2 * QEMU 16550A UART emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu/osdep.h"
27 #include "qemu/bitops.h"
28 #include "hw/char/serial.h"
30 #include "migration/vmstate.h"
31 #include "chardev/char-serial.h"
32 #include "qapi/error.h"
33 #include "qemu/timer.h"
34 #include "sysemu/reset.h"
35 #include "sysemu/runstate.h"
36 #include "qemu/error-report.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/qdev-properties-system.h"
41 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
43 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
44 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
45 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
46 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
48 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
49 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
51 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
52 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
53 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
54 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
55 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
57 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functioning */
58 #define UART_IIR_FE 0xC0 /* Fifo enabled */
61 * These are the definitions for the Modem Control Register
63 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
64 #define UART_MCR_OUT2 0x08 /* Out2 complement */
65 #define UART_MCR_OUT1 0x04 /* Out1 complement */
66 #define UART_MCR_RTS 0x02 /* RTS complement */
67 #define UART_MCR_DTR 0x01 /* DTR complement */
70 * These are the definitions for the Modem Status Register
72 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
73 #define UART_MSR_RI 0x40 /* Ring Indicator */
74 #define UART_MSR_DSR 0x20 /* Data Set Ready */
75 #define UART_MSR_CTS 0x10 /* Clear to Send */
76 #define UART_MSR_DDCD 0x08 /* Delta DCD */
77 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
78 #define UART_MSR_DDSR 0x02 /* Delta DSR */
79 #define UART_MSR_DCTS 0x01 /* Delta CTS */
80 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
82 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
83 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
84 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
85 #define UART_LSR_FE 0x08 /* Frame error indicator */
86 #define UART_LSR_PE 0x04 /* Parity error indicator */
87 #define UART_LSR_OE 0x02 /* Overrun error indicator */
88 #define UART_LSR_DR 0x01 /* Receiver data ready */
89 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
91 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
93 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
94 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
95 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
96 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
98 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
99 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
100 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
101 #define UART_FCR_FE 0x01 /* FIFO Enable */
103 #define MAX_XMIT_RETRY 4
105 static void serial_receive1(void *opaque
, const uint8_t *buf
, int size
);
106 static void serial_xmit(SerialState
*s
);
108 static inline void recv_fifo_put(SerialState
*s
, uint8_t chr
)
110 /* Receive overruns do not overwrite FIFO contents. */
111 if (!fifo8_is_full(&s
->recv_fifo
)) {
112 fifo8_push(&s
->recv_fifo
, chr
);
114 s
->lsr
|= UART_LSR_OE
;
118 static void serial_update_irq(SerialState
*s
)
120 uint8_t tmp_iir
= UART_IIR_NO_INT
;
122 if ((s
->ier
& UART_IER_RLSI
) && (s
->lsr
& UART_LSR_INT_ANY
)) {
123 tmp_iir
= UART_IIR_RLSI
;
124 } else if ((s
->ier
& UART_IER_RDI
) && s
->timeout_ipending
) {
125 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
126 * this is not in the specification but is observed on existing
128 tmp_iir
