qapi: Call QAPIDoc.check() always
[qemu/kevin.git] / hw / pci-host / pnv_phb4.c
blob075499d36ddd7e5af519c95931f02a335884388a
1 /*
2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
4 * Copyright (c) 2018-2020, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qapi/visitor.h"
12 #include "qapi/error.h"
13 #include "monitor/monitor.h"
14 #include "target/ppc/cpu.h"
15 #include "hw/pci-host/pnv_phb4_regs.h"
16 #include "hw/pci-host/pnv_phb4.h"
17 #include "hw/pci/pcie_host.h"
18 #include "hw/pci/pcie_port.h"
19 #include "hw/ppc/pnv.h"
20 #include "hw/ppc/pnv_xscom.h"
21 #include "hw/irq.h"
22 #include "hw/qdev-properties.h"
23 #include "qom/object.h"
24 #include "trace.h"
26 #define phb_error(phb, fmt, ...) \
27 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \
28 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
30 #define phb_pec_error(pec, fmt, ...) \
31 qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \
32 (pec)->chip_id, (pec)->index, ## __VA_ARGS__)
34 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
36 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
37 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
38 uint8_t bus, devfn;
40 if (!(addr >> 63)) {
41 return NULL;
43 bus = (addr >> 52) & 0xff;
44 devfn = (addr >> 44) & 0xff;
46 /* We don't access the root complex this way */
47 if (bus == 0 && devfn == 0) {
48 return NULL;
50 return pci_find_device(pci->bus, bus, devfn);
54 * The CONFIG_DATA register expects little endian accesses, but as the
55 * region is big endian, we have to swap the value.
57 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
58 unsigned size, uint64_t val)
60 uint32_t cfg_addr, limit;
61 PCIDevice *pdev;
63 pdev = pnv_phb4_find_cfg_dev(phb);
64 if (!pdev) {
65 return;
67 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
68 cfg_addr |= off;
69 limit = pci_config_size(pdev);
70 if (limit <= cfg_addr) {
72 * conventional pci device can be behind pcie-to-pci bridge.
73 * 256 <= addr < 4K has no effects.
75 return;
77 switch (size) {
78 case 1:
79 break;
80 case 2:
81 val = bswap16(val);
82 break;
83 case 4:
84 val = bswap32(val);
85 break;
86 default:
87 g_assert_not_reached();
89 pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
92 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
93 unsigned size)
95 uint32_t cfg_addr, limit;
96 PCIDevice *pdev;
97 uint64_t val;
99 pdev = pnv_phb4_find_cfg_dev(phb);
100 if (!pdev) {
101 return ~0ull;
103 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
104 cfg_addr |= off;
105 limit = pci_config_size(pdev);
106 if (limit <= cfg_addr) {
108 * conventional pci device can be behind pcie-to-pci bridge.
109 * 256 <= addr < 4K has no effects.
111 return ~0ull;
113 val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
114 switch (size) {
115 case 1:
116 return val;
117 case 2:
118 return bswap16(val);
119 case 4:
120 return bswap32(val);
121 default:
122 g_assert_not_reached();
127 * Root complex register accesses are memory mapped.
129 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
130 unsigned size, uint64_t val)
132 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
133 PCIDevice *pdev;
135 if (size != 4) {
136 phb_error(phb, "rc_config_write invalid size %d", size);
137 return;
140 pdev = pci_find_device(pci->bus, 0, 0);
141 if (!pdev) {
142 phb_error(phb, "rc_config_write device not found");
143 return;
146 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
147 bswap32(val), 4);
150 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
151 unsigned size)
153 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
154 PCIDevice *pdev;
155 uint64_t val;
157 if (size != 4) {
158 phb_error(phb, "rc_config_read invalid size %d", size);
159 return ~0ull;
162 pdev = pci_find_device(pci->bus, 0, 0);
163 if (!pdev) {
164 phb_error(phb, "rc_config_read device not found");
165 return ~0ull;
168 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
169 return bswap32(val);
172 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
174 uint64_t base, start, size, mbe0, mbe1;
175 MemoryRegion *parent;
176 char name[64];
178 /* Unmap first */
179 if (memory_region_is_mapped(&phb->mr_mmio[index])) {
180 /* Should we destroy it in RCU friendly way... ? */
181 memory_region_del_subregion(phb->mr_mmio[index].container,
182 &phb->mr_mmio[index]);
185 /* Get table entry */
186 mbe0 = phb->ioda_MBT[(index << 1)];
187 mbe1 = phb->ioda_MBT[(index << 1) + 1];
189 if (!(mbe0 & IODA3_MBT0_ENABLE)) {
190 return;
193 /* Grab geometry from registers */
194 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
195 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
196 size |= 0xff00000000000000ull;
197 size = ~size + 1;
199 /* Calculate PCI side start address based on M32/M64 window type */
200 if (mbe0 & IODA3_MBT0_TYPE_M32) {
201 start = phb->regs[PHB_M32_START_ADDR >> 3];
202 if ((start + size) > 0x100000000ull) {
203 phb_error(phb, "M32 set beyond 4GB boundary !");
204 size = 0x100000000 - start;
206 } else {
207 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
210 /* TODO: Figure out how to implement/decode AOMASK */
212 /* Check if it matches an enabled MMIO region in the PEC stack */
213 if (memory_region_is_mapped(&phb->mmbar0) &&
214 base >= phb->mmio0_base &&
215 (base + size) <= (phb->mmio0_base + phb->mmio0_size)) {
216 parent = &phb->mmbar0;
217 base -= phb->mmio0_base;
218 } else if (memory_region_is_mapped(&phb->mmbar1) &&
219 base >= phb->mmio1_base &&
220 (base + size) <= (phb->mmio1_base + phb->mmio1_size)) {
221 parent = &phb->mmbar1;
222 base -= phb->mmio1_base;
223 } else {
224 phb_error(phb, "PHB MBAR %d out of parent bounds", index);
225 return;
228 /* Create alias (better name ?) */
229 snprintf(name, sizeof(name), "phb4-mbar%d", index);
230 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
231 &phb->pci_mmio, start, size);
232 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
235 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
