;
367 if (!p) {
368 /* allocate if not found */
369 if (!alloc)
370 return NULL;
371 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
372 memset(p, 0, sizeof(void *) * L1_SIZE);
373 *lp = p;
375 #endif
376 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
377 pd = *lp;
378 if (!pd) {
379 int i;
380 /* allocate if not found */
381 if (!alloc)
382 return NULL;
383 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
384 *lp = pd;
385 for (i = 0; i < L2_SIZE; i++) {
386 pd[i].phys_offset = IO_MEM_UNASSIGNED;
387 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
390 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
393 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
395 return phys_page_find_alloc(index, 0);
398 #if !defined(CONFIG_USER_ONLY)
399 static void tlb_protect_code(ram_addr_t ram_addr);
400 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
401 target_ulong vaddr);
402 #define mmap_lock() do { } while(0)
403 #define mmap_unlock() do { } while(0)
404 #endif
406 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
408 #if defined(CONFIG_USER_ONLY)
409 /* Currently it is not recommended to allocate big chunks of data in
410 user mode. It will change when a dedicated libc will be used */
411 #define USE_STATIC_CODE_GEN_BUFFER
412 #endif
414 #ifdef USE_STATIC_CODE_GEN_BUFFER
415 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
416 #endif
418 static void code_gen_alloc(unsigned long tb_size)
420 #ifdef USE_STATIC_CODE_GEN_BUFFER
421 code_gen_buffer = static_code_gen_buffer;
422 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
423 map_exec(code_gen_buffer, code_gen_buffer_size);
424 #else
425 code_gen_buffer_size = tb_size;
426 if (code_gen_buffer_size == 0) {
427 #if defined(CONFIG_USER_ONLY)
428 /* in user mode, phys_ram_size is not meaningful */
429 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
430 #else
431 /* XXX: needs adjustments */
432 code_gen_buffer_size = (unsigned long)(ram_size / 4);
433 #endif
435 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
436 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
437 /* The code gen buffer location may have constraints depending on
438 the host cpu and OS */
439 #if defined(__linux__)
441 int flags;
442 void *start = NULL;
444 flags = MAP_PRIVATE | MAP_ANONYMOUS;
445 #if defined(__x86_64__)
446 flags |= MAP_32BIT;
447 /* Cannot map more than that */
448 if (code_gen_buffer_size > (800 * 1024 * 1024))
449 code_gen_buffer_size = (800 * 1024 * 1024);
450 #elif defined(__sparc_v9__)
451 // Map the buffer below 2G, so we can use direct calls and branches
452 flags |= MAP_FIXED;
453 start = (void *) 0x60000000UL;
454 if (code_gen_buffer_size > (512 * 1024 * 1024))
455 code_gen_buffer_size = (512 * 1024 * 1024);
456 #elif defined(__arm__)
457 /* Map the buffer below 32M, so we can use direct calls and branches */
458 flags |= MAP_FIXED;
459 start = (void *) 0x01000000UL;
460 if (code_gen_buffer_size > 16 * 1024 * 1024)
461 code_gen_buffer_size = 16 * 1024 * 1024;
462 #endif
463 code_gen_buffer = mmap(start, code_gen_buffer_size,
464 PROT_WRITE | PROT_READ | PROT_EXEC,
465 flags, -1, 0);
466 if (code_gen_buffer == MAP_FAILED) {
467 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
468 exit(1);
471 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
473 int flags;
474 void *addr = NULL;
475 flags = MAP_PRIVATE | MAP_ANONYMOUS;
476 #if defined(__x86_64__)
477 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
478 * 0x40000000 is free */
479 flags |= MAP_FIXED;
480 addr = (void *)0x40000000;
481 /* Cannot map more than that */
482 if (code_gen_buffer_size > (800 * 1024 * 1024))
483 code_gen_buffer_size = (800 * 1024 * 1024);
484 #endif
485 code_gen_buffer = mmap(addr, code_gen_buffer_size,
486 PROT_WRITE | PROT_READ | PROT_EXEC,
487 flags, -1, 0);
488 if (code_gen_buffer == MAP_FAILED) {
489 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
490 exit(1);
493 #else
494 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
495 map_exec(code_gen_buffer, code_gen_buffer_size);
496 #endif
497 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
498 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
499 code_gen_buffer_max_size = code_gen_buffer_size -
500 code_gen_max_block_size();
501 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
502 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
505 /* Must be called before using the QEMU cpus. 'tb_size' is the size
506 (in bytes) allocated to the translation buffer. Zero means default
507 size. */
508 void cpu_exec_init_all(unsigned long tb_size)
510 cpu_gen_init();
511 code_gen_alloc(tb_size);
512 code_gen_ptr = code_gen_buffer;
513 page_init();
514 #if !defined(CONFIG_USER_ONLY)
515 io_mem_init();
516 #endif
519 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
521 static void cpu_common_pre_save(void *opaque)
523 CPUState *env = opaque;
525 cpu_synchronize_state(env);
528 static int cpu_common_pre_load(void *opaque)
530 CPUState *env = opaque;
532 cpu_synchronize_state(env);
533 return 0;
536 static int cpu_common_post_load(void *opaque, int version_id)
538 CPUState *env = opaque;
540 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
541 version_id is increased. */
542 env->interrupt_request &= ~0x01;
543 tlb_flush(env, 1);
545 return 0;
548 static const VMStateDescription vmstate_cpu_common = {
549 .name = "cpu_common",
550 .version_id = 1,
551 .minimum_version_id = 1,
552 .minimum_version_id_old = 1,
553 .pre_save = cpu_common_pre_save,
554 .pre_load = cpu_common_pre_load,
555 .post_load = cpu_common_post_load,
556 .fields = (VMStateField []) {
557 VMSTATE_UINT32(halted, CPUState),
558 VMSTATE_UINT32(interrupt_request, CPUState),
559 VMSTATE_END_OF_LIST()
562 #endif
564 CPUState *qemu_get_cpu(int cpu)
566 CPUState *env = first_cpu;
568 while (env) {
569 if (env->cpu_index == cpu)
570 break;
571 env = env->next_cpu;
574 return env;
577 void cpu_exec_init(CPUState *env)
579 CPUState **penv;
580 int cpu_index;
582 #if defined(CONFIG_USER_ONLY)
583 cpu_list_lock();
584 #endif
585 env->next_cpu = NULL;
586 penv = &first_cpu;
587 cpu_index = 0;
588 while (*penv != NULL) {
589 penv = &(*penv)->next_cpu;
590 cpu_index++;
592 env->cpu_index = cpu_index;
593 env->numa_node = 0;
594 QTAILQ_INIT(&env->breakpoints);
595 QTAILQ_INIT(&env->watchpoints);
596 *penv = env;
597 #if defined(CONFIG_USER_ONLY)
598 cpu_list_unlock();
599 #endif
600 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
601 vmstate_register(cpu_index, &vmstate_cpu_common, env);
602 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
603 cpu_save, cpu_load, env);
604 #endif
607 static inline void invalidate_page_bitmap(PageDesc *p)
609 if (p->code_bitmap) {
610 qemu_free(p->code_bitmap);
611 p->code_bitmap = NULL;
613 p->code_write_count = 0;
616 /* set to NULL all the 'first_tb' fields in all PageDescs */
617 static void page_flush_tb(void)
619 int i, j;
620 PageDesc *p;
622 for(i = 0; i < L1_SIZE; i++) {
623 p = l1_map[i];
624 if (p) {
625 for(j = 0; j < L2_SIZE; j++) {
626 p->first_tb = NULL;
627 invalidate_page_bitmap(p);
628 p++;
634 /* flush all the translation blocks */
635 /* XXX: tb_flush is currently not thread safe */
636 void tb_flush(CPUState *env1)
638 CPUState *env;
639 #if defined(DEBUG_FLUSH)
640 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
641 (unsigned long)(code_gen_ptr - code_gen_buffer),
642 nb_tbs, nb_tbs > 0 ?