= UART_IIR_CTI
;
129 } else if ((s
->ier
& UART_IER_RDI
) && (s
->lsr
& UART_LSR_DR
) &&
130 (!(s
->fcr
& UART_FCR_FE
) ||
131 s
->recv_fifo
.num
>= s
->recv_fifo_itl
)) {
132 tmp_iir
= UART_IIR_RDI
;
133 } else if ((s
->ier
& UART_IER_THRI
) && s
->thr_ipending
) {
134 tmp_iir
= UART_IIR_THRI
;
135 } else if ((s
->ier
& UART_IER_MSI
) && (s
->msr
& UART_MSR_ANY_DELTA
)) {
136 tmp_iir
= UART_IIR_MSI
;
139 s
->iir
= tmp_iir
| (s
->iir
& 0xF0);
141 if (tmp_iir
!= UART_IIR_NO_INT
) {
142 qemu_irq_raise(s
->irq
);
144 qemu_irq_lower(s
->irq
);
148 static void serial_update_parameters(SerialState
*s
)
151 int parity
, data_bits
, stop_bits
, frame_size
;
152 QEMUSerialSetParams ssp
;
172 data_bits
= (s
->lcr
& 0x03) + 5;
173 frame_size
+= data_bits
+ stop_bits
;
174 /* Zero divisor should give about 3500 baud */
175 speed
= (s
->divider
== 0) ? 3500 : (float) s
->baudbase
/ s
->divider
;
178 ssp
.data_bits
= data_bits
;
179 ssp
.stop_bits
= stop_bits
;
180 s
->char_transmit_time
= (NANOSECONDS_PER_SECOND
/ speed
) * frame_size
;
181 qemu_chr_fe_ioctl(&s
->chr
, CHR_IOCTL_SERIAL_SET_PARAMS
, &ssp
);
182 trace_serial_update_parameters(speed
, parity
, data_bits
, stop_bits
);
185 static void serial_update_msl(SerialState
*s
)
190 timer_del(s
->modem_status_poll
);
192 if (qemu_chr_fe_ioctl(&s
->chr
, CHR_IOCTL_SERIAL_GET_TIOCM
,
193 &flags
) == -ENOTSUP
) {
200 s
->msr
= (flags
& CHR_TIOCM_CTS
) ? s
->msr
| UART_MSR_CTS
: s
->msr
& ~UART_MSR_CTS
;
201 s
->msr
= (flags
& CHR_TIOCM_DSR
) ? s
->msr
| UART_MSR_DSR
: s
->msr
& ~UART_MSR_DSR
;
202 s
->msr
= (flags
& CHR_TIOCM_CAR
) ? s
->msr
| UART_MSR_DCD
: s
->msr
& ~UART_MSR_DCD
;
203 s
->msr
= (flags
& CHR_TIOCM_RI
) ? s
->msr
| UART_MSR_RI
: s
->msr
& ~UART_MSR_RI
;
205 if (s
->msr
!= omsr
) {
207 s
->msr
= s
->msr
| ((s
->msr
>> 4) ^ (omsr
>> 4));
208 /* UART_MSR_TERI only if change was from 1 -> 0 */
209 if ((s
->msr
& UART_MSR_TERI
) && !(omsr
& UART_MSR_RI
))
210 s
->msr
&= ~UART_MSR_TERI
;
211 serial_update_irq(s
);
214 /* The real 16550A apparently has a 250ns response latency to line status changes.
215 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
218 timer_mod(s
->modem_status_poll
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
219 NANOSECONDS_PER_SECOND
/ 100);
223 static gboolean
serial_watch_cb(void *do_not_use
, GIOCondition cond
,
226 SerialState
*s
= opaque
;
229 return G_SOURCE_REMOVE
;
232 static void serial_xmit(SerialState
*s
)
235 assert(!(s
->lsr
& UART_LSR_TEMT
));
236 if (s
->tsr_retry
== 0) {
237 assert(!(s
->lsr
& UART_LSR_THRE
));
239 if (s
->fcr
& UART_FCR_FE
) {
240 assert(!fifo8_is_empty(&s
->xmit_fifo
));
241 s
->tsr
= fifo8_pop(&s
->xmit_fifo
);
242 if (!s
->xmit_fifo
.num
) {
243 s
->lsr
|= UART_LSR_THRE
;
247 s
->lsr
|= UART_LSR_THRE
;
249 if ((s
->lsr
& UART_LSR_THRE
) && !s
->thr_ipending
) {
251 serial_update_irq(s
);
255 if (s
->mcr
& UART_MCR_LOOP
) {
256 /* in loopback mode, say that we just received a char */
257 serial_receive1(s
, &s
->tsr
, 1);
259 int rc
= qemu_chr_fe_write(&s
->chr
, &s
->tsr
, 1);
262 (rc
== -1 && errno
== EAGAIN
)) &&
263 s
->tsr_retry
< MAX_XMIT_RETRY
) {
264 assert(s
->watch_tag
== 0);
266 qemu_chr_fe_add_watch(&s
->chr
, G_IO_OUT
| G_IO_HUP
,
268 if (s
->watch_tag
> 0) {
276 /* Transmit another byte if it is already available. It is only
277 possible when FIFO is enabled and not empty. */
278 } while (!(s
->lsr
& UART_LSR_THRE
));
280 s
->last_xmit_ts
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
281 s
->lsr
|= UART_LSR_TEMT
;
285 is_load flag means, that value is set while loading VM state
286 and interrupt should not be invoked */
287 static void serial_write_fcr(SerialState
*s
, uint8_t val
)
289 /* Set fcr - val only has the bits that are supposed to "stick" */
292 if (val
& UART_FCR_FE
) {
293 s
->iir
|= UART_IIR_FE
;
294 /* Set recv_fifo trigger Level */