237 uint64_t i;
238 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
239 PNV_PHB4_MIN_MMIO_WINDOWS;
241 for (i = 0; i < num_windows; i++) {
242 pnv_phb4_check_mbt(phb, i);
246 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
247 unsigned *out_table, unsigned *out_idx)
249 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
250 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
251 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
252 unsigned int mask;
253 uint64_t *tptr = NULL;
255 switch (table) {
256 case IODA3_TBL_LIST:
257 tptr = phb->ioda_LIST;
258 mask = 7;
259 break;
260 case IODA3_TBL_MIST:
261 tptr = phb->ioda_MIST;
262 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
263 mask -= 1;
264 break;
265 case IODA3_TBL_RCAM:
266 mask = phb->big_phb ? 127 : 63;
267 break;
268 case IODA3_TBL_MRT:
269 mask = phb->big_phb ? 15 : 7;
270 break;
271 case IODA3_TBL_PESTA:
272 case IODA3_TBL_PESTB:
273 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
274 mask -= 1;
275 break;
276 case IODA3_TBL_TVT:
277 tptr = phb->ioda_TVT;
278 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
279 mask -= 1;
280 break;
281 case IODA3_TBL_TCR:
282 case IODA3_TBL_TDR:
283 mask = phb->big_phb ? 1023 : 511;
284 break;
285 case IODA3_TBL_MBT:
286 tptr = phb->ioda_MBT;
287 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
288 mask -= 1;
289 break;
290 case IODA3_TBL_MDT:
291 tptr = phb->ioda_MDT;
292 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
293 mask -= 1;
294 break;
295 case IODA3_TBL_PEEV:
296 tptr = phb->ioda_PEEV;
297 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
298 mask -= 1;
299 break;
300 default:
301 phb_error(phb, "invalid IODA table %d", table);
302 return NULL;
304 index &= mask;
305 if (out_idx) {
306 *out_idx = index;
308 if (out_table) {
309 *out_table = table;
311 if (tptr) {
312 tptr += index;
314 if (adreg & PHB_IODA_AD_AUTOINC) {
315 index = (index + 1) & mask;
316 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
319 phb->regs[PHB_IODA_ADDR >> 3] = adreg;
320 return tptr;
323 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
325 unsigned table, idx;
326 uint64_t *tptr;
328 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
329 if (!tptr) {
330 /* Special PESTA case */
331 if (table == IODA3_TBL_PESTA) {
332 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
333 } else if (table == IODA3_TBL_PESTB) {
334 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
336 /* Return 0 on unsupported tables, not ff's */
337 return 0;
339 return *tptr;
342 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
344 unsigned table, idx;
345 uint64_t *tptr;
347 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
348 if (!tptr) {
349 /* Special PESTA case */
350 if (table == IODA3_TBL_PESTA) {
351 phb->ioda_PEST_AB[idx] &= ~1;
352 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
353 } else if (table == IODA3_TBL_PESTB) {
354 phb->ioda_PEST_AB[idx] &= ~2;
355 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
357 return;
360 /* Handle side effects */
361 switch (table) {
362 case IODA3_TBL_LIST:
363 break;
364 case IODA3_TBL_MIST: {
365 /* Special mask for MIST partial write */
366 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
367 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
368 uint64_t v = *tptr;
369 if (mmask == 0) {
370 mmask = 0xf;
372 if (mmask & 8) {
373 v &= 0x0000ffffffffffffull;
374 v |= 0xcfff000000000000ull & val;
376 if (mmask & 4) {
377 v &= 0xffff0000ffffffffull;
378 v |= 0x0000cfff00000000ull & val;
380 if (mmask & 2) {
381 v &= 0xffffffff0000ffffull;
382 v |= 0x00000000cfff0000ull & val;
384 if (mmask & 1) {
385 v &= 0xffffffffffff0000ull;
386 v |= 0x000000000000cfffull & val;
388 *tptr = v;
389 break;
391 case IODA3_TBL_MBT:
392 *tptr = val;
394 /* Copy across the valid bit to the other half */
395 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
396 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
398 /* Update mappings */
399 pnv_phb4_check_mbt(phb, idx >> 1);
400 break;
401 default:
402 *tptr = val;
406 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
408 PnvPhb4DMASpace *ds;
410 /* Always invalidate all for now ... */
411 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
412 ds->pe_num = PHB_INVALID_PE;
416 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
418 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
420 if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
421 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
422 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
423 0xffff0000, &ds->msi32_mr);
425 } else {
426 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
427 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
428 &ds->msi32_mr);
432 if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
433 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
434 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
435 (1ull << 60), &ds->msi64_mr);
437 } else {
438 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
439 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
440 &ds->msi64_mr);
445 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
447 PnvPhb4DMASpace *ds;
449 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
450 pnv_phb4_update_msi_regions(ds);
454 static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
456 int shift, flags, i, lsi_base;
457 XiveSource *xsrc = &phb->xsrc;
459 /* The XIVE source characteristics can be set at run time */
460 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
461 shift = XIVE_ESB_64K;
462 } else {
463 shift = XIVE_ESB_4K;
465 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
466 flags = XIVE_SRC_STORE_EOI;
467 } else {
468 flags = 0;
472 * When the PQ disable configuration bit is set, the check on the
473 * PQ state bits is disabled on the PHB side (for MSI only) and it
474 * is performed on the IC side instead.
