qapi: Call QAPIDoc.check() always
[qemu/kevin.git] / hw / arm / virt.c
blob0af19436973f3463598b730e24cca530cf31d315
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/intc/arm_gicv3_its_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/qmp/qlist.h"
73 #include "standard-headers/linux/input.h"
74 #include "hw/arm/smmuv3.h"
75 #include "hw/acpi/acpi.h"
76 #include "target/arm/cpu-qom.h"
77 #include "target/arm/internals.h"
78 #include "target/arm/multiprocessing.h"
79 #include "target/arm/gtimer.h"
80 #include "hw/mem/pc-dimm.h"
81 #include "hw/mem/nvdimm.h"
82 #include "hw/acpi/generic_event_device.h"
83 #include "hw/virtio/virtio-md-pci.h"
84 #include "hw/virtio/virtio-iommu.h"
85 #include "hw/char/pl011.h"
86 #include "qemu/guest-random.h"
88 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
89 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
90 void *data) \
91 { \
92 MachineClass *mc = MACHINE_CLASS(oc); \
93 virt_machine_##major##_##minor##_options(mc); \
94 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
95 if (latest) { \
96 mc->alias = "virt"; \
97 } \
98 } \
99 static const TypeInfo machvirt_##major##_##minor##_info = { \
100 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
101 .parent = TYPE_VIRT_MACHINE, \
102 .class_init = virt_##major##_##minor##_class_init, \
103 }; \
104 static void machvirt_machine_##major##_##minor##_init(void) \
106 type_register_static(&machvirt_##major##_##minor##_info); \
108 type_init(machvirt_machine_##major##_##minor##_init);
110 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
111 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
112 #define DEFINE_VIRT_MACHINE(major, minor) \
113 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
116 /* Number of external interrupt lines to configure the GIC with */
117 #define NUM_IRQS 256
119 #define PLATFORM_BUS_NUM_IRQS 64
121 /* Legacy RAM limit in GB (< version 4.0) */
122 #define LEGACY_RAMLIMIT_GB 255
123 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
125 /* Addresses and sizes of our components.
126 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
127 * 128MB..256MB is used for miscellaneous device I/O.
128 * 256MB..1GB is reserved for possible future PCI support (ie where the
129 * PCI memory window will go if we add a PCI host controller).
130 * 1GB and up is RAM (which may happily spill over into the
131 * high memory region beyond 4GB).
132 * This represents a compromise between how much RAM can be given to
133 * a 32 bit VM and leaving space for expansion and in particular for PCI.
134 * Note that devices should generally be placed at multiples of 0x10000,
135 * to accommodate guests using 64K pages.
137 static const MemMapEntry base_memmap[] = {
138 /* Space up to 0x8000000 is reserved for a boot ROM */
139 [VIRT_FLASH] = { 0, 0x08000000 },
140 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
141 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
142 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
143 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
144 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
145 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
146 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
147 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
148 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
149 /* This redistributor space allows up to 2*64kB*123 CPUs */
150 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
151 [VIRT_UART] = { 0x09000000, 0x00001000 },
152 [VIRT_RTC] = { 0x09010000, 0x00001000 },
153 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
154 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
155 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
156 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
157 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
158 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
159 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
160 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
161 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
162 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
163 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
164 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
165 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
166 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
167 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
168 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
169 /* Actual RAM size depends on initial RAM and device memory settings */
170 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
174 * Highmem IO Regions: This memory map is floating, located after the RAM.
175 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
176 * top of the RAM, so that its base get the same alignment as the size,
177 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
178 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
179 * Note the extended_memmap is sized so that it eventually also includes the
180 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
181 * index of base_memmap).
183 * The memory map for these Highmem IO Regions can be in legacy or compact
184 * layout, depending on 'compact-highmem' property. With legacy layout, the
185 * PA space for one specific region is always reserved, even if the region
186 * has been disabled or doesn't fit into the PA space. However, the PA space
187 * for the region won't be reserved in these circumstances with compact layout.
189 static MemMapEntry extended_memmap[] = {
190 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
191 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
192 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
193 /* Second PCIe window */
194 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
197 static const int a15irqmap[] = {
198 [VIRT_UART] = 1,
199 [VIRT_RTC] = 2,
200 [VIRT_PCIE] = 3, /* ... to 6 */
201 [VIRT_GPIO] = 7,
202 [VIRT_SECURE_UART] = 8,
203 [VIRT_ACPI_GED] = 9,
204 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
205 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
206 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
207 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
210 static void create_randomness(MachineState *ms, const char *node)
212 struct {
213 uint64_t kaslr;
214 uint8_t rng[32];
215 } seed;
217 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
218 return;
220 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
221 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
225 * The CPU object always exposes the NS EL2 virt timer IRQ line,
226 * but we don't want to advertise it to the guest in the dtb or ACPI
227 * table unless it's really going to do something.
229 static bool ns_el2_virt_timer_present(void)
231 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
232 CPUARMState *env = &cpu->env;
234 return arm_feature(env, ARM_FEATURE_AARCH64) &&
235 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
238 static void create_fdt(VirtMachineState *vms)
240 MachineState *ms = MACHINE(vms);
241 int nb_numa_nodes = ms->numa_state->num_nodes;
242 void *fdt = create_device_tree(&vms->fdt_size);
244 if (!fdt) {
245 error_report("create_device_tree() failed");
246 exit(1);
249 ms->fdt = fdt;
251 /* Header */
252 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
253 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
254 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
255 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
257 /* /chosen must exist for load_dtb to fill in necessary properties later */
258 qemu_fdt_add_subnode(fdt, "/chosen");
259 if (vms->dtb_randomness) {
260 create_randomness(ms, "/chosen");
263 if (vms->secure) {
264 qemu_fdt_add_subnode(fdt, "/secure-chosen");
265 if (vms->dtb_randomness) {
266 create_randomness(ms, "/secure-chosen");
270 /* Clock node, for the benefit of the UART. The kernel device tree
271 * binding documentation claims the PL011 node clock properties are
272 * optional but in practice if you omit them the kernel refuses to
273 * probe for the device.