643 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
644 #endif
645 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
646 cpu_abort(env1, "Internal error: code buffer overflow\n");
648 nb_tbs = 0;
650 for(env = first_cpu; env != NULL; env = env->next_cpu) {
651 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
654 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
655 page_flush_tb();
657 code_gen_ptr = code_gen_buffer;
658 /* XXX: flush processor icache at this point if cache flush is
659 expensive */
660 tb_flush_count++;
663 #ifdef DEBUG_TB_CHECK
665 static void tb_invalidate_check(target_ulong address)
667 TranslationBlock *tb;
668 int i;
669 address &= TARGET_PAGE_MASK;
670 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
671 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
672 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
673 address >= tb->pc + tb->size)) {
674 printf("ERROR invalidate: address=" TARGET_FMT_lx
675 " PC=%08lx size=%04x\n",
676 address, (long)tb->pc, tb->size);
682 /* verify that all the pages have correct rights for code */
683 static void tb_page_check(void)
685 TranslationBlock *tb;
686 int i, flags1, flags2;
688 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
689 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
690 flags1 = page_get_flags(tb->pc);
691 flags2 = page_get_flags(tb->pc + tb->size - 1);
692 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
693 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
694 (long)tb->pc, tb->size, flags1, flags2);
700 #endif
702 /* invalidate one TB */
703 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
717 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
719 TranslationBlock *tb1;
720 unsigned int n1;
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
730 ptb = &tb1->page_next[n1];
734 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
758 tb->jmp_next[n] = NULL;
762 /* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764 static inline void tb_reset_jump(TranslationBlock *tb, int n)
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
769 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
771 CPUState *env;
772 PageDesc *p;
773 unsigned int h, n1;
774 target_phys_addr_t phys_pc;
775 TranslationBlock *tb1, *tb2;
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
780 tb_remove(&tb_phys_hash[h], tb,
781 offsetof(TranslationBlock, phys_hash_next));
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
795 tb_invalidated_flag = 1;
797 /* remove the TB from the hash list */
798 h = tb_jmp_cache_hash_func(tb->pc);
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
822 tb_phys_invalidate_count++;
825 static inline void set_bits(uint8_t *tab, int start, int len)
827 int end, mask, end1;
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
852 static void build_page_bitmap(PageDesc *p)
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
880 TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
895 tb = tb_alloc(pc);
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
904 cpu_gen_code(env, tb, &code_gen_size);
905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
907 /* check next page if needed */
908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
909 phys_page2 = -1;
910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
911 phys_page2 = get_phys_addr_code(env, virt_page2);
913 tb_link_phys(tb, phys_pc, phys_page2);
914 return tb;
917 /* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
922 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
923 int is_cpu_write_access)
925 TranslationBlock *tb, *tb_next, *saved_tb;
926 CPUState *env = cpu_single_env;
927 target_ulong tb_start, tb_end;
928 PageDesc *p;
929 int n;
930 #ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937 #endif /* TARGET_HAS_PRECISE_SMC */
939 p = page_find(start >> TARGET_PAGE_BITS);
940 if (!p)
941 return;
942 if (!p->code_bitmap &&
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
945 /* build code bitmap */
946 build_page_bitmap(p);
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
966 if (!(tb_end <= start || tb_start >= end)) {
967 #ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
971 if (env->mem_io_pc) {
972 /* now we have a real cpu fault */
973 current_tb = tb_find_pc(env->mem_io_pc);
976 if (current_tb == tb &&
977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
984 current_tb_modified = 1;
985 cpu_restore_state(current_tb, env,
986 env->mem_io_pc, NULL);
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
990 #endif /* TARGET_HAS_PRECISE_SMC */
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
998 tb_phys_invalidate(tb, -1);
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1005 tb = tb_next;
1007 #if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
1011 if (is_cpu_write_access) {
1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1015 #endif
1016 #ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
1021 env->current_tb = NULL;
1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1023 cpu_resume_from_signal(env, NULL);
1025 #endif
1028 /* len must be <= 8 and start must be a multiple of len */
1029 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1031 PageDesc *p;
1032 int offset, b;
1033 #if 0
1034 if (1) {
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1040 #endif
1041 p = page_find(start >> TARGET_PAGE_BITS);
1042 if (!p)
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
1051 tb_invalidate_phys_page_range(start, start + len, 1);
1055 #if !defined(CONFIG_SOFTMMU)
1056 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1057 unsigned long pc, void *puc)
1059 TranslationBlock *tb;
1060 PageDesc *p;
1061 int n;
1062 #ifdef TARGET_HAS_PRECISE_SMC
1063 TranslationBlock *current_tb = NULL;
1064 CPUState *env = cpu_single_env;
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
1069 #endif
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
1073 if (!p)
1074 return;
1075 tb = p->first_tb;
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1080 #endif
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
1084 #ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
1098 #endif /* TARGET_HAS_PRECISE_SMC */
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1102 p->first_tb = NULL;
1103 #ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
1108 env->current_tb = NULL;
1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1110 cpu_resume_from_signal(env, puc);
1112 #endif
1114 #endif
1116 /* add the tb in the target page and protect it if necessary */
1117 static inline void tb_alloc_page(TranslationBlock *tb,
1118 unsigned int n, target_ulong page_addr)
1120 PageDesc *p;
1121 TranslationBlock *last_first_tb;
1123 tb->page_addr[n] = page_addr;
1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
1130 #if defined(TARGET_HAS_SMC) || 1
1132 #if defined(CONFIG_USER_ONLY)
1133 if (p->flags & PAGE_WRITE) {
1134 target_ulong addr;
1135 PageDesc *p2;
1136 int prot;
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
1140 page_addr &= qemu_host_page_mask;
1141 prot = 0;
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1152 mprotect(g2h(page_addr), qemu_host_page_size,
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154 #ifdef DEBUG_TB_INVALIDATE
1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1156 page_addr);
1157 #endif
1159 #else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
1164 tlb_protect_code(page_addr);
1166 #endif
1168 #endif /* TARGET_HAS_SMC */
1171 /* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
1173 TranslationBlock *tb_alloc(target_ulong pc)
1175 TranslationBlock *tb;
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1179 return NULL;
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
1182 tb->cflags = 0;
1183 return tb;
1186 void tb_free(TranslationBlock *tb)
1188 /* In practice this is mostly used for single use temporary TB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1197 /* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
1199 void tb_link_phys(TranslationBlock *tb,
1200 target_ulong phys_pc, target_ulong phys_page2)
1202 unsigned int h;
1203 TranslationBlock **ptb;
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
1214 /* add in the page list */
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
1231 #ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233 #endif
1234 mmap_unlock();
1237 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1265 return &tbs[m_max];
1268 static void tb_reset_jump_recursive(TranslationBlock *tb);
1270 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1304 /* suppress jumps in the tb on which we could have jumped */
1305 tb_reset_jump_recursive(tb_next);
1309 static void tb_reset_jump_recursive(TranslationBlock *tb)
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1315 #if defined(TARGET_HAS_ICE)
1316 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1318 target_phys_addr_t addr;
1319 target_ulong pd;
1320 ram_addr_t ram_addr;
1321 PhysPageDesc *p;
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1333 #endif
1335 /* Add a watchpoint. */
1336 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags, CPUWatchpoint **watchpoint)
1339 target_ulong len_mask = ~(len - 1);
1340 CPUWatchpoint *wp;
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1346 return -EINVAL;
1348 wp = qemu_malloc(sizeof(*wp));
1350 wp->vaddr = addr;
1351 wp->len_mask = len_mask;
1352 wp->flags = flags;
1354 /* keep all GDB-injected watchpoints in front */
1355 if (flags & BP_GDB)
1356 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1357 else
1358 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1360 tlb_flush_page(env, addr);
1362 if (watchpoint)
1363 *watchpoint = wp;
1364 return 0;
1367 /* Remove a specific watchpoint. */
1368 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1369 int flags)
1371 target_ulong len_mask = ~(len - 1);
1372 CPUWatchpoint *wp;
1374 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1375 if (addr == wp->vaddr && len_mask == wp->len_mask
1376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1377 cpu_watchpoint_remove_by_ref(env, wp);
1378 return 0;
1381 return -ENOENT;
1384 /* Remove a specific watchpoint by reference. */
1385 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1387 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1389 tlb_flush_page(env, watchpoint->vaddr);
1391 qemu_free(watchpoint);
1394 /* Remove all matching watchpoints. */
1395 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1397 CPUWatchpoint *wp, *next;
1399 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1400 if (wp->flags & mask)
1401 cpu_watchpoint_remove_by_ref(env, wp);
1405 /* Add a breakpoint. */
1406 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1407 CPUBreakpoint **breakpoint)
1409 #if defined(TARGET_HAS_ICE)
1410 CPUBreakpoint *bp;
1412 bp = qemu_malloc(sizeof(*bp));
1414 bp->pc = pc;
1415 bp->flags = flags;
1417 /* keep all GDB-injected breakpoints in front */
1418 if (flags & BP_GDB)
1419 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1420 else
1421 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1423 breakpoint_invalidate(env, pc);
1425 if (breakpoint)
1426 *breakpoint = bp;
1427 return 0;
1428 #else
1429 return -ENOSYS;
1430 #endif
1433 /* Remove a specific breakpoint. */
1434 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1436 #if defined(TARGET_HAS_ICE)
1437 CPUBreakpoint *bp;
1439 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1440 if (bp->pc == pc && bp->flags == flags) {
1441 cpu_breakpoint_remove_by_ref(env, bp);
1442 return 0;
1445 return -ENOENT;
1446 #else
1447 return -ENOSYS;
1448 #endif
1451 /* Remove a specific breakpoint by reference. */
1452 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1454 #if defined(TARGET_HAS_ICE)
1455 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1457 breakpoint_invalidate(env, breakpoint->pc);
1459 qemu_free(breakpoint);
1460 #endif
1463 /* Remove all matching breakpoints. */
1464 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1466 #if defined(TARGET_HAS_ICE)
1467 CPUBreakpoint *bp, *next;
1469 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1470 if (bp->flags & mask)
1471 cpu_breakpoint_remove_by_ref(env, bp);
1473 #endif
1476 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478 void cpu_single_step(CPUState *env, int enabled)
1480 #if defined(TARGET_HAS_ICE)
1481 if (env->singlestep_enabled != enabled) {
1482 env->singlestep_enabled = enabled;
1483 if (kvm_enabled())
1484 kvm_update_guest_debug(env, 0);
1485 else {
1486 /* must flush all the translated code to avoid inconsistencies */
1487 /* XXX: only flush what is necessary */
1488 tb_flush(env);
1491 #endif
1494 /* enable or disable low levels log */
1495 void cpu_set_log(int log_flags)
1497 loglevel = log_flags;
1498 if (loglevel && !logfile) {
1499 logfile = fopen(logfilename, log_append ? "a" : "w");
1500 if (!logfile) {
1501 perror(logfilename);
1502 _exit(1);
1504 #if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1507 static char logfile_buf[4096];
1508 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1510 #elif !defined(_WIN32)
1511 /* Win32 doesn't support line-buffering and requires size >= 2 */
1512 setvbuf(logfile, NULL, _IOLBF, 0);
1513 #endif
1514 log_append = 1;
1516 if (!loglevel && logfile) {
1517 fclose(logfile);
1518 logfile = NULL;
1522 void cpu_set_log_filename(const char *filename)
1524 logfilename = strdup(filename);
1525 if (logfile) {
1526 fclose(logfile);
1527 logfile = NULL;
1529 cpu_set_log(loglevel);
1532 static void cpu_unlink_tb(CPUState *env)
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1538 TranslationBlock *tb;
1539 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1541 spin_lock(&interrupt_lock);
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1545 if (tb) {
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
1549 spin_unlock(&interrupt_lock);
1552 /* mask must never be zero, except for A20 change call */
1553 void cpu_interrupt(CPUState *env, int mask)
1555 int old_mask;
1557 old_mask = env->interrupt_request;
1558 env->interrupt_request |= mask;
1560 #ifndef CONFIG_USER_ONLY
1562 * If called from iothread context, wake the target cpu in
1563 * case its halted.