295 switch (val
& 0xC0) {
297 s
->recv_fifo_itl
= 1;
300 s
->recv_fifo_itl
= 4;
303 s
->recv_fifo_itl
= 8;
306 s
->recv_fifo_itl
= 14;
310 s
->iir
&= ~UART_IIR_FE
;
314 static void serial_update_tiocm(SerialState
*s
)
318 qemu_chr_fe_ioctl(&s
->chr
, CHR_IOCTL_SERIAL_GET_TIOCM
, &flags
);
320 flags
&= ~(CHR_TIOCM_RTS
| CHR_TIOCM_DTR
);
322 if (s
->mcr
& UART_MCR_RTS
) {
323 flags
|= CHR_TIOCM_RTS
;
325 if (s
->mcr
& UART_MCR_DTR
) {
326 flags
|= CHR_TIOCM_DTR
;
329 qemu_chr_fe_ioctl(&s
->chr
, CHR_IOCTL_SERIAL_SET_TIOCM
, &flags
);
332 static void serial_ioport_write(void *opaque
, hwaddr addr
, uint64_t val
,
335 SerialState
*s
= opaque
;
337 assert(size
== 1 && addr
< 8);
338 trace_serial_write(addr
, val
);
342 if (s
->lcr
& UART_LCR_DLAB
) {
343 s
->divider
= deposit32(s
->divider
, 8 * addr
, 8, val
);
344 serial_update_parameters(s
);
346 s
->thr
= (uint8_t) val
;
347 if(s
->fcr
& UART_FCR_FE
) {
348 /* xmit overruns overwrite data, so make space if needed */
349 if (fifo8_is_full(&s
->xmit_fifo
)) {
350 fifo8_pop(&s
->xmit_fifo
);
352 fifo8_push(&s
->xmit_fifo
, s
->thr
);
355 s
->lsr
&= ~UART_LSR_THRE
;
356 s
->lsr
&= ~UART_LSR_TEMT
;
357 serial_update_irq(s
);
358 if (s
->tsr_retry
== 0) {
364 if (s
->lcr
& UART_LCR_DLAB
) {
365 s
->divider
= deposit32(s
->divider
, 8 * addr
, 8, val
);
366 serial_update_parameters(s
);
368 uint8_t changed
= (s
->ier
^ val
) & 0x0f;
370 /* If the backend device is a real serial port, turn polling of the modem
371 * status lines on physical port on or off depending on UART_IER_MSI state.
373 if ((changed
& UART_IER_MSI
) && s
->poll_msl
>= 0) {
374 if (s
->ier
& UART_IER_MSI
) {
376 serial_update_msl(s
);
378 timer_del(s
->modem_status_poll
);
383 /* Turning on the THRE interrupt on IER can trigger the interrupt
384 * if LSR.THRE=1, even if it had been masked before by reading IIR.
385 * This is not in the datasheet, but Windows relies on it. It is
386 * unclear if THRE has to be resampled every time THRI becomes
387 * 1, or only on the rising edge. Bochs does the latter, and Windows
388 * always toggles IER to all zeroes and back to all ones, so do the
391 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
392 * so that the thr_ipending subsection is not migrated.
394 if (changed
& UART_IER_THRI
) {
395 if ((s
->ier
& UART_IER_THRI
) && (s
->lsr
& UART_LSR_THRE
)) {
403 serial_update_irq(s
);
408 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
409 if ((val
^ s
->fcr
) & UART_FCR_FE
) {
410 val
|= UART_FCR_XFR
| UART_FCR_RFR
;
415 if (val
& UART_FCR_RFR
) {
416 s
->lsr
&= ~(UART_LSR_DR
| UART_LSR_BI
);
417 timer_del(s
->fifo_timeout_timer
);
418 s
->timeout_ipending
= 0;
419 fifo8_reset(&s
->recv_fifo
);
422 if (val
& UART_FCR_XFR
) {
423 s
->lsr
|= UART_LSR_THRE
;
425 fifo8_reset(&s
->xmit_fifo
);
428 serial_write_fcr(s
, val
& 0xC9);
429 serial_update_irq(s
);
435 serial_update_parameters(s
);
436 break_enable
= (val
>> 6) & 1;
437 if (break_enable
!= s
->last_break_enable
) {
438 s
->last_break_enable
= break_enable
;
439 qemu_chr_fe_ioctl(&s
->chr
, CHR_IOCTL_SERIAL_SET_BREAK
,
446 int old_mcr
= s
->mcr
;
448 if (val
& UART_MCR_LOOP
)
451 if (s
->poll_msl
>= 0 && old_mcr
!= s
->mcr
) {
452 serial_update_tiocm(s
);
453 /* Update the modem status after a one-character-send wait-time, since there may be a response
454 from the device/computer at the other end of the serial line */
455 timer_mod(s
->modem_status_poll
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + s
->char_transmit_time
);
469 static uint64_t serial_ioport_read(void *opaque
, hwaddr addr
, unsigned size
)
471 SerialState
*s
= opaque
;
474 assert(size
== 1 && addr
< 8);
478 if (s
->lcr
& UART_LCR_DLAB
) {
479 ret
= extract16(s
->divider
, 8 * addr
, 8);
481 if(s
->fcr
& UART_FCR_FE
) {
482 ret
= fifo8_is_empty(&s
->recv_fifo
) ?