275 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
276 qemu_fdt_add_subnode(fdt, "/apb-pclk");
277 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
278 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
279 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
280 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
281 "clk24mhz");
282 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
284 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
285 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
286 uint32_t *matrix = g_malloc0(size);
287 int idx, i, j;
289 for (i = 0; i < nb_numa_nodes; i++) {
290 for (j = 0; j < nb_numa_nodes; j++) {
291 idx = (i * nb_numa_nodes + j) * 3;
292 matrix[idx + 0] = cpu_to_be32(i);
293 matrix[idx + 1] = cpu_to_be32(j);
294 matrix[idx + 2] =
295 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
299 qemu_fdt_add_subnode(fdt, "/distance-map");
300 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
301 "numa-distance-map-v1");
302 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
303 matrix, size);
304 g_free(matrix);
308 static void fdt_add_timer_nodes(const VirtMachineState *vms)
310 /* On real hardware these interrupts are level-triggered.
311 * On KVM they were edge-triggered before host kernel version 4.4,
312 * and level-triggered afterwards.
313 * On emulated QEMU they are level-triggered.
315 * Getting the DTB info about them wrong is awkward for some
316 * guest kernels:
317 * pre-4.8 ignore the DT and leave the interrupt configured
318 * with whatever the GIC reset value (or the bootloader) left it at
319 * 4.8 before rc6 honour the incorrect data by programming it back
320 * into the GIC, causing problems
321 * 4.8rc6 and later ignore the DT and always write "level triggered"
322 * into the GIC
324 * For backwards-compatibility, virt-2.8 and earlier will continue
325 * to say these are edge-triggered, but later machines will report
326 * the correct information.
328 ARMCPU *armcpu;
329 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
330 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
331 MachineState *ms = MACHINE(vms);
333 if (vmc->claim_edge_triggered_timers) {
334 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
337 if (vms->gic_version == VIRT_GIC_VERSION_2) {
338 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
339 GIC_FDT_IRQ_PPI_CPU_WIDTH,
340 (1 << MACHINE(vms)->smp.cpus) - 1);
343 qemu_fdt_add_subnode(ms->fdt, "/timer");
345 armcpu = ARM_CPU(qemu_get_cpu(0));
346 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
347 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
348 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
349 compat, sizeof(compat));
350 } else {
351 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
352 "arm,armv7-timer");
354 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
355 if (vms->ns_el2_virt_timer_irq) {
356 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
357 GIC_FDT_IRQ_TYPE_PPI,
358 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
359 GIC_FDT_IRQ_TYPE_PPI,
360 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
361 GIC_FDT_IRQ_TYPE_PPI,
362 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
363 GIC_FDT_IRQ_TYPE_PPI,
364 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
365 GIC_FDT_IRQ_TYPE_PPI,
366 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
367 } else {
368 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
369 GIC_FDT_IRQ_TYPE_PPI,
370 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
371 GIC_FDT_IRQ_TYPE_PPI,
372 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
373 GIC_FDT_IRQ_TYPE_PPI,
374 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
375 GIC_FDT_IRQ_TYPE_PPI,
376 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
380 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
382 int cpu;
383 int addr_cells = 1;
384 const MachineState *ms = MACHINE(vms);
385 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
386 int smp_cpus = ms->smp.cpus;
389 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
390 * On ARM v8 64-bit systems value should be set to 2,
391 * that corresponds to the MPIDR_EL1 register size.
392 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
393 * in the system, #address-cells can be set to 1, since
394 * MPIDR_EL1[63:32] bits are not used for CPUs
395 * identification.
397 * Here we actually don't know whether our system is 32- or 64-bit one.
398 * The simplest way to go is to examine affinity IDs of all our CPUs. If
399 * at least one of them has Aff3 populated, we set #address-cells to 2.
401 for (cpu = 0; cpu < smp_cpus; cpu++) {
402 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
404 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
405 addr_cells = 2;
406 break;
410 qemu_fdt_add_subnode(ms->fdt, "/cpus");
411 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
412 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
414 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
415 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
416 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
417 CPUState *cs = CPU(armcpu);
419 qemu_fdt_add_subnode(ms->fdt, nodename);
420 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
421 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
422 armcpu->dtb_compatible);
424 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
425 qemu_fdt_setprop_string(ms->fdt, nodename,
426 "enable-method", "psci");
429 if (addr_cells == 2) {
430 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
431 arm_cpu_mp_affinity(armcpu));
432 } else {
433 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
434 arm_cpu_mp_affinity(armcpu));
437 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
438 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
439 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
442 if (!vmc->no_cpu_topology) {
443 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
444 qemu_fdt_alloc_phandle(ms->fdt));
447 g_free(nodename);
450 if (!vmc->no_cpu_topology) {
452 * Add vCPU topology description through fdt node cpu-map.
454 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
455 * In a SMP system, the hierarchy of CPUs can be defined through
456 * four entities that are used to describe the layout of CPUs in
457 * the system: socket/cluster/core/thread.
459 * A socket node represents the boundary of system physical package
460 * and its child nodes must be one or more cluster nodes. A system
461 * can contain several layers of clustering within a single physical
462 * package and cluster nodes can be contained in parent cluster nodes.
464 * Note: currently we only support one layer of clustering within
465 * each physical package.