1565 if (!qemu_cpu_self(env)) {
1566 qemu_cpu_kick(env);
1567 return;
1569 #endif
1571 if (use_icount) {
1572 env->icount_decr.u16.high = 0xffff;
1573 #ifndef CONFIG_USER_ONLY
1574 if (!can_do_io(env)
1575 && (mask & ~old_mask) != 0) {
1576 cpu_abort(env, "Raised interrupt while not in I/O function");
1578 #endif
1579 } else {
1580 cpu_unlink_tb(env);
1584 void cpu_reset_interrupt(CPUState *env, int mask)
1586 env->interrupt_request &= ~mask;
1589 void cpu_exit(CPUState *env)
1591 env->exit_request = 1;
1592 cpu_unlink_tb(env);
1595 const CPULogItem cpu_log_items[] = {
1596 { CPU_LOG_TB_OUT_ASM, "out_asm",
1597 "show generated host assembly code for each compiled TB" },
1598 { CPU_LOG_TB_IN_ASM, "in_asm",
1599 "show target assembly code for each compiled TB" },
1600 { CPU_LOG_TB_OP, "op",
1601 "show micro ops for each compiled TB" },
1602 { CPU_LOG_TB_OP_OPT, "op_opt",
1603 "show micro ops "
1604 #ifdef TARGET_I386
1605 "before eflags optimization and "
1606 #endif
1607 "after liveness analysis" },
1608 { CPU_LOG_INT, "int",
1609 "show interrupts/exceptions in short format" },
1610 { CPU_LOG_EXEC, "exec",
1611 "show trace before each executed TB (lots of logs)" },
1612 { CPU_LOG_TB_CPU, "cpu",
1613 "show CPU state before block translation" },
1614 #ifdef TARGET_I386
1615 { CPU_LOG_PCALL, "pcall",
1616 "show protected mode far calls/returns/exceptions" },
1617 { CPU_LOG_RESET, "cpu_reset",
1618 "show CPU state before CPU resets" },
1619 #endif
1620 #ifdef DEBUG_IOPORT
1621 { CPU_LOG_IOPORT, "ioport",
1622 "show all i/o ports accesses" },
1623 #endif
1624 { 0, NULL, NULL },
1627 static int cmp1(const char *s1, int n, const char *s2)
1629 if (strlen(s2) != n)
1630 return 0;
1631 return memcmp(s1, s2, n) == 0;
1634 /* takes a comma separated list of log masks. Return 0 if error. */
1635 int cpu_str_to_log_mask(const char *str)
1637 const CPULogItem *item;
1638 int mask;
1639 const char *p, *p1;
1641 p = str;
1642 mask = 0;
1643 for(;;) {
1644 p1 = strchr(p, ',');
1645 if (!p1)
1646 p1 = p + strlen(p);
1647 if(cmp1(p,p1-p,"all")) {
1648 for(item = cpu_log_items; item->mask != 0; item++) {
1649 mask |= item->mask;
1651 } else {
1652 for(item = cpu_log_items; item->mask != 0; item++) {
1653 if (cmp1(p, p1 - p, item->name))
1654 goto found;
1656 return 0;
1658 found:
1659 mask |= item->mask;
1660 if (*p1 != ',')
1661 break;
1662 p = p1 + 1;
1664 return mask;
1667 void cpu_abort(CPUState *env, const char *fmt, ...)
1669 va_list ap;
1670 va_list ap2;
1672 va_start(ap, fmt);
1673 va_copy(ap2, ap);
1674 fprintf(stderr, "qemu: fatal: ");
1675 vfprintf(stderr, fmt, ap);
1676 fprintf(stderr, "\n");
1677 #ifdef TARGET_I386
1678 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1679 #else
1680 cpu_dump_state(env, stderr, fprintf, 0);
1681 #endif
1682 if (qemu_log_enabled()) {
1683 qemu_log("qemu: fatal: ");
1684 qemu_log_vprintf(fmt, ap2);
1685 qemu_log("\n");
1686 #ifdef TARGET_I386
1687 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1688 #else
1689 log_cpu_state(env, 0);
1690 #endif
1691 qemu_log_flush();
1692 qemu_log_close();
1694 va_end(ap2);
1695 va_end(ap);
1696 #if defined(CONFIG_USER_ONLY)
1698 struct sigaction act;
1699 sigfillset(&act.sa_mask);
1700 act.sa_handler = SIG_DFL;
1701 sigaction(SIGABRT, &act, NULL);
1703 #endif
1704 abort();
1707 CPUState *cpu_copy(CPUState *env)
1709 CPUState *new_env = cpu_init(env->cpu_model_str);
1710 CPUState *next_cpu = new_env->next_cpu;
1711 int cpu_index = new_env->cpu_index;
1712 #if defined(TARGET_HAS_ICE)
1713 CPUBreakpoint *bp;
1714 CPUWatchpoint *wp;
1715 #endif
1717 memcpy(new_env, env, sizeof(CPUState));
1719 /* Preserve chaining and index. */
1720 new_env->next_cpu = next_cpu;
1721 new_env->cpu_index = cpu_index;
1723 /* Clone all break/watchpoints.
1724 Note: Once we support ptrace with hw-debug register access, make sure
1725 BP_CPU break/watchpoints are handled correctly on clone. */
1726 QTAILQ_INIT(&env->breakpoints);
1727 QTAILQ_INIT(&env->watchpoints);
1728 #if defined(TARGET_HAS_ICE)
1729 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1730 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1732 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1733 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1734 wp->flags, NULL);
1736 #endif
1738 return new_env;
1741 #if !defined(CONFIG_USER_ONLY)
1743 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1745 unsigned int i;
1747 /* Discard jump cache entries for any tb which might potentially
1748 overlap the flushed page. */
1749 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1750 memset (&env->tb_jmp_cache[i], 0,
1751 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1753 i = tb_jmp_cache_hash_page(addr);
1754 memset (&env->tb_jmp_cache[i], 0,
1755 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1758 static CPUTLBEntry s_cputlb_empty_entry = {
1759 .addr_read = -1,
1760 .addr_write = -1,
1761 .addr_code = -1,
1762 .addend = -1,
1765 /* NOTE: if flush_global is true, also flush global entries (not
1766 implemented yet) */
1767 void tlb_flush(CPUState *env, int flush_global)
1769 int i;
1771 #if defined(DEBUG_TLB)
1772 printf("tlb_flush:\n");
1773 #endif
1774 /* must reset current TB so that interrupts cannot modify the
1775 links while we are modifying them */
1776 env->current_tb = NULL;
1778 for(i = 0; i < CPU_TLB_SIZE; i++) {
1779 int mmu_idx;
1780 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1781 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1785 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1787 tlb_flush_count++;
1790 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1792 if (addr == (tlb_entry->addr_read &
1793 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1794 addr == (tlb_entry->addr_write &
1795 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1796 addr == (tlb_entry->addr_code &
1797 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1798 *tlb_entry = s_cputlb_empty_entry;
1802 void tlb_flush_page(CPUState *env, target_ulong addr)
1804 int i;
1805 int mmu_idx;
1807 #if defined(DEBUG_TLB)
1808 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1809 #endif
1810 /* must reset current TB so that interrupts cannot modify the
1811 links while we are modifying them */
1812 env->current_tb = NULL;
1814 addr &= TARGET_PAGE_MASK;
1815 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1816 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1817 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1819 tlb_flush_jmp_cache(env, addr);
1822 /* update the TLBs so that writes to code in the virtual page 'addr'
1823 can be detected */
1824 static void tlb_protect_code(ram_addr_t ram_addr)
1826 cpu_physical_memory_reset_dirty(ram_addr,
1827 ram_addr + TARGET_PAGE_SIZE,
1828 CODE_DIRTY_FLAG);
1831 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1832 tested for self modifying code */
1833 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1834 target_ulong vaddr)
1836 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1839 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1840 unsigned long start, unsigned long length)
1842 unsigned long addr;
1843 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1844 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1845 if ((addr - start) < length) {
1846 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1851 /* Note: start and end must be within the same ram block. */
1852 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1853 int dirty_flags)
1855 CPUState *env;
1856 unsigned long length, start1;
1857 int i, mask, len;
1858 uint8_t *p;
1860 start &= TARGET_PAGE_MASK;
1861 end = TARGET_PAGE_ALIGN(end);
1863 length = end - start;
1864 if (length == 0)
1865 return;
1866 len = length >> TARGET_PAGE_BITS;
1867 mask = ~dirty_flags;
1868 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1869 for(i = 0; i < len; i++)
1870 p[i] &= mask;
1872 /* we modify the TLB cache so that the dirty bit will be set again
1873 when accessing the range */
1874 start1 = (unsigned long)qemu_get_ram_ptr(start);
1875 /* Chek that we don't span multiple blocks - this breaks the
1876 address comparisons below. */
1877 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1878 != (end - 1) - start) {
1879 abort();
1882 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1883 int mmu_idx;
1884 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1885 for(i = 0; i < CPU_TLB_SIZE; i++)
1886 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1887 start1, length);
1892 int cpu_physical_memory_set_dirty_tracking(int enable)
1894 in_migration = enable;
1895 if (kvm_enabled()) {
1896 return kvm_set_migration_log(enable);
1898 return 0;
1901 int cpu_physical_memory_get_dirty_tracking(void)
1903 return in_migration;
1906 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1907 target_phys_addr_t end_addr)
1909 int ret = 0;
1911 if (kvm_enabled())
1912 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1913 return ret;
1916 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1918 ram_addr_t ram_addr;
1919 void *p;
1921 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1922 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1923 + tlb_entry->addend);
1924 ram_addr = qemu_ram_addr_from_host(p);
1925 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1926 tlb_entry->addr_write |= TLB_NOTDIRTY;
1931 /* update the TLB according to the current state of the dirty bits */
1932 void cpu_tlb_update_dirty(CPUState *env)
1934 int i;
1935 int mmu_idx;
1936 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1937 for(i = 0; i < CPU_TLB_SIZE; i++)
1938 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1942 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1944 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1945 tlb_entry->addr_write = vaddr;