483 0 : fifo8_pop(&s
->recv_fifo
);
484 if (s
->recv_fifo
.num
== 0) {
485 s
->lsr
&= ~(UART_LSR_DR
| UART_LSR_BI
);
487 timer_mod(s
->fifo_timeout_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + s
->char_transmit_time
* 4);
489 s
->timeout_ipending
= 0;
492 s
->lsr
&= ~(UART_LSR_DR
| UART_LSR_BI
);
494 serial_update_irq(s
);
495 if (!(s
->mcr
& UART_MCR_LOOP
)) {
496 /* in loopback mode, don't receive any data */
497 qemu_chr_fe_accept_input(&s
->chr
);
502 if (s
->lcr
& UART_LCR_DLAB
) {
503 ret
= extract16(s
->divider
, 8 * addr
, 8);
510 if ((ret
& UART_IIR_ID
) == UART_IIR_THRI
) {
512 serial_update_irq(s
);
523 /* Clear break and overrun interrupts */
524 if (s
->lsr
& (UART_LSR_BI
|UART_LSR_OE
)) {
525 s
->lsr
&= ~(UART_LSR_BI
|UART_LSR_OE
);
526 serial_update_irq(s
);
530 if (s
->mcr
& UART_MCR_LOOP
) {
531 /* in loopback, the modem output pins are connected to the
533 ret
= (s
->mcr
& 0x0c) << 4;
534 ret
|= (s
->mcr
& 0x02) << 3;
535 ret
|= (s
->mcr
& 0x01) << 5;
537 if (s
->poll_msl
>= 0)
538 serial_update_msl(s
);
540 /* Clear delta bits & msr int after read, if they were set */
541 if (s
->msr
& UART_MSR_ANY_DELTA
) {
543 serial_update_irq(s
);
551 trace_serial_read(addr
, ret
);
555 static int serial_can_receive(SerialState
*s
)
557 if(s
->fcr
& UART_FCR_FE
) {
558 if (s
->recv_fifo
.num
< UART_FIFO_LENGTH
) {
560 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
561 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
562 * effect will be to almost always fill the fifo completely before
563 * the guest has a chance to respond, effectively overriding the ITL
564 * that the guest has set.
566 return (s
->recv_fifo
.num
<= s
->recv_fifo_itl
) ?
567 s
->recv_fifo_itl
- s
->recv_fifo
.num
: 1;
572 return !(s
->lsr
& UART_LSR_DR
);
576 static void serial_receive_break(SerialState
*s
)
579 /* When the LSR_DR is set a null byte is pushed into the fifo */
580 recv_fifo_put(s
, '\0');
581 s
->lsr
|= UART_LSR_BI
| UART_LSR_DR
;
582 serial_update_irq(s
);
585 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
586 static void fifo_timeout_int (void *opaque
) {
587 SerialState
*s
= opaque
;
588 if (s
->recv_fifo
.num
) {
589 s
->timeout_ipending
= 1;
590 serial_update_irq(s
);
594 static int serial_can_receive1(void *opaque
)
596 SerialState
*s
= opaque
;
597 return serial_can_receive(s
);
600 static void serial_receive1(void *opaque
, const uint8_t *buf
, int size
)
602 SerialState
*s
= opaque
;
605 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER
, NULL
);
607 if(s
->fcr
& UART_FCR_FE
) {
609 for (i
= 0; i
< size
; i
++) {
610 recv_fifo_put(s
, buf
[i
]);
612 s
->lsr
|= UART_LSR_DR
;
613 /* call the timeout receive callback in 4 char transmit time */
614 timer_mod(s
->fifo_timeout_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + s
->char_transmit_time
* 4);
616 if (s
->lsr
& UART_LSR_DR
)
617 s
->lsr
|= UART_LSR_OE
;
619 s
->lsr
|= UART_LSR_DR
;
621 serial_update_irq(s
);
624 static void serial_event(void *opaque
, QEMUChrEvent event
)
626 SerialState
*s
= opaque
;
627 if (event
== CHR_EVENT_BREAK
)
628 serial_receive_break(s
);
631 static int serial_pre_save(void *opaque
)
633 SerialState
*s
= opaque
;
634 s
->fcr_vmstate