467 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
469 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
470 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
471 char *map_path;
473 if (ms->smp.threads > 1) {
474 map_path = g_strdup_printf(
475 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
476 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
477 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
478 (cpu / ms->smp.threads) % ms->smp.cores,
479 cpu % ms->smp.threads);
480 } else {
481 map_path = g_strdup_printf(
482 "/cpus/cpu-map/socket%d/cluster%d/core%d",
483 cpu / (ms->smp.clusters * ms->smp.cores),
484 (cpu / ms->smp.cores) % ms->smp.clusters,
485 cpu % ms->smp.cores);
487 qemu_fdt_add_path(ms->fdt, map_path);
488 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
490 g_free(map_path);
491 g_free(cpu_path);
496 static void fdt_add_its_gic_node(VirtMachineState *vms)
498 char *nodename;
499 MachineState *ms = MACHINE(vms);
501 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
502 nodename = g_strdup_printf("/intc/its@%" PRIx64,
503 vms->memmap[VIRT_GIC_ITS].base);
504 qemu_fdt_add_subnode(ms->fdt, nodename);
505 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
506 "arm,gic-v3-its");
507 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
508 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
510 2, vms->memmap[VIRT_GIC_ITS].base,
511 2, vms->memmap[VIRT_GIC_ITS].size);
512 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
513 g_free(nodename);
516 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
518 MachineState *ms = MACHINE(vms);
519 char *nodename;
521 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
522 vms->memmap[VIRT_GIC_V2M].base);
523 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
524 qemu_fdt_add_subnode(ms->fdt, nodename);
525 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
526 "arm,gic-v2m-frame");
527 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
528 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
529 2, vms->memmap[VIRT_GIC_V2M].base,
530 2, vms->memmap[VIRT_GIC_V2M].size);
531 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
532 g_free(nodename);
535 static void fdt_add_gic_node(VirtMachineState *vms)
537 MachineState *ms = MACHINE(vms);
538 char *nodename;
540 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
541 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
543 nodename = g_strdup_printf("/intc@%" PRIx64,
544 vms->memmap[VIRT_GIC_DIST].base);
545 qemu_fdt_add_subnode(ms->fdt, nodename);
546 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
547 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
548 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
549 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
550 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
551 if (vms->gic_version != VIRT_GIC_VERSION_2) {
552 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
554 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
555 "arm,gic-v3");
557 qemu_fdt_setprop_cell(ms->fdt, nodename,
558 "#redistributor-regions", nb_redist_regions);
560 if (nb_redist_regions == 1) {
561 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
562 2, vms->memmap[VIRT_GIC_DIST].base,
563 2, vms->memmap[VIRT_GIC_DIST].size,
564 2, vms->memmap[VIRT_GIC_REDIST].base,
565 2, vms->memmap[VIRT_GIC_REDIST].size);
566 } else {
567 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
568 2, vms->memmap[VIRT_GIC_DIST].base,
569 2, vms->memmap[VIRT_GIC_DIST].size,
570 2, vms->memmap[VIRT_GIC_REDIST].base,
571 2, vms->memmap[VIRT_GIC_REDIST].size,
572 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
573 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
576 if (vms->virt) {
577 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
578 GIC_FDT_IRQ_TYPE_PPI,
579 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
580 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
582 } else {
583 /* 'cortex-a15-gic' means 'GIC v2' */
584 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
585 "arm,cortex-a15-gic");
586 if (!vms->virt) {
587 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
588 2, vms->memmap[VIRT_GIC_DIST].base,
589 2, vms->memmap[VIRT_GIC_DIST].size,
590 2, vms->memmap[VIRT_GIC_CPU].base,
591 2, vms->memmap[VIRT_GIC_CPU].size);
592 } else {
593 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
594 2, vms->memmap[VIRT_GIC_DIST].base,
595 2, vms->memmap[VIRT_GIC_DIST].size,
596 2, vms->memmap[VIRT_GIC_CPU].base,
597 2, vms->memmap[VIRT_GIC_CPU].size,
598 2, vms->memmap[VIRT_GIC_HYP].base,
599 2, vms->memmap[VIRT_GIC_HYP].size,
600 2, vms->memmap[VIRT_GIC_VCPU].base,
601 2, vms->memmap[VIRT_GIC_VCPU].size);
602 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
603 GIC_FDT_IRQ_TYPE_PPI,
604 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
605 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
609 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
610 g_free(nodename);
613 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
615 ARMCPU *armcpu = ARM_CPU(first_cpu);
616 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
617 MachineState *ms = MACHINE(vms);
619 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
620 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
621 return;
624 if (vms->gic_version == VIRT_GIC_VERSION_2) {
625 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
626 GIC_FDT_IRQ_PPI_CPU_WIDTH,
627 (1 << MACHINE(vms)->smp.cpus) - 1);
630 qemu_fdt_add_subnode(ms->fdt, "/pmu");
631 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
632 const char compat[] = "arm,armv8-pmuv3";
633 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
634 compat, sizeof(compat));
635 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
636 GIC_FDT_IRQ_TYPE_PPI,
637 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
641 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
643 DeviceState *dev;
644 MachineState *ms = MACHINE(vms);
645 int irq = vms->irqmap[VIRT_ACPI_GED];
646 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
648 if (ms->ram_slots) {
649 event |= ACPI_GED_MEM_HOTPLUG_EVT;
652 if (ms->nvdimms_state->is_enabled) {
653 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
656 dev = qdev_new(TYPE_ACPI_GED);
657 qdev_prop_set_uint32(dev, "ged-event", event);
658 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
660 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
661 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
662 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
664 return dev;
667 static void create_its(VirtMachineState *vms)
669 const char *itsclass = its_class_name();
670 DeviceState *dev;
672 if (!strcmp(itsclass, "arm-gicv3-its")) {
673 if (!vms->tcg_its) {
674 itsclass = NULL;
678 if (!itsclass) {
679 /* Do nothing if not supported */
680 return;
683 dev = qdev_new(itsclass);
685 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
686 &error_abort);
687 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
688 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
690 fdt_add_its_gic_node(vms);
691 vms->msi_controller = VIRT_MSI_CTRL_ITS;
694 static void create_v2m(VirtMachineState *vms)
696 int i;
697 int irq = vms->irqmap[VIRT_GIC_V2M];
698 DeviceState *dev;
700 dev = qdev_new("arm-gicv2m");
701 qdev_prop_set_uint32(dev, "base-spi", irq);
702 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
703 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
704 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
706 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
707 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
708 qdev_get_gpio_in(vms->gic, irq + i));
711 fdt_add_v2m_gic_node(vms);
712 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
715 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
717 MachineState *ms = MACHINE(vms);
718 /* We create a standalone GIC */
719 SysBusDevice *gicbusdev;
720 const char *gictype;
721 int i;
722 unsigned int smp_cpus = ms->smp.cpus;
723 uint32_t nb_redist_regions = 0;
724 int revision;
726 if (vms->gic_version == VIRT_GIC_VERSION_2) {
727 gictype = gic_class_name();
728 } else {
729 gictype = gicv3_class_name();
732 switch (vms->gic_version) {
733 case VIRT_GIC_VERSION_2:
734 revision = 2;
735 break;
736 case VIRT_GIC_VERSION_3:
737 revision = 3;
738 break;
739 case VIRT_GIC_VERSION_4:
740 revision = 4;
741 break;
742 default:
743 g_assert_not_reached();
745 vms->gic = qdev_new(gictype);
746 qdev_prop_set_uint32(vms->gic, "revision", revision);
747 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
748 /* Note that the num-irq property counts both internal and external
749 * interrupts; there are always 32 of the former (mandated by GIC spec).