1948 /* update the TLB corresponding to virtual page vaddr
1949 so that it is no longer dirty */
1950 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1952 int i;
1953 int mmu_idx;
1955 vaddr &= TARGET_PAGE_MASK;
1956 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1957 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1958 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1961 /* add a new TLB entry. At most one entry for a given virtual address
1962 is permitted. Return 0 if OK or 2 if the page could not be mapped
1963 (can only happen in non SOFTMMU mode for I/O pages or pages
1964 conflicting with the host address space). */
1965 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1966 target_phys_addr_t paddr, int prot,
1967 int mmu_idx, int is_softmmu)
1969 PhysPageDesc *p;
1970 unsigned long pd;
1971 unsigned int index;
1972 target_ulong address;
1973 target_ulong code_address;
1974 target_phys_addr_t addend;
1975 int ret;
1976 CPUTLBEntry *te;
1977 CPUWatchpoint *wp;
1978 target_phys_addr_t iotlb;
1980 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1981 if (!p) {
1982 pd = IO_MEM_UNASSIGNED;
1983 } else {
1984 pd = p->phys_offset;
1986 #if defined(DEBUG_TLB)
1987 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1988 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1989 #endif
1991 ret = 0;
1992 address = vaddr;
1993 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1994 /* IO memory case (romd handled later) */
1995 address |= TLB_MMIO;
1997 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1998 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1999 /* Normal RAM. */
2000 iotlb = pd & TARGET_PAGE_MASK;
2001 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2002 iotlb |= IO_MEM_NOTDIRTY;
2003 else
2004 iotlb |= IO_MEM_ROM;
2005 } else {
2006 /* IO handlers are currently passed a physical address.
2007 It would be nice to pass an offset from the base address
2008 of that region. This would avoid having to special case RAM,
2009 and avoid full address decoding in every device.
2010 We can't use the high bits of pd for this because
2011 IO_MEM_ROMD uses these as a ram address. */
2012 iotlb = (pd & ~TARGET_PAGE_MASK);
2013 if (p) {
2014 iotlb += p->region_offset;
2015 } else {
2016 iotlb += paddr;
2020 code_address = address;
2021 /* Make accesses to pages with watchpoints go via the
2022 watchpoint trap routines. */
2023 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2024 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2025 iotlb = io_mem_watch + paddr;
2026 /* TODO: The memory case can be optimized by not trapping
2027 reads of pages with a write breakpoint. */
2028 address |= TLB_MMIO;
2032 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2033 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2034 te = &env->tlb_table[mmu_idx][index];
2035 te->addend = addend - vaddr;
2036 if (prot & PAGE_READ) {
2037 te->addr_read = address;
2038 } else {
2039 te->addr_read = -1;
2042 if (prot & PAGE_EXEC) {
2043 te->addr_code = code_address;
2044 } else {
2045 te->addr_code = -1;
2047 if (prot & PAGE_WRITE) {
2048 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2049 (pd & IO_MEM_ROMD)) {
2050 /* Write access calls the I/O callback. */
2051 te->addr_write = address | TLB_MMIO;
2052 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2053 !cpu_physical_memory_is_dirty(pd)) {
2054 te->addr_write = address | TLB_NOTDIRTY;
2055 } else {
2056 te->addr_write = address;
2058 } else {
2059 te->addr_write = -1;
2061 return ret;
2064 #else
2066 void tlb_flush(CPUState *env, int flush_global)
2070 void tlb_flush_page(CPUState *env, target_ulong addr)
2074 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2075 target_phys_addr_t paddr, int prot,
2076 int mmu_idx, int is_softmmu)
2078 return 0;
2082 * Walks guest process memory "regions" one by one
2083 * and calls callback function 'fn' for each region.
2085 int walk_memory_regions(void *priv,
2086 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2088 unsigned long start, end;
2089 PageDesc *p = NULL;
2090 int i, j, prot, prot1;
2091 int rc = 0;
2093 start = end = -1;
2094 prot = 0;
2096 for (i = 0; i <= L1_SIZE; i++) {
2097 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2098 for (j = 0; j < L2_SIZE; j++) {
2099 prot1 = (p == NULL) ? 0 : p[j].flags;
2101 * "region" is one continuous chunk of memory
2102 * that has same protection flags set.
2104 if (prot1 != prot) {
2105 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2106 if (start != -1) {
2107 rc = (*fn)(priv, start, end, prot);
2108 /* callback can stop iteration by returning != 0 */
2109 if (rc != 0)
2110 return (rc);
2112 if (prot1 != 0)
2113 start = end;
2114 else
2115 start = -1;
2116 prot = prot1;
2118 if (p == NULL)
2119 break;
2122 return (rc);
2125 static int dump_region(void *priv, unsigned long start,
2126 unsigned long end, unsigned long prot)
2128 FILE *f = (FILE *)priv;
2130 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2131 start, end, end - start,
2132 ((prot & PAGE_READ) ? 'r' : '-'),
2133 ((prot & PAGE_WRITE) ? 'w' : '-'),
2134 ((prot & PAGE_EXEC) ? 'x' : '-'));
2136 return (0);
2139 /* dump memory mappings */
2140 void page_dump(FILE *f)
2142 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2143 "start", "end", "size", "prot");
2144 walk_memory_regions(f, dump_region);
2147 int page_get_flags(target_ulong address)
2149 PageDesc *p;
2151 p = page_find(address >> TARGET_PAGE_BITS);
2152 if (!p)
2153 return 0;
2154 return p->flags;
2157 /* modify the flags of a page and invalidate the code if
2158 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2159 depending on PAGE_WRITE */
2160 void page_set_flags(target_ulong start, target_ulong end, int flags)
2162 PageDesc *p;
2163 target_ulong addr;
2165 /* mmap_lock should already be held. */
2166 start = start & TARGET_PAGE_MASK;
2167 end = TARGET_PAGE_ALIGN(end);
2168 if (flags & PAGE_WRITE)
2169 flags |= PAGE_WRITE_ORG;
2170 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2171 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2172 /* We may be called for host regions that are outside guest
2173 address space. */
2174 if (!p)
2175 return;
2176 /* if the write protection is set, then we invalidate the code
2177 inside */
2178 if (!(p->flags & PAGE_WRITE) &&
2179 (flags & PAGE_WRITE) &&
2180 p->first_tb) {
2181 tb_invalidate_phys_page(addr, 0, NULL);
2183 p->flags = flags;
2187 int page_check_range(target_ulong start, target_ulong len, int flags)
2189 PageDesc *p;
2190 target_ulong end;
2191 target_ulong addr;
2193 if (start + len < start)
2194 /* we've wrapped around */
2195 return -1;
2197 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2198 start = start & TARGET_PAGE_MASK;
2200 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2201 p = page_find(addr >> TARGET_PAGE_BITS);
2202 if( !p )
2203 return -1;
2204 if( !(p->flags & PAGE_VALID) )
2205 return -1;
2207 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2208 return -1;
2209 if (flags & PAGE_WRITE) {
2210 if (!(p->flags & PAGE_WRITE_ORG))
2211 return -1;
2212 /* unprotect the page if it was put read-only because it
2213 contains translated code */
2214 if (!(p->flags & PAGE_WRITE)) {
2215 if (!page_unprotect(addr, 0, NULL))
2216 return -1;
2218 return 0;
2221 return 0;
2224 /* called from signal handler: invalidate the code and unprotect the
2225 page. Return TRUE if the fault was successfully handled. */
2226 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2228 unsigned int page_index, prot, pindex;
2229 PageDesc *p, *p1;
2230 target_ulong host_start, host_end, addr;
2232 /* Technically this isn't safe inside a signal handler. However we
2233 know this only ever happens in a synchronous SEGV handler, so in
2234 practice it seems to be ok. */
2235 mmap_lock();
2237 host_start = address & qemu_host_page_mask;
2238 page_index = host_start >> TARGET_PAGE_BITS;
2239 p1 = page_find(page_index);
2240 if (!p1) {
2241 mmap_unlock();
2242 return 0;
2244 host_end = host_start + qemu_host_page_size;
2245 p = p1;
2246 prot = 0;
2247 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2248 prot |= p->flags;
2249 p++;
2251 /* if the page was really writable, then we change its
2252 protection back to writable */
2253 if (prot & PAGE_WRITE_ORG) {
2254 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2255 if (!(p1[pindex].flags & PAGE_WRITE)) {
2256 mprotect((void *)g2h(host_start), qemu_host_page_size,
2257 (prot & PAGE_BITS) | PAGE_WRITE);
2258 p1[pindex].flags |= PAGE_WRITE;
2259 /* and since the content will be modified, we must invalidate
2260 the corresponding translated code. */
2261 tb_invalidate_phys_page(address, pc, puc);
2262 #ifdef DEBUG_TB_CHECK
2263 tb_invalidate_check(address);
2264 #endif
2265 mmap_unlock();
2266 return 1;
2269 mmap_unlock();
2270 return 0;
2273 static inline void tlb_set_dirty(CPUState *env,
2274 unsigned long addr, target_ulong vaddr)
2277 #endif /* defined(CONFIG_USER_ONLY) */
2279 #if !defined(CONFIG_USER_ONLY)
2281 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2282 ram_addr_t memory, ram_addr_t region_offset);
2283 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2284 ram_addr_t orig_memory, ram_addr_t region_offset);
2285 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2286 need_subpage) \
2287 do { \
2288 if (addr > start_addr) \
2289 start_addr2 = 0; \
2290 else { \
2291 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2292 if (start_addr2 > 0) \
2293 need_subpage = 1; \
2296 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2297 end_addr2 = TARGET_PAGE_SIZE - 1; \
2298 else { \
2299 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2300 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2301 need_subpage = 1; \
2303 } while (0)
2305 /* register physical memory.