= s
->fcr
;
639 static int serial_pre_load(void *opaque
)
641 SerialState
*s
= opaque
;
642 s
->thr_ipending
= -1;
647 static int serial_post_load(void *opaque
, int version_id
)
649 SerialState
*s
= opaque
;
651 if (version_id
< 3) {
654 if (s
->thr_ipending
== -1) {
655 s
->thr_ipending
= ((s
->iir
& UART_IIR_ID
) == UART_IIR_THRI
);
658 if (s
->tsr_retry
> 0) {
659 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
660 if (s
->lsr
& UART_LSR_TEMT
) {
661 error_report("inconsistent state in serial device "
662 "(tsr empty, tsr_retry=%d", s
->tsr_retry
);
666 if (s
->tsr_retry
> MAX_XMIT_RETRY
) {
667 s
->tsr_retry
= MAX_XMIT_RETRY
;
670 assert(s
->watch_tag
== 0);
671 s
->watch_tag
= qemu_chr_fe_add_watch(&s
->chr
, G_IO_OUT
| G_IO_HUP
,
674 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
675 if (!(s
->lsr
& UART_LSR_TEMT
)) {
676 error_report("inconsistent state in serial device "
677 "(tsr not empty, tsr_retry=0");
682 s
->last_break_enable
= (s
->lcr
>> 6) & 1;
683 /* Initialize fcr via setter to perform essential side-effects */
684 serial_write_fcr(s
, s
->fcr_vmstate
);
685 serial_update_parameters(s
);
689 static bool serial_thr_ipending_needed(void *opaque
)
691 SerialState
*s
= opaque
;
693 if (s
->ier
& UART_IER_THRI
) {
694 bool expected_value
= ((s
->iir
& UART_IIR_ID
) == UART_IIR_THRI
);
695 return s
->thr_ipending
!= expected_value
;
697 /* LSR.THRE will be sampled again when the interrupt is
698 * enabled. thr_ipending is not used in this case, do
705 static const VMStateDescription vmstate_serial_thr_ipending
= {
706 .name
= "serial/thr_ipending",
708 .minimum_version_id
= 1,
709 .needed
= serial_thr_ipending_needed
,
710 .fields
= (const VMStateField
[]) {
711 VMSTATE_INT32(thr_ipending
, SerialState
),
712 VMSTATE_END_OF_LIST()
716 static bool serial_tsr_needed(void *opaque
)
718 SerialState
*s
= (SerialState
*)opaque
;
719 return s
->tsr_retry
!= 0;
722 static const VMStateDescription vmstate_serial_tsr
= {
723 .name
= "serial/tsr",
725 .minimum_version_id
= 1,
726 .needed
= serial_tsr_needed
,
727 .fields
= (const VMStateField
[]) {
728 VMSTATE_UINT32(tsr_retry
, SerialState
),
729 VMSTATE_UINT8(thr
, SerialState
),
730 VMSTATE_UINT8(tsr
, SerialState
),
731 VMSTATE_END_OF_LIST()
735 static bool serial_recv_fifo_needed(void *opaque
)
737 SerialState
*s
= (SerialState
*)opaque
;
738 return !fifo8_is_empty(&s
->recv_fifo
);
742 static const VMStateDescription vmstate_serial_recv_fifo
= {
743 .name
= "serial/recv_fifo",
745 .minimum_version_id
= 1,
746 .needed
= serial_recv_fifo_needed
,
747 .fields
= (const VMStateField
[]) {
748 VMSTATE_STRUCT(recv_fifo
, SerialState
, 1, vmstate_fifo8
, Fifo8
),
749 VMSTATE_END_OF_LIST()
753 static bool serial_xmit_fifo_needed(void *opaque
)
755 SerialState
*s
= (SerialState
*)opaque
;
756 return !fifo8_is_empty(&s
->xmit_fifo
);
759 static const VMStateDescription vmstate_serial_xmit_fifo
= {
760 .name
= "serial/xmit_fifo",
762 .minimum_version_id
= 1,
763 .needed
= serial_xmit_fifo_needed
,
764 .fields
= (const VMStateField
[]) {
765 VMSTATE_STRUCT(xmit_fifo
, SerialState
, 1, vmstate_fifo8
, Fifo8
),
766 VMSTATE_END_OF_LIST()
770 static bool serial_fifo_timeout_timer_needed(void *opaque