751 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
752 if (!kvm_irqchip_in_kernel()) {
753 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
756 if (vms->gic_version != VIRT_GIC_VERSION_2) {
757 QList *redist_region_count;
758 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
759 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
761 nb_redist_regions = virt_gicv3_redist_region_count(vms);
763 redist_region_count = qlist_new();
764 qlist_append_int(redist_region_count, redist0_count);
765 if (nb_redist_regions == 2) {
766 uint32_t redist1_capacity =
767 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
769 qlist_append_int(redist_region_count,
770 MIN(smp_cpus - redist0_count, redist1_capacity));
772 qdev_prop_set_array(vms->gic, "redist-region-count",
773 redist_region_count);
775 if (!kvm_irqchip_in_kernel()) {
776 if (vms->tcg_its) {
777 object_property_set_link(OBJECT(vms->gic), "sysmem",
778 OBJECT(mem), &error_fatal);
779 qdev_prop_set_bit(vms->gic, "has-lpi", true);
782 } else {
783 if (!kvm_irqchip_in_kernel()) {
784 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
785 vms->virt);
788 gicbusdev = SYS_BUS_DEVICE(vms->gic);
789 sysbus_realize_and_unref(gicbusdev, &error_fatal);
790 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
791 if (vms->gic_version != VIRT_GIC_VERSION_2) {
792 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
793 if (nb_redist_regions == 2) {
794 sysbus_mmio_map(gicbusdev, 2,
795 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
797 } else {
798 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
799 if (vms->virt) {
800 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
801 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
805 /* Wire the outputs from each CPU's generic timer and the GICv3
806 * maintenance interrupt signal to the appropriate GIC PPI inputs,
807 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
809 for (i = 0; i < smp_cpus; i++) {
810 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
811 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
812 /* Mapping from the output timer irq lines from the CPU to the
813 * GIC PPI inputs we use for the virt board.
815 const int timer_irq[] = {
816 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
817 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
818 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
819 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
820 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
823 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
824 qdev_connect_gpio_out(cpudev, irq,
825 qdev_get_gpio_in(vms->gic,
826 intidbase + timer_irq[irq]));
829 if (vms->gic_version != VIRT_GIC_VERSION_2) {
830 qemu_irq irq = qdev_get_gpio_in(vms->gic,
831 intidbase + ARCH_GIC_MAINT_IRQ);
832 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
833 0, irq);
834 } else if (vms->virt) {
835 qemu_irq irq = qdev_get_gpio_in(vms->gic,
836 intidbase + ARCH_GIC_MAINT_IRQ);
837 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
840 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
841 qdev_get_gpio_in(vms->gic, intidbase
842 + VIRTUAL_PMU_IRQ));
844 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
845 sysbus_connect_irq(gicbusdev, i + smp_cpus,
846 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
847 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
848 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
849 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
850 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
853 fdt_add_gic_node(vms);
855 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
856 create_its(vms);
857 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
858 create_v2m(vms);
862 static void create_uart(const VirtMachineState *vms, int uart,
863 MemoryRegion *mem, Chardev *chr)
865 char *nodename;
866 hwaddr base = vms->memmap[uart].base;
867 hwaddr size = vms->memmap[uart].size;
868 int irq = vms->irqmap[uart];
869 const char compat[] = "arm,pl011\0arm,primecell";
870 const char clocknames[] = "uartclk\0apb_pclk";
871 DeviceState *dev = qdev_new(TYPE_PL011);
872 SysBusDevice *s = SYS_BUS_DEVICE(dev);
873 MachineState *ms = MACHINE(vms);
875 qdev_prop_set_chr(dev, "chardev", chr);
876 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
877 memory_region_add_subregion(mem, base,
878 sysbus_mmio_get_region(s, 0));
879 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
881 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
882 qemu_fdt_add_subnode(ms->fdt, nodename);
883 /* Note that we can't use setprop_string because of the embedded NUL */
884 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
885 compat, sizeof(compat));
886 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
887 2, base, 2, size);
888 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
889 GIC_FDT_IRQ_TYPE_SPI, irq,
890 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
891 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
892 vms->clock_phandle, vms->clock_phandle);
893 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
894 clocknames, sizeof(clocknames));
896 if (uart == VIRT_UART) {
897 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
898 } else {
899 /* Mark as not usable by the normal world */
900 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
901 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
903 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
904 nodename);
907 g_free(nodename);
910 static void create_rtc(const VirtMachineState *vms)
912 char *nodename;
913 hwaddr base = vms->memmap[VIRT_RTC].base;
914 hwaddr size = vms->memmap[VIRT_RTC].size;
915 int irq = vms->irqmap[VIRT_RTC];
916 const char compat[] = "arm,pl031\0arm,primecell";
917 MachineState *ms = MACHINE(vms);
919 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
921 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
922 qemu_fdt_add_subnode(ms->fdt, nodename);
923 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
924 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
925 2, base, 2, size);
926 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
927 GIC_FDT_IRQ_TYPE_SPI, irq,
928 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
929 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
930 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
931 g_free(nodename);
934 static DeviceState *gpio_key_dev;
935 static void virt_powerdown_req(Notifier *n, void *opaque)
937 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
939 if (s->acpi_dev) {
940 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
941 } else {
942 /* use gpio Pin 3 for power button event */
943 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
947 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
948 uint32_t phandle)
950 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
951 qdev_get_gpio_in(pl061_dev, 3));
953 qemu_fdt_add_subnode(fdt, "/gpio-keys");
954 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
956 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
957 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
958 "label", "GPIO Key Poweroff");
959 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
960 KEY_POWER);
961 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
962 "gpios", phandle, 3, 0);
965 #define SECURE_GPIO_POWEROFF 0
966 #define SECURE_GPIO_RESET 1
968 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
969 uint32_t phandle)
971 DeviceState *gpio_pwr_dev;
973 /* gpio-pwr */
974 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
976 /* connect secure pl061 to gpio-pwr */
977 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
978 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
979 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