2306 For RAM, 'size' must be a multiple of the target page size.
2307 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2308 io memory page. The address used when calling the IO function is
2309 the offset from the start of the region, plus region_offset. Both
2310 start_addr and region_offset are rounded down to a page boundary
2311 before calculating this offset. This should not be a problem unless
2312 the low bits of start_addr and region_offset differ. */
2313 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2314 ram_addr_t size,
2315 ram_addr_t phys_offset,
2316 ram_addr_t region_offset)
2318 target_phys_addr_t addr, end_addr;
2319 PhysPageDesc *p;
2320 CPUState *env;
2321 ram_addr_t orig_size = size;
2322 void *subpage;
2324 if (kvm_enabled())
2325 kvm_set_phys_mem(start_addr, size, phys_offset);
2327 if (phys_offset == IO_MEM_UNASSIGNED) {
2328 region_offset = start_addr;
2330 region_offset &= TARGET_PAGE_MASK;
2331 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2332 end_addr = start_addr + (target_phys_addr_t)size;
2333 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2334 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2335 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2336 ram_addr_t orig_memory = p->phys_offset;
2337 target_phys_addr_t start_addr2, end_addr2;
2338 int need_subpage = 0;
2340 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2341 need_subpage);
2342 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2343 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2344 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2345 &p->phys_offset, orig_memory,
2346 p->region_offset);
2347 } else {
2348 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2349 >> IO_MEM_SHIFT];
2351 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2352 region_offset);
2353 p->region_offset = 0;
2354 } else {
2355 p->phys_offset = phys_offset;
2356 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2357 (phys_offset & IO_MEM_ROMD))
2358 phys_offset += TARGET_PAGE_SIZE;
2360 } else {
2361 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2362 p->phys_offset = phys_offset;
2363 p->region_offset = region_offset;
2364 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2365 (phys_offset & IO_MEM_ROMD)) {
2366 phys_offset += TARGET_PAGE_SIZE;
2367 } else {
2368 target_phys_addr_t start_addr2, end_addr2;
2369 int need_subpage = 0;
2371 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2372 end_addr2, need_subpage);
2374 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2375 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2376 &p->phys_offset, IO_MEM_UNASSIGNED,
2377 addr & TARGET_PAGE_MASK);
2378 subpage_register(subpage, start_addr2, end_addr2,
2379 phys_offset, region_offset);
2380 p->region_offset = 0;
2384 region_offset += TARGET_PAGE_SIZE;
2387 /* since each CPU stores ram addresses in its TLB cache, we must
2388 reset the modified entries */
2389 /* XXX: slow ! */
2390 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2391 tlb_flush(env, 1);
2395 /* XXX: temporary until new memory mapping API */
2396 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2398 PhysPageDesc *p;
2400 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2401 if (!p)
2402 return IO_MEM_UNASSIGNED;
2403 return p->phys_offset;
2406 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2408 if (kvm_enabled())
2409 kvm_coalesce_mmio_region(addr, size);
2412 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2414 if (kvm_enabled())
2415 kvm_uncoalesce_mmio_region(addr, size);
2418 void qemu_flush_coalesced_mmio_buffer(void)
2420 if (kvm_enabled())
2421 kvm_flush_coalesced_mmio_buffer();
2424 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2426 RAMBlock *new_block;
2428 size = TARGET_PAGE_ALIGN(size);
2429 new_block = qemu_malloc(sizeof(*new_block));
2431 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2432 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2433 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2434 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2435 #else
2436 new_block->host = qemu_vmalloc(size);
2437 #endif
2438 #ifdef MADV_MERGEABLE
2439 madvise(new_block->host, size, MADV_MERGEABLE);
2440 #endif
2441 new_block->offset = last_ram_offset;
2442 new_block->length = size;
2444 new_block->next = ram_blocks;
2445 ram_blocks = new_block;
2447 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2448 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2449 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2450 0xff, size >> TARGET_PAGE_BITS);
2452 last_ram_offset += size;
2454 if (kvm_enabled())
2455 kvm_setup_guest_memory(new_block->host, size);
2457 return new_block->offset;
2460 void qemu_ram_free(ram_addr_t addr)
2462 /* TODO: implement this. */
2465 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2466 With the exception of the softmmu code in this file, this should
2467 only be used for local memory (e.g. video ram) that the device owns,
2468 and knows it isn't going to access beyond the end of the block.