)
772 SerialState
*s
= (SerialState
*)opaque
;
773 return timer_pending(s
->fifo_timeout_timer
);
776 static const VMStateDescription vmstate_serial_fifo_timeout_timer
= {
777 .name
= "serial/fifo_timeout_timer",
779 .minimum_version_id
= 1,
780 .needed
= serial_fifo_timeout_timer_needed
,
781 .fields
= (const VMStateField
[]) {
782 VMSTATE_TIMER_PTR(fifo_timeout_timer
, SerialState
),
783 VMSTATE_END_OF_LIST()
787 static bool serial_timeout_ipending_needed(void *opaque
)
789 SerialState
*s
= (SerialState
*)opaque
;
790 return s
->timeout_ipending
!= 0;
793 static const VMStateDescription vmstate_serial_timeout_ipending
= {
794 .name
= "serial/timeout_ipending",
796 .minimum_version_id
= 1,
797 .needed
= serial_timeout_ipending_needed
,
798 .fields
= (const VMStateField
[]) {
799 VMSTATE_INT32(timeout_ipending
, SerialState
),
800 VMSTATE_END_OF_LIST()
804 static bool serial_poll_needed(void *opaque
)
806 SerialState
*s
= (SerialState
*)opaque
;
807 return s
->poll_msl
>= 0;
810 static const VMStateDescription vmstate_serial_poll
= {
811 .name
= "serial/poll",
813 .needed
= serial_poll_needed
,
814 .minimum_version_id
= 1,
815 .fields
= (const VMStateField
[]) {
816 VMSTATE_INT32(poll_msl
, SerialState
),
817 VMSTATE_TIMER_PTR(modem_status_poll
, SerialState
),
818 VMSTATE_END_OF_LIST()
822 const VMStateDescription vmstate_serial
= {
825 .minimum_version_id
= 2,
826 .pre_save
= serial_pre_save
,
827 .pre_load
= serial_pre_load
,
828 .post_load
= serial_post_load
,
829 .fields
= (const VMStateField
[]) {
830 VMSTATE_UINT16_V(divider
, SerialState
, 2),
831 VMSTATE_UINT8(rbr
, SerialState
),
832 VMSTATE_UINT8(ier
, SerialState
),
833 VMSTATE_UINT8(iir
, SerialState
),
834 VMSTATE_UINT8(lcr
, SerialState
),
835 VMSTATE_UINT8(mcr
, SerialState
),
836 VMSTATE_UINT8(lsr
, SerialState
),
837 VMSTATE_UINT8(msr
, SerialState
),
838 VMSTATE_UINT8(scr
, SerialState
),
839 VMSTATE_UINT8_V(fcr_vmstate
, SerialState
, 3),
840 VMSTATE_END_OF_LIST()
842 .subsections
= (const VMStateDescription
* const []) {
843 &vmstate_serial_thr_ipending
,
845 &vmstate_serial_recv_fifo
,
846 &vmstate_serial_xmit_fifo
,
847 &vmstate_serial_fifo_timeout_timer
,
848 &vmstate_serial_timeout_ipending
,
849 &vmstate_serial_poll
,
854 static void serial_reset(void *opaque
)
856 SerialState
*s
= opaque
;
858 if (s
->watch_tag
> 0) {
859 g_source_remove(s
->watch_tag
);
865 s
->iir
= UART_IIR_NO_INT
;
867 s
->lsr
= UART_LSR_TEMT
| UART_LSR_THRE
;
868 s
->msr
= UART_MSR_DCD
| UART_MSR_DSR
| UART_MSR_CTS
;
869 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
871 s
->mcr
= UART_MCR_OUT2
;
874 s
->char_transmit_time
= (NANOSECONDS_PER_SECOND
/ 9600) * 10;
877 s
->timeout_ipending
= 0;
878 timer_del(s
->fifo_timeout_timer
);
879 timer_del(s
->modem_status_poll
);
881 fifo8_reset(&s
->recv_fifo
);
882 fifo8_reset(&s
->xmit_fifo
);
884 s
->last_xmit_ts
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
887 s
->last_break_enable
= 0;
888 qemu_irq_lower(s
->irq
);
890 serial_update_msl(s
);
891 s
->msr
&= ~UART_MSR_ANY_DELTA
;
894 static int serial_be_change(void *opaque
)
896 SerialState
*s
= opaque
;
898 qemu_chr_fe_set_handlers(&s
->chr
, serial_can_receive1
, serial_receive1