980 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
982 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
983 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
984 "gpio-poweroff");
985 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
986 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
987 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
988 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
989 "okay");
991 qemu_fdt_add_subnode(fdt, "/gpio-restart");
992 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
993 "gpio-restart");
994 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
995 "gpios", phandle, SECURE_GPIO_RESET, 0);
996 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
997 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
998 "okay");
1001 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1002 MemoryRegion *mem)
1004 char *nodename;
1005 DeviceState *pl061_dev;
1006 hwaddr base = vms->memmap[gpio].base;
1007 hwaddr size = vms->memmap[gpio].size;
1008 int irq = vms->irqmap[gpio];
1009 const char compat[] = "arm,pl061\0arm,primecell";
1010 SysBusDevice *s;
1011 MachineState *ms = MACHINE(vms);
1013 pl061_dev = qdev_new("pl061");
1014 /* Pull lines down to 0 if not driven by the PL061 */
1015 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1016 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1017 s = SYS_BUS_DEVICE(pl061_dev);
1018 sysbus_realize_and_unref(s, &error_fatal);
1019 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1020 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1022 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1023 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1024 qemu_fdt_add_subnode(ms->fdt, nodename);
1025 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1026 2, base, 2, size);
1027 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1028 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1029 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1030 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1031 GIC_FDT_IRQ_TYPE_SPI, irq,
1032 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1033 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1034 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1035 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1037 if (gpio != VIRT_GPIO) {
1038 /* Mark as not usable by the normal world */
1039 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1040 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1042 g_free(nodename);
1044 /* Child gpio devices */
1045 if (gpio == VIRT_GPIO) {
1046 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1047 } else {
1048 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1052 static void create_virtio_devices(const VirtMachineState *vms)
1054 int i;
1055 hwaddr size = vms->memmap[VIRT_MMIO].size;
1056 MachineState *ms = MACHINE(vms);
1058 /* We create the transports in forwards order. Since qbus_realize()
1059 * prepends (not appends) new child buses, the incrementing loop below will
1060 * create a list of virtio-mmio buses with decreasing base addresses.
1062 * When a -device option is processed from the command line,
1063 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1064 * order. The upshot is that -device options in increasing command line
1065 * order are mapped to virtio-mmio buses with decreasing base addresses.
1067 * When this code was originally written, that arrangement ensured that the
1068 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1069 * the first -device on the command line. (The end-to-end order is a
1070 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1071 * guest kernel's name-to-address assignment strategy.)
1073 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1074 * the message, if not necessarily the code, of commit 70161ff336.
1075 * Therefore the loop now establishes the inverse of the original intent.
1077 * Unfortunately, we can't counteract the kernel change by reversing the
1078 * loop; it would break existing command lines.
1080 * In any case, the kernel makes no guarantee about the stability of
1081 * enumeration order of virtio devices (as demonstrated by it changing
1082 * between kernel versions). For reliable and stable identification
1083 * of disks users must use UUIDs or similar mechanisms.
1085 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1086 int irq = vms->irqmap[VIRT_MMIO] + i;
1087 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1089 sysbus_create_simple("virtio-mmio", base,
1090 qdev_get_gpio_in(vms->gic, irq));
1093 /* We add dtb nodes in reverse order so that they appear in the finished
1094 * device tree lowest address first.
1096 * Note that this mapping is independent of the loop above. The previous
1097 * loop influences virtio device to virtio transport assignment, whereas
1098 * this loop controls how virtio transports are laid out in the dtb.
1100 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1101 char *nodename;
1102 int irq = vms->irqmap[VIRT_MMIO] + i;
1103 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1105 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1106 qemu_fdt_add_subnode(ms->fdt, nodename);
1107 qemu_fdt_setprop_string(ms->fdt, nodename,
1108 "compatible", "virtio,mmio");
1109 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1110 2, base, 2, size);
1111 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1112 GIC_FDT_IRQ_TYPE_SPI, irq,
1113 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1114 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1115 g_free(nodename);
1119 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1121 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1122 const char *name,
1123 const char *alias_prop_name)
1126 * Create a single flash device. We use the same parameters as
1127 * the flash devices on the Versatile Express board.
1129 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1131 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1132 qdev_prop_set_uint8(dev, "width", 4);
1133 qdev_prop_set_uint8(dev, "device-width", 2);
1134 qdev_prop_set_bit(dev, "big-endian", false);
1135 qdev_prop_set_uint16(dev, "id0", 0x89);
1136 qdev_prop_set_uint16(dev, "id1", 0x18);
1137 qdev_prop_set_uint16(dev, "id2", 0x00);
1138 qdev_prop_set_uint16(dev, "id3", 0x00);
1139 qdev_prop_set_string(dev, "name", name);
1140 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1141 object_property_add_alias(OBJECT(vms), alias_prop_name,
1142 OBJECT(dev), "drive");
1143 return PFLASH_CFI01(dev);
1146 static void virt_flash_create(VirtMachineState *vms)
1148 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1149 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1152 static void virt_flash_map1(PFlashCFI01 *flash,
1153 hwaddr base, hwaddr size,
1154 MemoryRegion *sysmem)
1156 DeviceState *dev = DEVICE(flash);
1158 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1159 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1160 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1161 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1163 memory_region_add_subregion(sysmem, base,
1164 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1165 0));
1168 static void virt_flash_map(VirtMachineState *vms,
1169 MemoryRegion *sysmem,
1170 MemoryRegion *secure_sysmem)
1173 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1174 * sysmem is the system memory space. secure_sysmem is the secure view
1175 * of the system, and the first flash device should be made visible only
1176 * there. The second flash device is visible to both secure and nonsecure.
1177 * If sysmem == secure_sysmem this means there is no separate Secure
1178 * address space and both flash devices are generally visible.