2470 It should not be used for general purpose DMA.
2471 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2473 void *qemu_get_ram_ptr(ram_addr_t addr)
2475 RAMBlock *prev;
2476 RAMBlock **prevp;
2477 RAMBlock *block;
2479 prev = NULL;
2480 prevp = &ram_blocks;
2481 block = ram_blocks;
2482 while (block && (block->offset > addr
2483 || block->offset + block->length <= addr)) {
2484 if (prev)
2485 prevp = &prev->next;
2486 prev = block;
2487 block = block->next;
2489 if (!block) {
2490 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2491 abort();
2493 /* Move this entry to to start of the list. */
2494 if (prev) {
2495 prev->next = block->next;
2496 block->next = *prevp;
2497 *prevp = block;
2499 return block->host + (addr - block->offset);
2502 /* Some of the softmmu routines need to translate from a host pointer
2503 (typically a TLB entry) back to a ram offset. */
2504 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2506 RAMBlock *prev;
2507 RAMBlock *block;
2508 uint8_t *host = ptr;
2510 prev = NULL;
2511 block = ram_blocks;
2512 while (block && (block->host > host
2513 || block->host + block->length <= host)) {
2514 prev = block;
2515 block = block->next;
2517 if (!block) {
2518 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2519 abort();
2521 return block->offset + (host - block->host);
2524 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2526 #ifdef DEBUG_UNASSIGNED
2527 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2528 #endif
2529 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2530 do_unassigned_access(addr, 0, 0, 0, 1);
2531 #endif
2532 return 0;
2535 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2537 #ifdef DEBUG_UNASSIGNED
2538 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2539 #endif
2540 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2541 do_unassigned_access(addr, 0, 0, 0, 2);
2542 #endif
2543 return 0;
2546 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2548 #ifdef DEBUG_UNASSIGNED
2549 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2550 #endif
2551 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2552 do_unassigned_access(addr, 0, 0, 0, 4);
2553 #endif
2554 return 0;
2557 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2559 #ifdef DEBUG_UNASSIGNED
2560 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2561 #endif
2562 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2563 do_unassigned_access(addr, 1, 0, 0, 1);
2564 #endif
2567 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2569 #ifdef DEBUG_UNASSIGNED
2570 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2571 #endif
2572 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2573 do_unassigned_access(addr, 1, 0, 0, 2);
2574 #endif
2577 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2579 #ifdef DEBUG_UNASSIGNED
2580 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2581 #endif
2582 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2583 do_unassigned_access(addr, 1, 0, 0, 4);
2584 #endif
2587 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2588 unassigned_mem_readb,
2589 unassigned_mem_readw,
2590 unassigned_mem_readl,
2593 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2594 unassigned_mem_writeb,
2595 unassigned_mem_writew,
2596 unassigned_mem_writel,
2599 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2600 uint32_t val)
2602 int dirty_flags;
2603 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2604 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2605 #if !defined(CONFIG_USER_ONLY)
2606 tb_invalidate_phys_page_fast(ram_addr, 1);
2607 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2608 #endif
2610 stb_p(qemu_get_ram_ptr(ram_addr), val);
2611 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2612 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2613 /* we remove the notdirty callback only if the code has been
2614 flushed */
2615 if (dirty_flags == 0xff)
2616 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2619 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2620 uint32_t val)
2622 int dirty_flags;
2623 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2624 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2625 #if !defined(CONFIG_USER_ONLY)
2626 tb_invalidate_phys_page_fast(ram_addr, 2);
2627 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2628 #endif
2630 stw_p(qemu_get_ram_ptr(ram_addr), val);
2631 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2632 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2633 /* we remove the notdirty callback only if the code has been
2634 flushed */
2635 if (dirty_flags == 0xff)
2636 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2639 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2640 uint32_t val)
2642 int dirty_flags;
2643 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2644 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2645 #if !defined(CONFIG_USER_ONLY)
2646 tb_invalidate_phys_page_fast(ram_addr, 4);
2647 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2648 #endif
2650 stl_p(qemu_get_ram_ptr(ram_addr), val);
2651 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2652 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2653 /* we remove the notdirty callback only if the code has been
2654 flushed */
2655 if (dirty_flags == 0xff)
2656 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2659 static CPUReadMemoryFunc * const error_mem_read[3] = {
2660 NULL, /* never used */
2661 NULL, /* never used */
2662 NULL, /* never used */
2665 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2666 notdirty_mem_writeb,
2667 notdirty_mem_writew,
2668 notdirty_mem_writel,
2671 /* Generate a debug exception if a watchpoint has been hit. */
2672 static void check_watchpoint(int offset, int len_mask, int flags)
2674 CPUState *env = cpu_single_env;
2675 target_ulong pc, cs_base;
2676 TranslationBlock *tb;
2677 target_ulong vaddr;
2678 CPUWatchpoint *wp;
2679 int cpu_flags;
2681 if (env->watchpoint_hit) {
2682 /* We re-entered the check after replacing the TB. Now raise
2683 * the debug interrupt so that is will trigger after the
2684 * current instruction. */
2685 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2686 return;
2688 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2689 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2690 if ((vaddr == (wp->vaddr & len_mask) ||
2691 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2692 wp->flags |= BP_WATCHPOINT_HIT;
2693 if (!env->watchpoint_hit) {
2694 env->watchpoint_hit = wp;
2695 tb = tb_find_pc(env->mem_io_pc);
2696 if (!tb) {
2697 cpu_abort(env, "check_watchpoint: could not find TB for "
2698 "pc=%p", (void *)env->mem_io_pc);
2700 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2701 tb_phys_invalidate(tb, -1);
2702 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2703 env->exception_index = EXCP_DEBUG;
2704 } else {
2705 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2706 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2708 cpu_resume_from_signal(env, NULL);
2710 } else {
2711 wp->flags &= ~BP_WATCHPOINT_HIT;
2716 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2717 so these check for a hit then pass through to the normal out-of-line
2718 phys routines. */
2719 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2721 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2722 return ldub_phys(addr);
2725 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2727 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2728 return lduw_phys(addr);
2731 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2733 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2734 return ldl_phys(addr);
2737 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2738 uint32_t val)
2740 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2741 stb_phys(addr, val);
2744 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2745 uint32_t val)
2747 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2748 stw_phys(addr, val);
2751 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2752 uint32_t val)
2754 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2755 stl_phys(addr, val);
2758 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2759 watch_mem_readb,
2760 watch_mem_readw,
2761 watch_mem_readl,
2764 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2765 watch_mem_writeb,
2766 watch_mem_writew,
2767 watch_mem_writel,
2770 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2771 unsigned int len)
2773 uint32_t ret;
2774 unsigned int idx;
2776 idx = SUBPAGE_IDX(addr);
2777 #if defined(DEBUG_SUBPAGE)
2778 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2779 mmio, len, addr, idx);
2780 #endif
2781 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2782 addr + mmio->region_offset[idx][0][len]);
2784 return ret;
2787 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2788 uint32_t value, unsigned int len)
2790 unsigned int idx;
2792 idx = SUBPAGE_IDX(addr);
2793 #if defined(DEBUG_SUBPAGE)
2794 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2795 mmio, len, addr, idx, value);
2796 #endif
2797 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2798 addr + mmio->region_offset[idx][1][len],
2799 value);
2802 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2804 #if defined(DEBUG_SUBPAGE)
2805 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2806 #endif
2808 return subpage_readlen(opaque, addr, 0);
2811 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2812 uint32_t value)
2814 #if defined(DEBUG_SUBPAGE)
2815 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2816 #endif
2817 subpage_writelen(opaque, addr, value, 0);
2820 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2822 #if defined(DEBUG_SUBPAGE)
2823 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2824 #endif
2826 return subpage_readlen(opaque, addr, 1);
2829 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2830 uint32_t value)
2832 #if defined(DEBUG_SUBPAGE)
2833 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2834 #endif
2835 subpage_writelen(opaque, addr, value, 1);
2838 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2840 #if defined(DEBUG_SUBPAGE)
2841 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2842 #endif
2844 return subpage_readlen(opaque, addr, 2);
2847 static void subpage_writel (void *opaque,
2848 target_phys_addr_t addr, uint32_t value)
2850 #if defined(DEBUG_SUBPAGE)
2851 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2852 #endif
2853 subpage_writelen(opaque, addr, value, 2);
2856 static CPUReadMemoryFunc * const subpage_read[] = {
2857 &subpage_readb,
2858 &subpage_readw,
2859 &subpage_readl,
2862 static CPUWriteMemoryFunc * const subpage_write[] = {
2863 &subpage_writeb,
2864 &subpage_writew,
2865 &subpage_writel,
2868 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2869 ram_addr_t memory, ram_addr_t region_offset)
2871 int idx, eidx;
2872 unsigned int i;
2874 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2875 return -1;
2876 idx = SUBPAGE_IDX(start);
2877 eidx = SUBPAGE_IDX(end);
2878 #if defined(DEBUG_SUBPAGE)
2879 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2880 mmio, start, end, idx, eidx, memory);
2881 #endif
2882 memory >>= IO_MEM_SHIFT;
2883 for (; idx <= eidx; idx++) {
2884 for (i = 0; i < 4; i++) {
2885 if (io_mem_read[memory][i]) {
2886 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2887 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2888 mmio->region_offset[idx][0][i] = region_offset;
2890 if (io_mem_write[memory][i]) {
2891 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2892 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2893 mmio->region_offset[idx][1][i] = region_offset;
2898 return 0;
2901 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2902 ram_addr_t orig_memory, ram_addr_t region_offset)
2904 subpage_t *mmio;
2905 int subpage_memory;
2907 mmio = qemu_mallocz(sizeof(subpage_t));
2909 mmio->base = base;
2910 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
2911 #if defined(DEBUG_SUBPAGE)
2912 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2913 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2914 #endif
2915 *phys = subpage_memory | IO_MEM_SUBPAGE;
2916 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2917 region_offset);
2919 return mmio;
2922 static int get_free_io_mem_idx(void)
2924 int i;
2926 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2927 if (!io_mem_used[i]) {
2928 io_mem_used[i] = 1;
2929 return i;
2931 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
2932 return -1;
2935 /* mem_read and mem_write are arrays of functions containing the
2936 function to access byte (index 0), word (index 1) and dword (index
2937 2). Functions can be omitted with a NULL function pointer.