,
899 serial_event
, serial_be_change
, s
, NULL
, true);
901 serial_update_parameters(s
);
903 qemu_chr_fe_ioctl(&s
->chr
, CHR_IOCTL_SERIAL_SET_BREAK
,
904 &s
->last_break_enable
);
906 s
->poll_msl
= (s
->ier
& UART_IER_MSI
) ? 1 : 0;
907 serial_update_msl(s
);
909 if (s
->poll_msl
>= 0 && !(s
->mcr
& UART_MCR_LOOP
)) {
910 serial_update_tiocm(s
);
913 if (s
->watch_tag
> 0) {
914 g_source_remove(s
->watch_tag
);
915 s
->watch_tag
= qemu_chr_fe_add_watch(&s
->chr
, G_IO_OUT
| G_IO_HUP
,
922 static void serial_realize(DeviceState
*dev
, Error
**errp
)
924 SerialState
*s
= SERIAL(dev
);
926 s
->modem_status_poll
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, (QEMUTimerCB
*) serial_update_msl
, s
);
928 s
->fifo_timeout_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, (QEMUTimerCB
*) fifo_timeout_int
, s
);
929 qemu_register_reset(serial_reset
, s
);
931 qemu_chr_fe_set_handlers(&s
->chr
, serial_can_receive1
, serial_receive1
,
932 serial_event
, serial_be_change
, s
, NULL
, true);
933 fifo8_create(&s
->recv_fifo
, UART_FIFO_LENGTH
);
934 fifo8_create(&s
->xmit_fifo
, UART_FIFO_LENGTH
);
938 static void serial_unrealize(DeviceState
*dev
)
940 SerialState
*s
= SERIAL(dev
);
942 qemu_chr_fe_deinit(&s
->chr
, false);
944 timer_free(s
->modem_status_poll
);
946 timer_free(s
->fifo_timeout_timer
);
948 fifo8_destroy(&s
->recv_fifo
);
949 fifo8_destroy(&s
->xmit_fifo
);
951 qemu_unregister_reset(serial_reset
, s
);
954 /* Change the main reference oscillator frequency. */
955 void serial_set_frequency(SerialState
*s
, uint32_t frequency
)
957 s
->baudbase
= frequency
;
958 serial_update_parameters(s
);
961 const MemoryRegionOps serial_io_ops
= {
962 .read
= serial_ioport_read
,
963 .write
= serial_ioport_write
,
968 .min_access_size
= 1,
969 .max_access_size
= 1,
971 .endianness
= DEVICE_LITTLE_ENDIAN
,
974 static Property serial_properties
[] = {
975 DEFINE_PROP_CHR("chardev", SerialState
, chr
),
976 DEFINE_PROP_UINT32("baudbase", SerialState
, baudbase
, 115200),
977 DEFINE_PROP_BOOL("wakeup", SerialState
, wakeup
, false),
978 DEFINE_PROP_END_OF_LIST(),
981 static void serial_class_init(ObjectClass
*klass
, void* data
)
983 DeviceClass
*dc
= DEVICE_CLASS(klass
);
985 /* internal device for serialio/serialmm, not user-creatable */
986 dc
->user_creatable
= false;
987 dc
->realize
= serial_realize
;
988 dc
->unrealize
= serial_unrealize
;
989 device_class_set_props(dc
, serial_properties
);
992 static const TypeInfo serial_info
= {
994 .parent
= TYPE_DEVICE
,
995 .instance_size
= sizeof(SerialState
),
996 .class_init
= serial_class_init
,
999 /* Memory mapped interface */
1000 static uint64_t serial_mm_read(void *opaque
, hwaddr addr
,
1003 SerialMM
*s
= SERIAL_MM(opaque
);
1004 return serial_ioport_read(&s
->serial
, addr
>> s
->regshift
, 1);
1007 static void serial_mm_write(void *opaque
, hwaddr addr
,
1008 uint64_t value
, unsigned size
)
1010 SerialMM
*s
= SERIAL_MM(opaque
);
1012 serial_ioport_write(&s
->serial
, addr
>> s
->regshift
, value
, 1);
1015 static const MemoryRegionOps serial_mm_ops
[3] = {
1016 [DEVICE_NATIVE_ENDIAN
] = {
1017 .read
= serial_mm_read
,
1018 .write
= serial_mm_write
,
1019 .endianness