1180 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1181 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1183 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1184 secure_sysmem);
1185 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1186 sysmem);
1189 static void virt_flash_fdt(VirtMachineState *vms,
1190 MemoryRegion *sysmem,
1191 MemoryRegion *secure_sysmem)
1193 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1194 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1195 MachineState *ms = MACHINE(vms);
1196 char *nodename;
1198 if (sysmem == secure_sysmem) {
1199 /* Report both flash devices as a single node in the DT */
1200 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1201 qemu_fdt_add_subnode(ms->fdt, nodename);
1202 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1203 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1204 2, flashbase, 2, flashsize,
1205 2, flashbase + flashsize, 2, flashsize);
1206 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1207 g_free(nodename);
1208 } else {
1210 * Report the devices as separate nodes so we can mark one as
1211 * only visible to the secure world.
1213 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1214 qemu_fdt_add_subnode(ms->fdt, nodename);
1215 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1216 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1217 2, flashbase, 2, flashsize);
1218 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1219 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1220 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1221 g_free(nodename);
1223 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1224 qemu_fdt_add_subnode(ms->fdt, nodename);
1225 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1226 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1227 2, flashbase + flashsize, 2, flashsize);
1228 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1229 g_free(nodename);
1233 static bool virt_firmware_init(VirtMachineState *vms,
1234 MemoryRegion *sysmem,
1235 MemoryRegion *secure_sysmem)
1237 int i;
1238 const char *bios_name;
1239 BlockBackend *pflash_blk0;
1241 /* Map legacy -drive if=pflash to machine properties */
1242 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1243 pflash_cfi01_legacy_drive(vms->flash[i],
1244 drive_get(IF_PFLASH, 0, i));
1247 virt_flash_map(vms, sysmem, secure_sysmem);
1249 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1251 bios_name = MACHINE(vms)->firmware;
1252 if (bios_name) {
1253 char *fname;
1254 MemoryRegion *mr;
1255 int image_size;
1257 if (pflash_blk0) {
1258 error_report("The contents of the first flash device may be "
1259 "specified with -bios or with -drive if=pflash... "
1260 "but you cannot use both options at once");
1261 exit(1);
1264 /* Fall back to -bios */
1266 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1267 if (!fname) {
1268 error_report("Could not find ROM image '%s'", bios_name);
1269 exit(1);
1271 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1272 image_size = load_image_mr(fname, mr);
1273 g_free(fname);
1274 if (image_size < 0) {
1275 error_report("Could not load ROM image '%s'", bios_name);
1276 exit(1);
1280 return pflash_blk0 || bios_name;
1283 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1285 MachineState *ms = MACHINE(vms);
1286 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1287 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1288 FWCfgState *fw_cfg;
1289 char *nodename;
1291 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1292 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1294 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1295 qemu_fdt_add_subnode(ms->fdt, nodename);
1296 qemu_fdt_setprop_string(ms->fdt, nodename,
1297 "compatible", "qemu,fw-cfg-mmio");
1298 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1299 2, base, 2, size);
1300 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1301 g_free(nodename);
1302 return fw_cfg;
1305 static void create_pcie_irq_map(const MachineState *ms,
1306 uint32_t gic_phandle,
1307 int first_irq, const char *nodename)
1309 int devfn, pin;
1310 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1311 uint32_t *irq_map = full_irq_map;
1313 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1314 for (pin = 0; pin < 4; pin++) {
1315 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1316 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1317 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1318 int i;
1320 uint32_t map[] = {
1321 devfn << 8, 0, 0, /* devfn */
1322 pin + 1, /* PCI pin */
1323 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1325 /* Convert map to big endian */
1326 for (i = 0; i < 10; i++) {
1327 irq_map[i] = cpu_to_be32(map[i]);
1329 irq_map += 10;
1333 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1334 full_irq_map, sizeof(full_irq_map));
1336 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1337 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1338 0, 0,
1339 0x7 /* PCI irq */);
1342 static void create_smmu(const VirtMachineState *vms,
1343 PCIBus *bus)
1345 char *node;
1346 const char compat[] = "arm,smmu-v3";
1347 int irq = vms->irqmap[VIRT_SMMU];
1348 int i;
1349 hwaddr base = vms->memmap[VIRT_SMMU].base;
1350 hwaddr size = vms->memmap[VIRT_SMMU].size;
1351 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1352 DeviceState *dev;
1353 MachineState *ms = MACHINE(vms);
1355 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1356 return;
1359 dev = qdev_new(TYPE_ARM_SMMUV3);
1361 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1362 &error_abort);
1363 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1364 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1365 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1366 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1367 qdev_get_gpio_in(vms->gic, irq + i));
1370 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1371 qemu_fdt_add_subnode(ms->fdt, node);
1372 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1373 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1375 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1376 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1377 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1378 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1379 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1381 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1382 sizeof(irq_names));
1384 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1386 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1388 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1389 g_free(node);
1392 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1394 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1395 uint16_t bdf = vms->virtio_iommu_bdf;
1396 MachineState *ms = MACHINE(vms);
1397 char *node;
1399 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1401 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1402 PCI_SLOT(bdf), PCI_FUNC(bdf));
1403 qemu_fdt_add_subnode(ms->fdt, node);
1404 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1405 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1406 1, bdf << 8, 1, 0, 1, 0,
1407 1, 0, 1, 0);
1409 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1410 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1411 g_free(node);
1413 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1414 0x0, vms->iommu_phandle, 0x0, bdf,
1415 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1418 static void create_pcie(VirtMachineState *vms)
1420 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1421 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1422 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1423 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1424 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1425 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1426 hwaddr base_ecam, size_ecam;
1427 hwaddr base = base_mmio;
1428 int nr_pcie_buses;
1429 int irq = vms->irqmap[VIRT_PCIE];
1430 MemoryRegion *mmio_alias;
1431 MemoryRegion *mmio_reg;
1432 MemoryRegion *ecam_alias;
1433 MemoryRegion *ecam_reg;
1434 DeviceState *dev;
1435 char *nodename;
1436 int i, ecam_id;
1437 PCIHostState *pci;
1438 MachineState *ms = MACHINE(vms);
1439 MachineClass *mc = MACHINE_GET_CLASS(ms);
1441 dev = qdev_new(TYPE_GPEX_HOST);
1442 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1444 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1445 base_ecam = vms->memmap[ecam_id].base;
1446 size_ecam = vms->memmap[ecam_id].size;
1447 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1448 /* Map only the first size_ecam bytes of ECAM space */
1449 ecam_alias = g_new0(MemoryRegion, 1);
1450 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1451 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1452 ecam_reg, 0, size_ecam);
1453 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1455 /* Map the MMIO window into system address space so as to expose
1456 * the section of PCI MMIO space which starts at the same base address
1457 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1458 * the window).