2938 If io_index is non zero, the corresponding io zone is
2939 modified. If it is zero, a new io zone is allocated. The return
2940 value can be used with cpu_register_physical_memory(). (-1) is
2941 returned if error. */
2942 static int cpu_register_io_memory_fixed(int io_index,
2943 CPUReadMemoryFunc * const *mem_read,
2944 CPUWriteMemoryFunc * const *mem_write,
2945 void *opaque)
2947 int i, subwidth = 0;
2949 if (io_index <= 0) {
2950 io_index = get_free_io_mem_idx();
2951 if (io_index == -1)
2952 return io_index;
2953 } else {
2954 io_index >>= IO_MEM_SHIFT;
2955 if (io_index >= IO_MEM_NB_ENTRIES)
2956 return -1;
2959 for(i = 0;i < 3; i++) {
2960 if (!mem_read[i] || !mem_write[i])
2961 subwidth = IO_MEM_SUBWIDTH;
2962 io_mem_read[io_index][i] = mem_read[i];
2963 io_mem_write[io_index][i] = mem_write[i];
2965 io_mem_opaque[io_index] = opaque;
2966 return (io_index << IO_MEM_SHIFT) | subwidth;
2969 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2970 CPUWriteMemoryFunc * const *mem_write,
2971 void *opaque)
2973 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2976 void cpu_unregister_io_memory(int io_table_address)
2978 int i;
2979 int io_index = io_table_address >> IO_MEM_SHIFT;
2981 for (i=0;i < 3; i++) {
2982 io_mem_read[io_index][i] = unassigned_mem_read[i];
2983 io_mem_write[io_index][i] = unassigned_mem_write[i];
2985 io_mem_opaque[io_index] = NULL;
2986 io_mem_used[io_index] = 0;
2989 static void io_mem_init(void)
2991 int i;
2993 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2994 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2995 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2996 for (i=0; i<5; i++)
2997 io_mem_used[i] = 1;
2999 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3000 watch_mem_write, NULL);
3003 #endif /* !defined(CONFIG_USER_ONLY) */
3005 /* physical memory access (slow version, mainly for debug) */
3006 #if defined(CONFIG_USER_ONLY)
3007 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3008 int len, int is_write)
3010 int l, flags;
3011 target_ulong page;
3012 void * p;
3014 while (len > 0) {
3015 page = addr & TARGET_PAGE_MASK;
3016 l = (page + TARGET_PAGE_SIZE) - addr;
3017 if (l > len)
3018 l = len;
3019 flags = page_get_flags(page);
3020 if (!(flags & PAGE_VALID))
3021 return;
3022 if (is_write) {
3023 if (!(flags & PAGE_WRITE))
3024 return;
3025 /* XXX: this code should not depend on lock_user */
3026 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3027 /* FIXME - should this return an error rather than just fail? */
3028 return;
3029 memcpy(p, buf, l);
3030 unlock_user(p, addr, l);
3031 } else {
3032 if (!(flags & PAGE_READ))
3033 return;
3034 /* XXX: this code should not depend on lock_user */
3035 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3036 /* FIXME - should this return an error rather than just fail? */
3037 return;
3038 memcpy(buf, p, l);
3039 unlock_user(p, addr, 0);
3041 len -= l;
3042 buf += l;
3043 addr += l;
3047 #else
3048 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3049 int len, int is_write)
3051 int l, io_index;
3052 uint8_t *ptr;
3053 uint32_t val;
3054 target_phys_addr_t page;
3055 unsigned long pd;
3056 PhysPageDesc *p;
3058 while (len > 0) {
3059 page = addr & TARGET_PAGE_MASK;
3060 l = (page + TARGET_PAGE_SIZE) - addr;
3061 if (l > len)
3062 l = len;
3063 p = phys_page_find(page >> TARGET_PAGE_BITS);
3064 if (!p) {
3065 pd = IO_MEM_UNASSIGNED;
3066 } else {
3067 pd = p->phys_offset;
3070 if (is_write) {
3071 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3072 target_phys_addr_t addr1 = addr;
3073 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3074 if (p)
3075 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3076 /* XXX: could force cpu_single_env to NULL to avoid
3077 potential bugs */
3078 if (l >= 4 && ((addr1 & 3) == 0)) {
3079 /* 32 bit write access */
3080 val = ldl_p(buf);
3081 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3082 l = 4;
3083 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3084 /* 16 bit write access */
3085 val = lduw_p(buf);
3086 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3087 l = 2;
3088 } else {
3089 /* 8 bit write access */
3090 val = ldub_p(buf);
3091 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3092 l = 1;
3094 } else {
3095 unsigned long addr1;
3096 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3097 /* RAM case */
3098 ptr = qemu_get_ram_ptr(addr1);
3099 memcpy(ptr, buf, l);
3100 if (!cpu_physical_memory_is_dirty(addr1)) {
3101 /* invalidate code */
3102 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3103 /* set dirty bit */
3104 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3105 (0xff & ~CODE_DIRTY_FLAG);
3108 } else {
3109 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3110 !(pd & IO_MEM_ROMD)) {
3111 target_phys_addr_t addr1 = addr;
3112 /* I/O case */
3113 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3114 if (p)
3115 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3116 if (l >= 4 && ((addr1 & 3) == 0)) {
3117 /* 32 bit read access */
3118 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3119 stl_p(buf, val);
3120 l = 4;
3121 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3122 /* 16 bit read access */
3123 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3124 stw_p(buf, val);
3125 l = 2;
3126 } else {
3127 /* 8 bit read access */
3128 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3129 stb_p(buf, val);
3130 l = 1;
3132 } else {
3133 /* RAM case */
3134 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3135 (addr & ~TARGET_PAGE_MASK);
3136 memcpy(buf, ptr, l);
3139 len -= l;
3140 buf += l;
3141 addr += l;
3145 /* used for ROM loading : can write in RAM and ROM */
3146 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3147 const uint8_t *buf, int len)
3149 int l;
3150 uint8_t *ptr;
3151 target_phys_addr_t page;
3152 unsigned long pd;
3153 PhysPageDesc *p;
3155 while (len > 0) {
3156 page = addr & TARGET_PAGE_MASK;
3157 l = (page + TARGET_PAGE_SIZE) - addr;
3158 if (l > len)
3159 l = len;
3160 p = phys_page_find(page >> TARGET_PAGE_BITS);
3161 if (!p) {
3162 pd = IO_MEM_UNASSIGNED;
3163 } else {
3164 pd = p->phys_offset;
3167 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3168 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3169 !(pd & IO_MEM_ROMD)) {
3170 /* do nothing */
3171 } else {
3172 unsigned long addr1;
3173 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3174 /* ROM/RAM case */
3175 ptr = qemu_get_ram_ptr(addr1);
3176 memcpy(ptr, buf, l);
3178 len -= l;
3179 buf += l;
3180 addr += l;
3184 typedef struct {
3185 void *buffer;
3186 target_phys_addr_t addr;
3187 target_phys_addr_t len;
3188 } BounceBuffer;
3190 static BounceBuffer bounce;
3192 typedef struct MapClient {
3193 void *opaque;
3194 void (*callback)(void *opaque);
3195 QLIST_ENTRY(MapClient) link;
3196 } MapClient;
3198 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3199 = QLIST_HEAD_INITIALIZER(map_client_list);
3201 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3203 MapClient *client = qemu_malloc(sizeof(*client));
3205 client->opaque = opaque;
3206 client->callback = callback;
3207 QLIST_INSERT_HEAD(&map_client_list, client, link);
3208 return client;
3211 void cpu_unregister_map_client(void *_client)
3213 MapClient *client = (MapClient *)_client;
3215 QLIST_REMOVE(client, link);
3216 qemu_free(client);
3219 static void cpu_notify_map_clients(void)
3221 MapClient *client;
3223 while (!QLIST_EMPTY(&map_client_list)) {
3224 client = QLIST_FIRST(&map_client_list);
3225 client->callback(client->opaque);
3226 cpu_unregister_map_client(client);
3230 /* Map a physical memory region into a host virtual address.
3231 * May map a subset of the requested range, given by and returned in *plen.
3232 * May return NULL if resources needed to perform the mapping are exhausted.
3233 * Use only for reads OR writes - not for read-modify-write operations.
3234 * Use cpu_register_map_client() to know when retrying the map operation is
3235 * likely to succeed.
3237 void *cpu_physical_memory_map(target_phys_addr_t addr,
3238 target_phys_addr_t *plen,
3239 int is_write)
3241 target_phys_addr_t len = *plen;
3242 target_phys_addr_t done = 0;
3243 int l;
3244 uint8_t *ret = NULL;
3245 uint8_t *ptr;
3246 target_phys_addr_t page;
3247 unsigned long pd;
3248 PhysPageDesc *p;
3249 unsigned long addr1;
3251 while (len > 0) {
3252 page = addr & TARGET_PAGE_MASK;
3253 l = (page + TARGET_PAGE_SIZE) - addr;
3254 if (l > len)
3255 l = len;
3256 p = phys_page_find(page >> TARGET_PAGE_BITS);
3257 if (!p) {
3258 pd = IO_MEM_UNASSIGNED;
3259 } else {
3260 pd = p->phys_offset;
3263 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3264 if (done || bounce.buffer) {
3265 break;
3267 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3268 bounce.addr = addr;
3269 bounce.len = l;
3270 if (!is_write) {
3271 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3273 ptr = bounce.buffer;
3274 } else {
3275 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3276 ptr = qemu_get_ram_ptr(addr1);
3278 if (!done) {
3279 ret = ptr;
3280 } else if (ret + done != ptr) {
3281 break;
3284 len -= l;
3285 addr += l;
3286 done += l;
3288 *plen = done;
3289 return ret;
3292 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3293 * Will also mark the memory as dirty if is_write == 1. access_len gives
3294 * the amount of memory that was actually read or written by the caller.