476 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) {
477 flags |= XIVE_SRC_PQ_DISABLE;
480 phb->xsrc.esb_shift = shift;
481 phb->xsrc.esb_flags = flags;
483 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
484 lsi_base <<= 3;
486 /* TODO: handle reset values of PHB_LSI_SRC_ID */
487 if (!lsi_base) {
488 return;
491 /* TODO: need a xive_source_irq_reset_lsi() */
492 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
494 for (i = 0; i < xsrc->nr_irqs; i++) {
495 bool msi = (i < lsi_base || i >= (lsi_base + 8));
496 if (!msi) {
497 xive_source_irq_set_lsi(xsrc, i);
502 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
503 unsigned size)
505 PnvPHB4 *phb = PNV_PHB4(opaque);
506 bool changed;
508 /* Special case outbound configuration data */
509 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
510 pnv_phb4_config_write(phb, off & 0x3, size, val);
511 return;
514 /* Special case RC configuration space */
515 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
516 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
517 return;
520 /* Other registers are 64-bit only */
521 if (size != 8 || off & 0x7) {
522 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
523 off, size);
524 return;
527 /* Handle masking */
528 switch (off) {
529 case PHB_LSI_SOURCE_ID:
530 val &= PHB_LSI_SRC_ID;
531 break;
532 case PHB_M64_UPPER_BITS:
533 val &= 0xff00000000000000ull;
534 break;
535 /* TCE Kill */
536 case PHB_TCE_KILL:
537 /* Clear top 3 bits which HW does to indicate successful queuing */
538 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
539 break;
540 case PHB_Q_DMA_R:
542 * This is enough logic to make SW happy but we aren't
543 * actually quiescing the DMAs
545 if (val & PHB_Q_DMA_R_AUTORESET) {
546 val = 0;
547 } else {
548 val &= PHB_Q_DMA_R_QUIESCE_DMA;
550 break;
551 /* LEM stuff */
552 case PHB_LEM_FIR_AND_MASK:
553 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
554 return;
555 case PHB_LEM_FIR_OR_MASK:
556 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
557 return;
558 case PHB_LEM_ERROR_AND_MASK:
559 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
560 return;
561 case PHB_LEM_ERROR_OR_MASK:
562 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
563 return;
564 case PHB_LEM_WOF:
565 val = 0;
566 break;
567 /* TODO: More regs ..., maybe create a table with masks... */
569 /* Read only registers */
570 case PHB_CPU_LOADSTORE_STATUS:
571 case PHB_ETU_ERR_SUMMARY:
572 case PHB_PHB4_GEN_CAP:
573 case PHB_PHB4_TCE_CAP:
574 case PHB_PHB4_IRQ_CAP:
575 case PHB_PHB4_EEH_CAP:
576 return;
579 /* Record whether it changed */
580 changed = phb->regs[off >> 3] != val;
582 /* Store in register cache first */
583 phb->regs[off >> 3] = val;
585 /* Handle side effects */
586 switch (off) {
587 case PHB_PHB4_CONFIG:
588 if (changed) {
589 pnv_phb4_update_all_msi_regions(phb);
591 break;
592 case PHB_M32_START_ADDR:
593 case PHB_M64_UPPER_BITS:
594 if (changed) {
595 pnv_phb4_check_all_mbt(phb);
597 break;
599 /* IODA table accesses */
600 case PHB_IODA_DATA0:
601 pnv_phb4_ioda_write(phb, val);
602 break;
604 /* RTC invalidation */
605 case PHB_RTC_INVALIDATE:
606 pnv_phb4_rtc_invalidate(phb, val);
607 break;
609 /* PHB Control (Affects XIVE source) */
610 case PHB_CTRLR:
611 case PHB_LSI_SOURCE_ID:
612 pnv_phb4_update_xsrc(phb);
613 break;
615 /* Silent simple writes */
616 case PHB_ASN_CMPM:
617 case PHB_CONFIG_ADDRESS:
618 case PHB_IODA_ADDR:
619 case PHB_TCE_KILL:
620 case PHB_TCE_SPEC_CTL:
621 case PHB_PEST_BAR:
622 case PHB_PELTV_BAR:
623 case PHB_RTT_BAR:
624 case PHB_LEM_FIR_ACCUM:
625 case PHB_LEM_ERROR_MASK:
626 case PHB_LEM_ACTION0:
627 case PHB_LEM_ACTION1:
628 case PHB_TCE_TAG_ENABLE:
629 case PHB_INT_NOTIFY_ADDR:
630 case PHB_INT_NOTIFY_INDEX:
631 case PHB_DMARD_SYNC:
632 break;
634 /* Noise on anything else */
635 default:
636 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
637 off, val);
641 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
643 PnvPHB4 *phb = PNV_PHB4(opaque);
644 uint64_t val;
646 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
647 return pnv_phb4_config_read(phb, off & 0x3, size);
650 /* Special case RC configuration space */
651 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
652 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
655 /* Other registers are 64-bit only */
656 if (size != 8 || off & 0x7) {
657 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
658 off, size);
659 return ~0ull;
662 /* Default read from cache */
663 val = phb->regs[off >> 3];
665 switch (off) {
666 case PHB_VERSION:
667 return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version;
669 /* Read-only */
670 case PHB_PHB4_GEN_CAP:
671 return 0xe4b8000000000000ull;
672 case PHB_PHB4_TCE_CAP:
673 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
674 case PHB_PHB4_IRQ_CAP:
675 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
676 case PHB_PHB4_EEH_CAP:
677 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
679 /* IODA table accesses */
680 case PHB_IODA_DATA0:
681 return pnv_phb4_ioda_read(phb);
683 /* Link training always appears trained */
684 case PHB_PCIE_DLP_TRAIN_CTL:
685 /* TODO: Do something sensible with speed ? */
686 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
688 /* DMA read sync: make it look like it's complete */
689 case PHB_DMARD_SYNC:
690 return PHB_DMARD_SYNC_COMPLETE;
692 /* Silent simple reads */
693 case PHB_LSI_SOURCE_ID:
694 case PHB_CPU_LOADSTORE_STATUS:
695 case PHB_ASN_CMPM:
696 case PHB_PHB4_CONFIG:
697 case PHB_M32_START_ADDR:
698 case PHB_CONFIG_ADDRESS:
699 case PHB_IODA_ADDR:
700 case PHB_RTC_INVALIDATE:
701 case PHB_TCE_KILL:
702 case PHB_TCE_SPEC_CTL:
703 case PHB_PEST_BAR:
704 case PHB_PELTV_BAR:
705 case PHB_RTT_BAR:
706 case PHB_M64_UPPER_BITS:
707 case PHB_CTRLR:
708 case PHB_LEM_FIR_ACCUM:
709 case PHB_LEM_ERROR_MASK:
710 case PHB_LEM_ACTION0:
711 case PHB_LEM_ACTION1:
712 case PHB_TCE_TAG_ENABLE:
713 case PHB_INT_NOTIFY_ADDR:
714 case PHB_INT_NOTIFY_INDEX:
715 case PHB_Q_DMA_R:
716 case PHB_ETU_ERR_SUMMARY:
717 break;
719 /* Noise on anything else */
720 default:
721 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
722 off, val);
724 return val;
727 static const MemoryRegionOps pnv_phb4_reg_ops = {
728 .read = pnv_phb4_reg_read,
729 .write = pnv_phb4_reg_write,
730 .valid.min_access_size = 1,
731 .valid.max_access_size = 8,
732 .impl.min_access_size = 1,
733 .impl.max_access_size = 8,
734 .endianness = DEVICE_BIG_ENDIAN,
737 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
739 PnvPHB4 *phb = PNV_PHB4(opaque);
740 uint32_t reg = addr >> 3;
741 uint64_t val;