1460 mmio_alias = g_new0(MemoryRegion, 1);
1461 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1462 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1463 mmio_reg, base_mmio, size_mmio);
1464 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1466 if (vms->highmem_mmio) {
1467 /* Map high MMIO space */
1468 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1470 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1471 mmio_reg, base_mmio_high, size_mmio_high);
1472 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1473 high_mmio_alias);
1476 /* Map IO port space */
1477 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1479 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1480 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1481 qdev_get_gpio_in(vms->gic, irq + i));
1482 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1485 pci = PCI_HOST_BRIDGE(dev);
1486 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1487 vms->bus = pci->bus;
1488 if (vms->bus) {
1489 pci_init_nic_devices(pci->bus, mc->default_nic);
1492 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1493 qemu_fdt_add_subnode(ms->fdt, nodename);
1494 qemu_fdt_setprop_string(ms->fdt, nodename,
1495 "compatible", "pci-host-ecam-generic");
1496 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1497 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1498 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1499 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1500 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1501 nr_pcie_buses - 1);
1502 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1504 if (vms->msi_phandle) {
1505 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1506 0, vms->msi_phandle, 0, 0x10000);
1509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1510 2, base_ecam, 2, size_ecam);
1512 if (vms->highmem_mmio) {
1513 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1514 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1515 2, base_pio, 2, size_pio,
1516 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1517 2, base_mmio, 2, size_mmio,
1518 1, FDT_PCI_RANGE_MMIO_64BIT,
1519 2, base_mmio_high,
1520 2, base_mmio_high, 2, size_mmio_high);
1521 } else {
1522 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1523 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1524 2, base_pio, 2, size_pio,
1525 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1526 2, base_mmio, 2, size_mmio);
1529 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1530 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1532 if (vms->iommu) {
1533 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1535 switch (vms->iommu) {
1536 case VIRT_IOMMU_SMMUV3:
1537 create_smmu(vms, vms->bus);
1538 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1539 0x0, vms->iommu_phandle, 0x0, 0x10000);
1540 break;
1541 default:
1542 g_assert_not_reached();
1547 static void create_platform_bus(VirtMachineState *vms)
1549 DeviceState *dev;
1550 SysBusDevice *s;
1551 int i;
1552 MemoryRegion *sysmem = get_system_memory();
1554 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1555 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1556 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1557 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1558 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1559 vms->platform_bus_dev = dev;
1561 s = SYS_BUS_DEVICE(dev);
1562 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1563 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1564 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1567 memory_region_add_subregion(sysmem,
1568 vms->memmap[VIRT_PLATFORM_BUS].base,
1569 sysbus_mmio_get_region(s, 0));
1572 static void create_tag_ram(MemoryRegion *tag_sysmem,
1573 hwaddr base, hwaddr size,
1574 const char *name)
1576 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1578 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1579 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1582 static void create_secure_ram(VirtMachineState *vms,
1583 MemoryRegion *secure_sysmem,
1584 MemoryRegion *secure_tag_sysmem)
1586 MemoryRegion *secram = g_new(MemoryRegion, 1);
1587 char *nodename;
1588 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1589 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1590 MachineState *ms = MACHINE(vms);
1592 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1593 &error_fatal);
1594 memory_region_add_subregion(secure_sysmem, base, secram);
1596 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1597 qemu_fdt_add_subnode(ms->fdt, nodename);
1598 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1599 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1600 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1601 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1603 if (secure_tag_sysmem) {
1604 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1607 g_free(nodename);
1610 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1612 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1613 bootinfo);
1614 MachineState *ms = MACHINE(board);
1617 *fdt_size = board->fdt_size;
1618 return ms->fdt;
1621 static void virt_build_smbios(VirtMachineState *vms)
1623 MachineClass *mc = MACHINE_GET_CLASS(vms);
1624 MachineState *ms = MACHINE(vms);
1625 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1626 uint8_t *smbios_tables, *smbios_anchor;
1627 size_t smbios_tables_len, smbios_anchor_len;
1628 struct smbios_phys_mem_area mem_array;
1629 const char *product = "QEMU Virtual Machine";
1631 if (kvm_enabled()) {
1632 product = "KVM Virtual Machine";
1635 smbios_set_defaults("QEMU", product,
1636 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1637 true, SMBIOS_ENTRY_POINT_TYPE_64);
1639 /* build the array of physical mem area from base_memmap */
1640 mem_array.address = vms->memmap[VIRT_MEM].base;
1641 mem_array.length = ms->ram_size;
1643 smbios_get_tables(ms, &mem_array, 1,
1644 &smbios_tables, &smbios_tables_len,
1645 &smbios_anchor, &smbios_anchor_len,
1646 &error_fatal);
1648 if (smbios_anchor) {
1649 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1650 smbios_tables, smbios_tables_len);
1651 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1652 smbios_anchor, smbios_anchor_len);
1656 static
1657 void virt_machine_done(Notifier *notifier, void *data)
1659 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1660 machine_done);
1661 MachineState *ms = MACHINE(vms);
1662 ARMCPU *cpu = ARM_CPU(first_cpu);
1663 struct arm_boot_info *info = &vms->bootinfo;
1664 AddressSpace *as = arm_boot_address_space(cpu, info);
1667 * If the user provided a dtb, we assume the dynamic sysbus nodes
1668 * already are integrated there. This corresponds to a use case where
1669 * the dynamic sysbus nodes are complex and their generation is not yet
1670 * supported. In that case the user can take charge of the guest dt
1671 * while qemu takes charge of the qom stuff.