3296 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3297 int is_write, target_phys_addr_t access_len)
3299 if (buffer != bounce.buffer) {
3300 if (is_write) {
3301 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3302 while (access_len) {
3303 unsigned l;
3304 l = TARGET_PAGE_SIZE;
3305 if (l > access_len)
3306 l = access_len;
3307 if (!cpu_physical_memory_is_dirty(addr1)) {
3308 /* invalidate code */
3309 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3310 /* set dirty bit */
3311 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3312 (0xff & ~CODE_DIRTY_FLAG);
3314 addr1 += l;
3315 access_len -= l;
3318 return;
3320 if (is_write) {
3321 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3323 qemu_vfree(bounce.buffer);
3324 bounce.buffer = NULL;
3325 cpu_notify_map_clients();
3328 /* warning: addr must be aligned */
3329 uint32_t ldl_phys(target_phys_addr_t addr)
3331 int io_index;
3332 uint8_t *ptr;
3333 uint32_t val;
3334 unsigned long pd;
3335 PhysPageDesc *p;
3337 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3338 if (!p) {
3339 pd = IO_MEM_UNASSIGNED;
3340 } else {
3341 pd = p->phys_offset;
3344 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3345 !(pd & IO_MEM_ROMD)) {
3346 /* I/O case */
3347 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3348 if (p)
3349 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3350 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3351 } else {
3352 /* RAM case */
3353 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3354 (addr & ~TARGET_PAGE_MASK);
3355 val = ldl_p(ptr);
3357 return val;
3360 /* warning: addr must be aligned */
3361 uint64_t ldq_phys(target_phys_addr_t addr)
3363 int io_index;
3364 uint8_t *ptr;
3365 uint64_t val;
3366 unsigned long pd;
3367 PhysPageDesc *p;
3369 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3370 if (!p) {
3371 pd = IO_MEM_UNASSIGNED;
3372 } else {
3373 pd = p->phys_offset;
3376 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3377 !(pd & IO_MEM_ROMD)) {
3378 /* I/O case */
3379 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3380 if (p)
3381 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3382 #ifdef TARGET_WORDS_BIGENDIAN
3383 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3384 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3385 #else
3386 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3387 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3388 #endif
3389 } else {
3390 /* RAM case */
3391 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3392 (addr & ~TARGET_PAGE_MASK);
3393 val = ldq_p(ptr);
3395 return val;
3398 /* XXX: optimize */
3399 uint32_t ldub_phys(target_phys_addr_t addr)
3401 uint8_t val;
3402 cpu_physical_memory_read(addr, &val, 1);
3403 return val;
3406 /* XXX: optimize */
3407 uint32_t lduw_phys(target_phys_addr_t addr)
3409 uint16_t val;
3410 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3411 return tswap16(val);
3414 /* warning: addr must be aligned. The ram page is not masked as dirty
3415 and the code inside is not invalidated. It is useful if the dirty
3416 bits are used to track modified PTEs */
3417 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3419 int io_index;
3420 uint8_t *ptr;
3421 unsigned long pd;
3422 PhysPageDesc *p;
3424 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3425 if (!p) {
3426 pd = IO_MEM_UNASSIGNED;
3427 } else {
3428 pd = p->phys_offset;
3431 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3432 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3433 if (p)
3434 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3435 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3436 } else {
3437 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3438 ptr = qemu_get_ram_ptr(addr1);
3439 stl_p(ptr, val);
3441 if (unlikely(in_migration)) {
3442 if (!cpu_physical_memory_is_dirty(addr1)) {
3443 /* invalidate code */
3444 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3445 /* set dirty bit */
3446 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3447 (0xff & ~CODE_DIRTY_FLAG);
3453 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3455 int io_index;
3456 uint8_t *ptr;
3457 unsigned long pd;
3458 PhysPageDesc *p;
3460 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3461 if (!p) {
3462 pd = IO_MEM_UNASSIGNED;
3463 } else {
3464 pd = p->phys_offset;
3467 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3468 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3469 if (p)
3470 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3471 #ifdef TARGET_WORDS_BIGENDIAN
3472 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3473 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3474 #else
3475 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3476 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3477 #endif
3478 } else {
3479 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3480 (addr & ~TARGET_PAGE_MASK);
3481 stq_p(ptr, val);
3485 /* warning: addr must be aligned */
3486 void stl_phys(target_phys_addr_t addr, uint32_t val)
3488 int io_index;
3489 uint8_t *ptr;
3490 unsigned long pd;
3491 PhysPageDesc *p;
3493 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3494 if (!p) {
3495 pd = IO_MEM_UNASSIGNED;
3496 } else {
3497 pd = p->phys_offset;
3500 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3501 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3502 if (p)
3503 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3504 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3505 } else {
3506 unsigned long addr1;
3507 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3508 /* RAM case */
3509 ptr = qemu_get_ram_ptr(addr1);
3510 stl_p(ptr, val);
3511 if (!cpu_physical_memory_is_dirty(addr1)) {
3512 /* invalidate code */
3513 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3514 /* set dirty bit */
3515 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3516 (0xff & ~CODE_DIRTY_FLAG);
3521 /* XXX: optimize */
3522 void stb_phys(target_phys_addr_t addr, uint32_t val)
3524 uint8_t v = val;
3525 cpu_physical_memory_write(addr, &v, 1);
3528 /* XXX: optimize */
3529 void stw_phys(target_phys_addr_t addr, uint32_t val)
3531 uint16_t v = tswap16(val);
3532 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3535 /* XXX: optimize */
3536 void stq_phys(target_phys_addr_t addr, uint64_t val)
3538 val = tswap64(val);
3539 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3542 #endif
3544 /* virtual memory access for debug (includes writing to ROM) */
3545 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3546 uint8_t *buf, int len, int is_write)
3548 int l;
3549 target_phys_addr_t phys_addr;
3550 target_ulong page;
3552 while (len > 0) {
3553 page = addr & TARGET_PAGE_MASK;
3554 phys_addr = cpu_get_phys_page_debug(env, page);
3555 /* if no physical page mapped, return an error */
3556 if (phys_addr == -1)
3557 return -1;
3558 l = (page + TARGET_PAGE_SIZE) - addr;
3559 if (l > len)
3560 l = len;
3561 phys_addr += (addr & ~TARGET_PAGE_MASK);
3562 #if !defined(CONFIG_USER_ONLY)
3563 if (is_write)
3564 cpu_physical_memory_write_rom(phys_addr, buf, l);
3565 else
3566 #endif
3567 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3568 len -= l;
3569 buf += l;
3570 addr += l;
3572 return 0;
3575 /* in deterministic execution mode, instructions doing device I/Os
3576 must be at the end of the TB */
3577 void cpu_io_recompile(CPUState *env, void *retaddr)
3579 TranslationBlock *tb;
3580 uint32_t n, cflags;
3581 target_ulong pc, cs_base;
3582 uint64_t flags;
3584 tb = tb_find_pc((unsigned long)retaddr);
3585 if (!tb) {
3586 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3587 retaddr);
3589 n = env->icount_decr.u16.low + tb->icount;
3590 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3591 /* Calculate how many instructions had been executed before the fault
3592 occurred. */
3593 n = n - env->icount_decr.u16.low;
3594 /* Generate a new TB ending on the I/O insn. */
3595 n++;
3596 /* On MIPS and SH, delay slot instructions can only be restarted if
3597 they were already the first instruction in the TB. If this is not
3598 the first instruction in a TB then re-execute the preceding
3599 branch. */
3600 #if defined(TARGET_MIPS)
3601 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3602 env->active_tc.PC -= 4;
3603 env->icount_decr.u16.low++;
3604 env->hflags &= ~MIPS_HFLAG_BMASK;
3606 #elif defined(TARGET_SH4)
3607 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3608 && n > 1) {
3609 env->pc -= 2;
3610 env->icount_decr.u16.low++;
3611 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3613 #endif
3614 /* This should never happen. */
3615 if (n > CF_COUNT_MASK)
3616 cpu_abort(env, "TB too big during recompile");
3618 cflags = n | CF_LAST_IO;
3619 pc = tb->pc;
3620 cs_base = tb->cs_base;
3621 flags = tb->flags;
3622 tb_phys_invalidate(tb, -1);
3623 /* FIXME: In theory this could raise an exception. In practice
3624 we have already translated the block once so it's probably ok. */
3625 tb_gen_code(env, pc, cs_base, flags, cflags);
3626 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3627 the first in the TB) then we end up generating a whole new TB and
3628 repeating the fault, which is horribly inefficient.
3629 Better would be to execute just this insn uncached, or generate a
3630 second new TB. */
3631 cpu_resume_from_signal(env, NULL);
3634 void dump_exec_info(FILE *f,
3635 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3637 int i, target_code_size, max_target_code_size;
3638 int direct_jmp_count, direct_jmp2_count, cross_page;
3639 TranslationBlock *tb;
3641 target_code_size = 0;
3642 max_target_code_size = 0;
3643 cross_page = 0;
3644 direct_jmp_count = 0;
3645 direct_jmp2_count = 0;
3646 for(i = 0; i < nb_tbs; i++) {
3647 tb = &tbs[i];
3648 target_code_size += tb->size;
3649 if (tb->size > max_target_code_size)
3650 max_target_code_size = tb->size;
3651 if (tb->page_addr[1] != -1)
3652 cross_page++;
3653 if (tb->tb_next_offset[0] != 0xffff) {
3654 direct_jmp_count++;
3655 if (tb->tb_next_offset[1] != 0xffff) {
3656 direct_jmp2_count++;
3660 /* XXX: avoid using doubles ? */
3661 cpu_fprintf(f, "Translation buffer state:\n");
3662 cpu_fprintf(f, "gen code size %ld/%ld\n",
3663 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3664 cpu_fprintf(f, "TB count %d/%d\n",
3665 nb_tbs, code_gen_max_blocks);
3666 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3667 nb_tbs ? target_code_size / nb_tbs : 0,
3668 max_target_code_size);
3669 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3670 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3671 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3672 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3673 cross_page,
3674 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3675 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3676 direct_jmp_count,
3677 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3678 direct_jmp2_count,
3679 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3680 cpu_fprintf(f, "\nStatistics:\n");
3681 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3682 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3683 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3684 tcg_dump_info(f, cpu_fprintf);
3687 #if !defined(CONFIG_USER_ONLY)
3689 #define MMUSUFFIX _cmmu
3690 #define GETPC() NULL
3691 #define env cpu_single_env
3692 #define SOFTMMU_CODE_ACCESS
3694 #define SHIFT 0
3695 #include "softmmu_template.h"
3697 #define SHIFT 1
3698 #include "softmmu_template.h"
3700 #define SHIFT 2
3701 #include "softmmu_template.h"
3703 #define SHIFT 3
3704 #include "softmmu_template.h"
3706 #undef env
3708 #endif