742 hwaddr offset;
744 switch (reg) {
745 case PHB_SCOM_HV_IND_ADDR:
746 return phb->scom_hv_ind_addr_reg;
748 case PHB_SCOM_HV_IND_DATA:
749 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
750 phb_error(phb, "Invalid indirect address");
751 return ~0ull;
753 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
754 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
755 val = pnv_phb4_reg_read(phb, offset, size);
756 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
757 offset += size;
758 offset &= 0x3fff;
759 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
760 phb->scom_hv_ind_addr_reg,
761 offset);
763 return val;
764 case PHB_SCOM_ETU_LEM_FIR:
765 case PHB_SCOM_ETU_LEM_FIR_AND:
766 case PHB_SCOM_ETU_LEM_FIR_OR:
767 case PHB_SCOM_ETU_LEM_FIR_MSK:
768 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
769 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
770 case PHB_SCOM_ETU_LEM_ACT0:
771 case PHB_SCOM_ETU_LEM_ACT1:
772 case PHB_SCOM_ETU_LEM_WOF:
773 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
774 return pnv_phb4_reg_read(phb, offset, size);
775 case PHB_SCOM_ETU_PMON_CONFIG:
776 case PHB_SCOM_ETU_PMON_CTR0:
777 case PHB_SCOM_ETU_PMON_CTR1:
778 case PHB_SCOM_ETU_PMON_CTR2:
779 case PHB_SCOM_ETU_PMON_CTR3:
780 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
781 return pnv_phb4_reg_read(phb, offset, size);
783 default:
784 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
785 return ~0ull;
789 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
790 uint64_t val, unsigned size)
792 PnvPHB4 *phb = PNV_PHB4(opaque);
793 uint32_t reg = addr >> 3;
794 hwaddr offset;
796 switch (reg) {
797 case PHB_SCOM_HV_IND_ADDR:
798 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
799 break;
800 case PHB_SCOM_HV_IND_DATA:
801 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
802 phb_error(phb, "Invalid indirect address");
803 break;
805 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
806 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
807 pnv_phb4_reg_write(phb, offset, val, size);
808 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
809 offset += size;
810 offset &= 0x3fff;
811 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
812 phb->scom_hv_ind_addr_reg,
813 offset);
815 break;
816 case PHB_SCOM_ETU_LEM_FIR:
817 case PHB_SCOM_ETU_LEM_FIR_AND:
818 case PHB_SCOM_ETU_LEM_FIR_OR:
819 case PHB_SCOM_ETU_LEM_FIR_MSK:
820 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
821 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
822 case PHB_SCOM_ETU_LEM_ACT0:
823 case PHB_SCOM_ETU_LEM_ACT1:
824 case PHB_SCOM_ETU_LEM_WOF:
825 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
826 pnv_phb4_reg_write(phb, offset, val, size);
827 break;
828 case PHB_SCOM_ETU_PMON_CONFIG:
829 case PHB_SCOM_ETU_PMON_CTR0:
830 case PHB_SCOM_ETU_PMON_CTR1:
831 case PHB_SCOM_ETU_PMON_CTR2:
832 case PHB_SCOM_ETU_PMON_CTR3:
833 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
834 pnv_phb4_reg_write(phb, offset, val, size);
835 break;
836 default:
837 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
838 "=%"PRIx64"\n", addr, val);
842 const MemoryRegionOps pnv_phb4_xscom_ops = {
843 .read = pnv_phb4_xscom_read,
844 .write = pnv_phb4_xscom_write,
845 .valid.min_access_size = 8,
846 .valid.max_access_size = 8,
847 .impl.min_access_size = 8,
848 .impl.max_access_size = 8,
849 .endianness = DEVICE_BIG_ENDIAN,
852 static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr,
853 unsigned size)
855 PnvPHB4 *phb = PNV_PHB4(opaque);
856 uint32_t reg = addr >> 3;
858 /* All registers are read-able */
859 return phb->nest_regs[reg];
863 * Return the 'stack_no' of a PHB4. 'stack_no' is the order
864 * the PHB4 occupies in the PEC. This is the reverse of what
865 * pnv_phb4_pec_get_phb_id() does.
867 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will
868 * be the second phb (stack_no = 1) of the PEC.
870 static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb)
872 PnvPhb4PecState *pec = phb->pec;
873 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
874 int index = pec->index;
875 int stack_no = phb->phb_id;
877 while (index--) {
878 stack_no -= pecc->num_phbs[index];
881 return stack_no;
884 static void pnv_phb4_update_regions(PnvPHB4 *phb)
886 /* Unmap first always */
887 if (memory_region_is_mapped(&phb->mr_regs)) {
888 memory_region_del_subregion(&phb->phbbar, &phb->mr_regs);
890 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
891 memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio);
894 /* Map registers if enabled */
895 if (memory_region_is_mapped(&phb->phbbar)) {
896 memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs);
899 /* Map ESB if enabled */
900 if (memory_region_is_mapped(&phb->intbar)) {
901 memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio);
904 /* Check/update m32 */
905 pnv_phb4_check_all_mbt(phb);
908 static void pnv_pec_phb_update_map(PnvPHB4 *phb)
910 PnvPhb4PecState *pec = phb->pec;
911 MemoryRegion *sysmem = get_system_memory();
912 uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN];
913 int stack_no = pnv_phb4_get_phb_stack_no(phb);
914 uint64_t bar, mask, size;
915 char name[64];
918 * NOTE: This will really not work well if those are remapped
919 * after the PHB has created its sub regions. We could do better
920 * if we had a way to resize regions but we don't really care
921 * that much in practice as the stuff below really only happens
922 * once early during boot
925 /* Handle unmaps */
926 if (memory_region_is_mapped(&phb->mmbar0) &&
927 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
928 memory_region_del_subregion(sysmem, &phb->mmbar0);
930 if (memory_region_is_mapped(&phb->mmbar1) &&
931 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
932 memory_region_del_subregion(sysmem, &phb->mmbar1);
934 if (memory_region_is_mapped(&phb->phbbar) &&
935 !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
936 memory_region_del_subregion(sysmem, &phb->phbbar);
938 if (memory_region_is_mapped(&phb->intbar) &&
939 !(bar_en & PEC_NEST_STK_BAR_EN_INT)) {
940 memory_region_del_subregion(sysmem, &phb->intbar);
943 /* Update PHB */
944 pnv_phb4_update_regions(phb);
946 /* Handle maps */
947 if (!memory_region_is_mapped(&phb->mmbar0) &&
948 (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
949 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8;
950 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK];
951 size = ((~mask) >> 8) + 1;
952 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0",
953 pec->chip_id, pec->index, stack_no);
954 memory_region_init(&phb->mmbar0, OBJECT(phb), name, size);