= DEVICE_NATIVE_ENDIAN
,
1020 .valid
.max_access_size
= 8,
1021 .impl
.max_access_size
= 8,
1023 [DEVICE_LITTLE_ENDIAN
] = {
1024 .read
= serial_mm_read
,
1025 .write
= serial_mm_write
,
1026 .endianness
= DEVICE_LITTLE_ENDIAN
,
1027 .valid
.max_access_size
= 8,
1028 .impl
.max_access_size
= 8,
1030 [DEVICE_BIG_ENDIAN
] = {
1031 .read
= serial_mm_read
,
1032 .write
= serial_mm_write
,
1033 .endianness
= DEVICE_BIG_ENDIAN
,
1034 .valid
.max_access_size
= 8,
1035 .impl
.max_access_size
= 8,
1039 static void serial_mm_realize(DeviceState
*dev
, Error
**errp
)
1041 SerialMM
*smm
= SERIAL_MM(dev
);
1042 SerialState
*s
= &smm
->serial
;
1044 if (!qdev_realize(DEVICE(s
), NULL
, errp
)) {
1048 memory_region_init_io(&s
->io
, OBJECT(dev
),
1049 &serial_mm_ops
[smm
->endianness
], smm
, "serial",
1050 8 << smm
->regshift
);
1051 sysbus_init_mmio(SYS_BUS_DEVICE(smm
), &s
->io
);
1052 sysbus_init_irq(SYS_BUS_DEVICE(smm
), &smm
->serial
.irq
);
1055 static const VMStateDescription vmstate_serial_mm
= {
1058 .minimum_version_id
= 2,
1059 .fields
= (const VMStateField
[]) {
1060 VMSTATE_STRUCT(serial
, SerialMM
, 0, vmstate_serial
, SerialState
),
1061 VMSTATE_END_OF_LIST()
1065 SerialMM
*serial_mm_init(MemoryRegion
*address_space
,
1066 hwaddr base
, int regshift
,
1067 qemu_irq irq
, int baudbase
,
1068 Chardev
*chr
, enum device_endian end
)
1070 SerialMM
*smm
= SERIAL_MM(qdev_new(TYPE_SERIAL_MM
));
1073 qdev_prop_set_uint8(DEVICE(smm
), "regshift", regshift
);
1074 qdev_prop_set_uint32(DEVICE(smm
), "baudbase", baudbase
);
1075 qdev_prop_set_chr(DEVICE(smm
), "chardev", chr
);
1076 qdev_set_legacy_instance_id(DEVICE(smm
), base
, 2);
1077 qdev_prop_set_uint8(DEVICE(smm
), "endianness", end
);
1078 sysbus_realize_and_unref(SYS_BUS_DEVICE(smm
), &error_fatal
);
1080 sysbus_connect_irq(SYS_BUS_DEVICE(smm
), 0, irq
);
1081 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(smm
), 0);
1082 memory_region_add_subregion(address_space
, base
, mr
);
1087 static void serial_mm_instance_init(Object
*o
)
1089 SerialMM
*smm
= SERIAL_MM(o
);
1091 object_initialize_child(o
, "serial", &smm
->serial
, TYPE_SERIAL
);
1093 qdev_alias_all_properties(DEVICE(&smm
->serial
), o
);
1096 static Property serial_mm_properties
[] = {
1098 * Set the spacing between adjacent memory-mapped UART registers.
1099 * Each register will be at (1 << regshift) bytes after the
1102 DEFINE_PROP_UINT8("regshift", SerialMM
, regshift
, 0),
1103 DEFINE_PROP_UINT8("endianness", SerialMM
, endianness
, DEVICE_NATIVE_ENDIAN
),
1104 DEFINE_PROP_END_OF_LIST(),
1107 static void serial_mm_class_init(ObjectClass
*oc
, void *data
)
1109 DeviceClass
*dc
= DEVICE_CLASS(oc
);
1111 device_class_set_props(dc
, serial_mm_properties
);
1112 dc
->realize
= serial_mm_realize
;
1113 dc
->vmsd
= &vmstate_serial_mm
;
1116 static const TypeInfo serial_mm_info
= {
1117 .name
= TYPE_SERIAL_MM
,
1118 .parent
= TYPE_SYS_BUS_DEVICE
,
1119 .class_init
= serial_mm_class_init
,
1120 .instance_init
= serial_mm_instance_init
,
1121 .instance_size
= sizeof(SerialMM
),
1124 static void serial_register_types(void)
1126 type_register_static(&serial_info
);
1127 type_register_static(&serial_mm_info
);
1130 type_init(serial_register_types
)