955 memory_region_add_subregion(sysmem, bar, &phb->mmbar0);
956 phb->mmio0_base = bar;
957 phb->mmio0_size = size;
959 if (!memory_region_is_mapped(&phb->mmbar1) &&
960 (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
961 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8;
962 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK];
963 size = ((~mask) >> 8) + 1;
964 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1",
965 pec->chip_id, pec->index, stack_no);
966 memory_region_init(&phb->mmbar1, OBJECT(phb), name, size);
967 memory_region_add_subregion(sysmem, bar, &phb->mmbar1);
968 phb->mmio1_base = bar;
969 phb->mmio1_size = size;
971 if (!memory_region_is_mapped(&phb->phbbar) &&
972 (bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
973 bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8;
974 size = PNV_PHB4_NUM_REGS << 3;
975 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d",
976 pec->chip_id, pec->index, stack_no);
977 memory_region_init(&phb->phbbar, OBJECT(phb), name, size);
978 memory_region_add_subregion(sysmem, bar, &phb->phbbar);
980 if (!memory_region_is_mapped(&phb->intbar) &&
981 (bar_en & PEC_NEST_STK_BAR_EN_INT)) {
982 bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8;
983 size = PNV_PHB4_MAX_INTs << 16;
984 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int",
985 phb->pec->chip_id, phb->pec->index, stack_no);
986 memory_region_init(&phb->intbar, OBJECT(phb), name, size);
987 memory_region_add_subregion(sysmem, bar, &phb->intbar);
990 /* Update PHB */
991 pnv_phb4_update_regions(phb);
994 static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr,
995 uint64_t val, unsigned size)
997 PnvPHB4 *phb = PNV_PHB4(opaque);
998 PnvPhb4PecState *pec = phb->pec;
999 uint32_t reg = addr >> 3;
1001 switch (reg) {
1002 case PEC_NEST_STK_PCI_NEST_FIR:
1003 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val & PPC_BITMASK(0, 27);
1004 break;
1005 case PEC_NEST_STK_PCI_NEST_FIR_CLR:
1006 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val;
1007 break;
1008 case PEC_NEST_STK_PCI_NEST_FIR_SET:
1009 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val;
1010 break;
1011 case PEC_NEST_STK_PCI_NEST_FIR_MSK:
1012 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val &
1013 PPC_BITMASK(0, 27);
1014 break;
1015 case PEC_NEST_STK_PCI_NEST_FIR_MSKC:
1016 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val;
1017 break;
1018 case PEC_NEST_STK_PCI_NEST_FIR_MSKS:
1019 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val;
1020 break;
1021 case PEC_NEST_STK_PCI_NEST_FIR_ACT0:
1022 case PEC_NEST_STK_PCI_NEST_FIR_ACT1:
1023 phb->nest_regs[reg] = val & PPC_BITMASK(0, 27);
1024 break;
1025 case PEC_NEST_STK_PCI_NEST_FIR_WOF:
1026 phb->nest_regs[reg] = 0;
1027 break;
1028 case PEC_NEST_STK_ERR_REPORT_0:
1029 case PEC_NEST_STK_ERR_REPORT_1:
1030 case PEC_NEST_STK_PBCQ_GNRL_STATUS:
1031 /* Flag error ? */
1032 break;
1033 case PEC_NEST_STK_PBCQ_MODE:
1034 phb->nest_regs[reg] = val & PPC_BITMASK(0, 7);
1035 break;
1036 case PEC_NEST_STK_MMIO_BAR0:
1037 case PEC_NEST_STK_MMIO_BAR0_MASK:
1038 case PEC_NEST_STK_MMIO_BAR1:
1039 case PEC_NEST_STK_MMIO_BAR1_MASK:
1040 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] &
1041 (PEC_NEST_STK_BAR_EN_MMIO0 |
1042 PEC_NEST_STK_BAR_EN_MMIO1)) {
1043 phb_pec_error(pec, "Changing enabled BAR unsupported");
1045 phb->nest_regs[reg] = val & PPC_BITMASK(0, 39);
1046 break;
1047 case PEC_NEST_STK_PHB_REGS_BAR:
1048 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) {
1049 phb_pec_error(pec, "Changing enabled BAR unsupported");
1051 phb->nest_regs[reg] = val & PPC_BITMASK(0, 41);
1052 break;
1053 case PEC_NEST_STK_INT_BAR:
1054 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) {
1055 phb_pec_error(pec, "Changing enabled BAR unsupported");
1057 phb->nest_regs[reg] = val & PPC_BITMASK(0, 27);
1058 break;
1059 case PEC_NEST_STK_BAR_EN:
1060 phb->nest_regs[reg] = val & PPC_BITMASK(0, 3);
1061 pnv_pec_phb_update_map(phb);
1062 break;
1063 case PEC_NEST_STK_DATA_FRZ_TYPE:
1064 /* Not used for now */
1065 phb->nest_regs[reg] = val & PPC_BITMASK(0, 27);
1066 break;
1067 case PEC_NEST_STK_PBCQ_SPARSE_PAGE:
1068 phb->nest_regs[reg] = val & PPC_BITMASK(3, 5);
1069 break;
1070 case PEC_NEST_STK_PBCQ_CACHE_INJ:
1071 phb->nest_regs[reg] = val & PPC_BITMASK(0, 7);
1072 break;
1073 default:
1074 qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx
1075 "=%"PRIx64"\n", addr, val);
1079 static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = {
1080 .read = pnv_pec_stk_nest_xscom_read,
1081 .write = pnv_pec_stk_nest_xscom_write,
1082 .valid.min_access_size = 8,
1083 .valid.max_access_size = 8,
1084 .impl.min_access_size = 8,
1085 .impl.max_access_size = 8,
1086 .endianness = DEVICE_BIG_ENDIAN,
1089 static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr,
1090 unsigned size)
1092 PnvPHB4 *phb = PNV_PHB4(opaque);
1093 uint32_t reg = addr >> 3;
1095 /* All registers are read-able */
1096 return phb->pci_regs[reg];
1099 static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr,
1100 uint64_t val, unsigned size)
1102 PnvPHB4 *phb = PNV_PHB4(opaque);
1103 uint32_t reg = addr >> 3;
1104 switch (reg) {
1105 case PEC_PCI_STK_PCI_FIR:
1106 phb->pci_regs[reg] = val & PPC_BITMASK(0, 5);
1107 break;
1108 case PEC_PCI_STK_PCI_FIR_CLR:
1109 phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val;
1110 break;
1111 case PEC_PCI_STK_PCI_FIR_SET:
1112 phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val;
1113 break;
1114 case PEC_PCI_STK_PCI_FIR_MSK:
1115 phb->pci_regs[reg] = val & PPC_BITMASK(0, 5);
1116 break;
1117 case PEC_PCI_STK_PCI_FIR_MSKC:
1118 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val;
1119 break;
1120 case PEC_PCI_STK_PCI_FIR_MSKS:
1121 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val;
1122 break;
1123 case PEC_PCI_STK_PCI_FIR_ACT0:
1124 case PEC_PCI_STK_PCI_FIR_ACT1:
1125 phb->pci_regs[reg] = val & PPC_BITMASK(0, 5);
1126 break;
1127 case PEC_PCI_STK_PCI_FIR_WOF:
1128 phb->pci_regs[reg] = 0;
1129 break;
1130 case PEC_PCI_STK_ETU_RESET:
1131 phb->pci_regs[reg] = val & PPC_BIT(0);
1132 /* TODO: Implement reset */
1133 break;
1134 case PEC_PCI_STK_PBAIB_ERR_REPORT:
1135 break;
1136 case PEC_PCI_STK_PBAIB_TX_CMD_CRED:
1137 phb->pci_regs[reg] = val &
1138 ((PPC_BITMASK(0, 2) | PPC_BITMASK(10, 18)
1139 | PPC_BITMASK(26, 34) | PPC_BITMASK(41, 50)
1140 | PPC_BITMASK(58, 63)));
1141 break;
1142 case PEC_PCI_STK_PBAIB_TX_DAT_CRED:
1143 phb->pci_regs[reg] = val & (PPC_BITMASK(33, 34) | PPC_BITMASK(44, 47));
1144 break;
1145 default:
1146 qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx
1147 "=%"PRIx64"\n", addr, val);
1151 static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = {
1152 .read = pnv_pec_stk_pci_xscom_read,
1153 .write = pnv_pec_stk_pci_xscom_write,
1154 .valid.min_access_size = 8,
1155 .valid.max_access_size = 8,
1156 .impl.min_access_size = 8,
1157 .impl.max_access_size = 8,
1158 .endianness = DEVICE_BIG_ENDIAN,
1161 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
1163 /* Check that out properly ... */
1164 return irq_num & 3;
1167 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
1169 PnvPHB4 *phb = PNV_PHB4(opaque);
1170 uint32_t lsi_base;
1172 /* LSI only ... */
1173 if (irq_num > 3) {
1174 phb_error(phb, "IRQ %x is not an LSI", irq_num);
1176 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
1177 lsi_base <<= 3;
1178 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
1181 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
1183 uint64_t rtt, addr;
1184 uint16_t rte;
1185 int bus_num;
1186 int num_PEs;
1188 /* Already resolved ? */
1189 if (ds->pe_num != PHB_INVALID_PE) {
1190 return true;
1193 /* We need to lookup the RTT */
1194 rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
1195 if (!(rtt & PHB_RTT_BAR_ENABLE)) {
1196 phb_error(ds->phb, "DMA with RTT BAR disabled !");
1197 /* Set error bits ? fence ? ... */
1198 return false;
1201 /* Read RTE */
1202 bus_num = pci_bus_num(ds->bus);
1203 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
1204 addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
1205 if (dma_memory_read(&address_space_memory, addr, &rte,
1206 sizeof(rte), MEMTXATTRS_UNSPECIFIED)) {
1207 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
1208 /* Set error bits ? fence ? ... */
1209 return false;
1211 rte = be16_to_cpu(rte);
1213 /* Fail upon reading of invalid PE# */
1214 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
1215 if (rte >= num_PEs) {
1216 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
1217 rte &= num_PEs - 1;
1219 ds->pe_num = rte;
1220 return true;
1223 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
1224 bool is_write, uint64_t tve,
1225 IOMMUTLBEntry *tlb)
1227 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
1228 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
1229 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
1230 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
1232 /* Invalid levels */
1233 if (lev > 4) {
1234 phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
1235 return;
1238 /* Invalid entry */
1239 if (tts == 0) {
1240 phb_error(ds->phb, "Access to invalid TVE");
1241 return;
1244 /* IO Page Size of 0 means untranslated, else use TCEs */
1245 if (tps == 0) {
1246 /* TODO: Handle boundaries */
1248 /* Use 4k pages like q35 ... for now */
1249 tlb->iova = addr & 0xfffffffffffff000ull;
1250 tlb->translated_addr = addr & 0x0003fffffffff000ull;
1251 tlb->addr_mask = 0xfffull;
1252 tlb->perm = IOMMU_RW;
1253 } else {
1254 uint32_t tce_shift, tbl_shift, sh;
1255 uint64_t base, taddr, tce, tce_mask;
1257 /* Address bits per bottom level TCE entry */
1258 tce_shift = tps + 11;
1260 /* Address bits per table level */
1261 tbl_shift = tts + 8;
1263 /* Top level table base address */
1264 base = tta << 12;
1266 /* Total shift to first level */
1267 sh = tbl_shift * lev + tce_shift;
1269 /* TODO: Limit to support IO page sizes */
1271 /* TODO: Multi-level untested */
1272 do {
1273 lev--;
1275 /* Grab the TCE address */
1276 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
1277 if (dma_memory_read(&address_space_memory, taddr, &tce,
1278 sizeof(tce), MEMTXATTRS_UNSPECIFIED)) {
1279 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
1280 return;
1282 tce = be64_to_cpu(tce);
1284 /* Check permission for indirect TCE */
1285 if ((lev >= 0) && !(tce & 3)) {
1286 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
1287 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1288 is_write ? 'W' : 'R', tve);
1289 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1290 tta, lev, tts, tps);
1291 return;
1293 sh -= tbl_shift;
1294 base = tce & ~0xfffull;
1295 } while (lev >= 0);
1297 /* We exit the loop with TCE being the final TCE */
1298 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
1299 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
1300 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1301 is_write ? 'W' : 'R', tve);
1302 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1303 tta, lev, tts, tps);
1304 return;
1306 tce_mask = ~((1ull << tce_shift) - 1);
1307 tlb->iova = addr & tce_mask;
1308 tlb->translated_addr = tce & tce_mask;
1309 tlb->addr_mask = ~tce_mask;
1310 tlb->perm = tce & 3;
1314 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
1315 hwaddr addr,
1316 IOMMUAccessFlags flag,
1317 int iommu_idx)
1319 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1320 int tve_sel;
1321 uint64_t tve, cfg;
1322 IOMMUTLBEntry ret = {
1323 .target_as = &address_space_memory,
1324 .iova = addr,
1325 .translated_addr = 0,
1326 .addr_mask = ~(hwaddr)0,
1327 .perm = IOMMU_NONE,
1330 /* Resolve PE# */
1331 if (!pnv_phb4_resolve_pe(ds)) {
1332 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1333 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1334 return ret;
1337 /* Check top bits */
1338 switch (addr >> 60) {
1339 case 00:
1340 /* DMA or 32-bit MSI ? */
1341 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1342 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1343 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1344 phb_error(ds->phb, "xlate on 32-bit MSI region");
1345 return ret;
1347 /* Choose TVE XXX Use PHB4 Control Register */
1348 tve_sel = (addr >> 59) & 1;
1349 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1350 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1351 break;
1352 case 01:
1353 phb_error(ds->phb, "xlate on 64-bit MSI region");
1354 break;
1355 default:
1356 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1358 return ret;
1361 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
1362 DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
1363 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1365 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1366 void *data)
1368 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1370 imrc->translate = pnv_phb4_translate_iommu;
1373 static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1374 .parent = TYPE_IOMMU_MEMORY_REGION,
1375 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1376 .class_init = pnv_phb4_iommu_memory_region_class_init,
1380 * Return the index/phb-id of a PHB4 that belongs to a
1381 * pec->stacks[stack_index] stack.
1383 int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index)
1385 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1386 int index = pec->index;
1387 int offset = 0;
1389 while (index--) {
1390 offset += pecc->num_phbs[index];
1393 return offset + stack_index;
1397 * MSI/MSIX memory region implementation.
1398 * The handler handles both MSI and MSIX.
1400 static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1401 uint64_t data, unsigned size)
1403 PnvPhb4DMASpace *ds = opaque;
1404 PnvPHB4 *phb = ds->phb;
1406 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1408 /* Resolve PE# */
1409 if (!pnv_phb4_resolve_pe(ds)) {
1410 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1411 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1412 return;
1415 /* TODO: Check it doesn't collide with LSIs */
1416 if (src >= phb->xsrc.nr_irqs) {
1417 phb_error(phb, "MSI %d out of bounds", src);
1418 return;
1421 /* TODO: check PE/MSI assignment */
1423 qemu_irq_pulse(phb->qirqs[src]);
1426 /* There is no .read as the read result is undefined by PCI spec */
1427 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1429 PnvPhb4DMASpace *ds = opaque;
1431 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1432 return -1;
1435 static const MemoryRegionOps pnv_phb4_msi_ops = {
1436 .read = pnv_phb4_msi_read,
1437 .write = pnv_phb4_msi_write,
1438 .endianness = DEVICE_LITTLE_ENDIAN
1441 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1443 PnvPhb4DMASpace *ds;
1445 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1446 if (ds->bus == bus && ds->devfn == devfn) {
1447 break;
1450 return ds;
1453 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1455 PnvPHB4 *phb = opaque;
1456 PnvPhb4DMASpace *ds;
1457 char name[32];
1459 ds = pnv_phb4_dma_find(phb, bus, devfn);
1461 if (ds == NULL) {
1462 ds = g_new0(PnvPhb4DMASpace, 1);
1463 ds->bus = bus;
1464 ds->devfn = devfn;
1465 ds->pe_num = PHB_INVALID_PE;
1466 ds->phb = phb;
1467 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1468 phb->phb_id);
1469 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1470 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1471 OBJECT(phb), name, UINT64_MAX);
1472 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1473 name);
1474 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1475 ds, "msi32", 0x10000);
1476 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1477 ds, "msi64", 0x100000);
1478 pnv_phb4_update_msi_regions(ds);
1480 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1482 return &ds->dma_as;
1485 static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
1487 PnvPhb4PecState *pec = phb->pec;
1488 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1489 int stack_no = pnv_phb4_get_phb_stack_no(phb);
1490 uint32_t pec_nest_base;
1491 uint32_t pec_pci_base;
1492 char name[64];
1494 assert(pec);
1496 /* Initialize the XSCOM regions for the stack registers */
1497 snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d",
1498 pec->chip_id, pec->index, stack_no);
1499 pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb),
1500 &pnv_pec_stk_nest_xscom_ops, phb, name,
1501 PHB4_PEC_NEST_STK_REGS_COUNT);
1503 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1504 pec->chip_id, pec->index, stack_no);
1505 pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb),
1506 &pnv_pec_stk_pci_xscom_ops, phb, name,
1507 PHB4_PEC_PCI_STK_REGS_COUNT);
1509 /* PHB pass-through */
1510 snprintf(name, sizeof(name), "xscom-pec-%d.%d-phb-%d",
1511 pec->chip_id, pec->index, stack_no);
1512 pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb),
1513 &pnv_phb4_xscom_ops, phb, name, 0x40);
1515 pec_nest_base = pecc->xscom_nest_base(pec);
1516 pec_pci_base = pecc->xscom_pci_base(pec);
1518 /* Populate the XSCOM address space. */
1519 pnv_xscom_add_subregion(pec->chip,
1520 pec_nest_base + 0x40 * (stack_no + 1),
1521 &phb->nest_regs_mr);
1522 pnv_xscom_add_subregion(pec->chip,
1523 pec_pci_base + 0x40 * (stack_no + 1),
1524 &phb->pci_regs_mr);
1525 pnv_xscom_add_subregion(pec->chip,
1526 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1527 0x40 * stack_no,
1528 &phb->phb_regs_mr);
1531 static PCIIOMMUOps pnv_phb4_iommu_ops = {
1532 .get_address_space = pnv_phb4_dma_iommu,
1535 static void pnv_phb4_instance_init(Object *obj)
1537 PnvPHB4 *phb = PNV_PHB4(obj);
1539 QLIST_INIT(&phb->dma_spaces);
1541 /* XIVE interrupt source object */
1542 object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
1545 void pnv_phb4_bus_init(DeviceState *dev, PnvPHB4 *phb)
1547 PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1548 char name[32];
1551 * PHB4 doesn't support IO space. However, qemu gets very upset if
1552 * we don't have an IO region to anchor IO BARs onto so we just
1553 * initialize one which we never hook up to anything
1555 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1556 phb->phb_id);
1557 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1559 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1560 phb->phb_id);
1561 memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1562 PCI_MMIO_TOTAL_SIZE);
1564 pci->bus = pci_register_root_bus(dev, dev->id ? dev->id : NULL,
1565 pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1566 &phb->pci_mmio, &phb->pci_io,
1567 0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1569 object_property_set_int(OBJECT(pci->bus), "phb-id", phb->phb_id,
1570 &error_abort);
1571 object_property_set_int(OBJECT(pci->bus), "chip-id", phb->chip_id,
1572 &error_abort);
1574 pci_setup_iommu(pci->bus, &pnv_phb4_iommu_ops, phb);
1575 pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1578 static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1580 PnvPHB4 *phb = PNV_PHB4(dev);
1581 XiveSource *xsrc = &phb->xsrc;
1582 int nr_irqs;
1583 char name[32];
1585 /* Set the "big_phb" flag */
1586 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1588 /* Controller Registers */
1589 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1590 phb->phb_id);
1591 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1592 name, 0x2000);
1594 /* Setup XIVE Source */
1595 if (phb->big_phb) {
1596 nr_irqs = PNV_PHB4_MAX_INTs;
1597 } else {
1598 nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1600 object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
1601 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
1602 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1603 return;
1606 pnv_phb4_update_xsrc(phb);
1608 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1610 pnv_phb4_xscom_realize(phb);
1614 * Address base trigger mode (POWER10)
1616 * Trigger directly the IC ESB page
1618 static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno,
1619 bool pq_checked)
1621 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1622 uint64_t data = 0; /* trigger data : don't care */
1623 hwaddr addr;
1624 MemTxResult result;
1625 int esb_shift;
1627 if (notif_port & PHB_INT_NOTIFY_ADDR_64K) {
1628 esb_shift = 16;
1629 } else {
1630 esb_shift = 12;
1633 /* Compute the address of the IC ESB management page */
1634 addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K);
1635 addr |= (1ull << (esb_shift + 1)) * srcno;
1636 addr |= (1ull << esb_shift);
1639 * When the PQ state bits are checked on the PHB, the associated
1640 * PQ state bits on the IC should be ignored. Use the unconditional
1641 * trigger offset to inject a trigger on the IC. This is always
1642 * the case for LSIs
1644 if (pq_checked) {
1645 addr |= XIVE_ESB_INJECT;
1648 trace_pnv_phb4_xive_notify_ic(addr, data);
1650 address_space_stq_be(&address_space_memory, addr, data,
1651 MEMTXATTRS_UNSPECIFIED, &result);
1652 if (result != MEMTX_OK) {
1653 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr);
1654 return;
1658 static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno,
1659 bool pq_checked)
1661 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1662 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1663 uint64_t data = offset | srcno;
1664 MemTxResult result;
1666 if (pq_checked) {
1667 data |= XIVE_TRIGGER_PQ;
1670 trace_pnv_phb4_xive_notify_ic(notif_port, data);
1672 address_space_stq_be(&address_space_memory, notif_port, data,
1673 MEMTXATTRS_UNSPECIFIED, &result);
1674 if (result != MEMTX_OK) {
1675 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1676 return;
1680 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno,
1681 bool pq_checked)
1683 PnvPHB4 *phb = PNV_PHB4(xf);
1685 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) {
1686 pnv_phb4_xive_notify_abt(phb, srcno, pq_checked);
1687 } else {
1688 pnv_phb4_xive_notify_ic(phb, srcno, pq_checked);
1692 static Property pnv_phb4_properties[] = {
1693 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1694 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1695 DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC,
1696 PnvPhb4PecState *),
1697 DEFINE_PROP_LINK("phb-base", PnvPHB4, phb_base, TYPE_PNV_PHB, PnvPHB *),
1698 DEFINE_PROP_END_OF_LIST(),
1701 static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1703 DeviceClass *dc = DEVICE_CLASS(klass);
1704 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1706 dc->realize = pnv_phb4_realize;
1707 device_class_set_props(dc, pnv_phb4_properties);
1708 dc->user_creatable = false;
1710 xfc->notify = pnv_phb4_xive_notify;
1713 static const TypeInfo pnv_phb4_type_info = {
1714 .name = TYPE_PNV_PHB4,
1715 .parent = TYPE_DEVICE,
1716 .instance_init = pnv_phb4_instance_init,
1717 .instance_size = sizeof(PnvPHB4),
1718 .class_init = pnv_phb4_class_init,
1719 .interfaces = (InterfaceInfo[]) {
1720 { TYPE_XIVE_NOTIFIER },
1721 { },
1725 static const TypeInfo pnv_phb5_type_info = {
1726 .name = TYPE_PNV_PHB5,
1727 .parent = TYPE_PNV_PHB4,
1728 .instance_size = sizeof(PnvPHB4),
1731 static void pnv_phb4_root_bus_get_prop(Object *obj, Visitor *v,
1732 const char *name,
1733 void *opaque, Error **errp)
1735 PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj);
1736 uint64_t value = 0;
1738 if (strcmp(name, "phb-id") == 0) {
1739 value = bus->phb_id;
1740 } else {
1741 value = bus->chip_id;
1744 visit_type_size(v, name, &value, errp);
1747 static void pnv_phb4_root_bus_set_prop(Object *obj, Visitor *v,
1748 const char *name,
1749 void *opaque, Error **errp)
1752 PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj);
1753 uint64_t value;
1755 if (!visit_type_size(v, name, &value, errp)) {
1756 return;
1759 if (strcmp(name, "phb-id") == 0) {
1760 bus->phb_id = value;
1761 } else {
1762 bus->chip_id = value;
1766 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1768 BusClass *k = BUS_CLASS(klass);
1770 object_class_property_add(klass, "phb-id", "int",
1771 pnv_phb4_root_bus_get_prop,
1772 pnv_phb4_root_bus_set_prop,
1773 NULL, NULL);
1775 object_class_property_add(klass, "chip-id", "int",
1776 pnv_phb4_root_bus_get_prop,
1777 pnv_phb4_root_bus_set_prop,
1778 NULL, NULL);
1781 * PHB4 has only a single root complex. Enforce the limit on the
1782 * parent bus
1784 k->max_dev = 1;
1787 static const TypeInfo pnv_phb4_root_bus_info = {
1788 .name = TYPE_PNV_PHB4_ROOT_BUS,
1789 .parent = TYPE_PCIE_BUS,
1790 .instance_size = sizeof(PnvPHB4RootBus),
1791 .class_init = pnv_phb4_root_bus_class_init,
1794 static void pnv_phb4_register_types(void)
1796 type_register_static(&pnv_phb4_root_bus_info);
1797 type_register_static(&pnv_phb4_type_info);
1798 type_register_static(&pnv_phb5_type_info);
1799 type_register_static(&pnv_phb4_iommu_memory_region_info);
1802 type_init(pnv_phb4_register_types);
1804 void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
1806 uint64_t notif_port =
1807 phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K;
1808 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1809 bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE);
1811 monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x %s @%"HWADDR_PRIx"\n",
1812 phb->chip_id, phb->phb_id,
1813 offset, offset + phb->xsrc.nr_irqs - 1,
1814 abt ? "ABT" : "",
1815 notif_port);
1816 xive_source_pic_print_info(&phb->xsrc, 0, mon);