1673 if (info->dtb_filename == NULL) {
1674 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1675 vms->memmap[VIRT_PLATFORM_BUS].base,
1676 vms->memmap[VIRT_PLATFORM_BUS].size,
1677 vms->irqmap[VIRT_PLATFORM_BUS]);
1679 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1680 exit(1);
1683 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1685 virt_acpi_setup(vms);
1686 virt_build_smbios(vms);
1689 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1691 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1692 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1694 if (!vmc->disallow_affinity_adjustment) {
1695 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1696 * GIC's target-list limitations. 32-bit KVM hosts currently
1697 * always create clusters of 4 CPUs, but that is expected to
1698 * change when they gain support for gicv3. When KVM is enabled
1699 * it will override the changes we make here, therefore our
1700 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1701 * and to improve SGI efficiency.
1703 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1704 clustersz = GIC_TARGETLIST_BITS;
1705 } else {
1706 clustersz = GICV3_TARGETLIST_BITS;
1709 return arm_build_mp_affinity(idx, clustersz);
1712 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1713 int index)
1715 bool *enabled_array[] = {
1716 &vms->highmem_redists,
1717 &vms->highmem_ecam,
1718 &vms->highmem_mmio,
1721 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1722 ARRAY_SIZE(enabled_array));
1723 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1725 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1728 static void virt_set_high_memmap(VirtMachineState *vms,
1729 hwaddr base, int pa_bits)
1731 hwaddr region_base, region_size;
1732 bool *region_enabled, fits;
1733 int i;
1735 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1736 region_enabled = virt_get_high_memmap_enabled(vms, i);
1737 region_base = ROUND_UP(base, extended_memmap[i].size);
1738 region_size = extended_memmap[i].size;
1740 vms->memmap[i].base = region_base;
1741 vms->memmap[i].size = region_size;
1744 * Check each device to see if it fits in the PA space,
1745 * moving highest_gpa as we go. For compatibility, move
1746 * highest_gpa for disabled fitting devices as well, if
1747 * the compact layout has been disabled.
1749 * For each device that doesn't fit, disable it.
1751 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1752 *region_enabled &= fits;
1753 if (vms->highmem_compact && !*region_enabled) {
1754 continue;
1757 base = region_base + region_size;
1758 if (fits) {
1759 vms->highest_gpa = base - 1;
1764 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1766 MachineState *ms = MACHINE(vms);
1767 hwaddr base, device_memory_base, device_memory_size, memtop;
1768 int i;
1770 vms->memmap = extended_memmap;
1772 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1773 vms->memmap[i] = base_memmap[i];
1776 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1777 error_report("unsupported number of memory slots: %"PRIu64,
1778 ms->ram_slots);
1779 exit(EXIT_FAILURE);
1783 * !highmem is exactly the same as limiting the PA space to 32bit,
1784 * irrespective of the underlying capabilities of the HW.
1786 if (!vms->highmem) {
1787 pa_bits = 32;
1791 * We compute the base of the high IO region depending on the
1792 * amount of initial and device memory. The device memory start/size
1793 * is aligned on 1GiB. We never put the high IO region below 256GiB
1794 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1795 * The device region size assumes 1GiB page max alignment per slot.
1797 device_memory_base =
1798 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1799 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1801 /* Base address of the high IO region */
1802 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1803 if (memtop > BIT_ULL(pa_bits)) {
1804 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1805 pa_bits, memtop - BIT_ULL(pa_bits));
1806 exit(EXIT_FAILURE);
1808 if (base < device_memory_base) {
1809 error_report("maxmem/slots too huge");
1810 exit(EXIT_FAILURE);
1812 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1813 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1816 /* We know for sure that at least the memory fits in the PA space */
1817 vms->highest_gpa = memtop - 1;
1819 virt_set_high_memmap(vms, base, pa_bits);
1821 if (device_memory_size > 0) {
1822 machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1826 static VirtGICType finalize_gic_version_do(const char *accel_name,
1827 VirtGICType gic_version,
1828 int gics_supported,
1829 unsigned int max_cpus)
1831 /* Convert host/max/nosel to GIC version number */
1832 switch (gic_version) {
1833 case VIRT_GIC_VERSION_HOST:
1834 if (!kvm_enabled()) {
1835 error_report("gic-version=host requires KVM");
1836 exit(1);
1839 /* For KVM, gic-version=host means gic-version=max */
1840 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1841 gics_supported, max_cpus);
1842 case VIRT_GIC_VERSION_MAX:
1843 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1844 gic_version = VIRT_GIC_VERSION_4;
1845 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1846 gic_version = VIRT_GIC_VERSION_3;
1847 } else {
1848 gic_version = VIRT_GIC_VERSION_2;
1850 break;
1851 case VIRT_GIC_VERSION_NOSEL:
1852 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1853 max_cpus <= GIC_NCPU) {
1854 gic_version = VIRT_GIC_VERSION_2;
1855 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1857 * in case the host does not support v2 emulation or
1858 * the end-user requested more than 8 VCPUs we now default
1859 * to v3. In any case defaulting to v2 would be broken.
1861 gic_version = VIRT_GIC_VERSION_3;
1862 } else if (max_cpus > GIC_NCPU) {
1863 error_report("%s only supports GICv2 emulation but more than 8 "
1864 "vcpus are requested", accel_name);
1865 exit(1);
1867 break;
1868 case VIRT_GIC_VERSION_2:
1869 case VIRT_GIC_VERSION_3:
1870 case VIRT_GIC_VERSION_4:
1871 break;
1874 /* Check chosen version is effectively supported */
1875 switch (gic_version) {
1876 case VIRT_GIC_VERSION_2:
1877 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1878 error_report("%s does not support GICv2 emulation", accel_name);
1879 exit(1);
1881 break;
1882 case VIRT_GIC_VERSION_3:
1883 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1884 error_report("%s does not support GICv3 emulation", accel_name);
1885 exit(1);
1887 break;
1888 case VIRT_GIC_VERSION_4:
1889 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1890 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1891 accel_name);
1892 exit(1);
1894 break;
1895 default:
1896 error_report("logic error in finalize_gic_version");
1897 exit(1);
1898 break;
1901 return gic_version;
1905 * finalize_gic_version - Determines the final gic_version
1906 * according to the gic-version property
1908 * Default GIC type is v2
1910 static void finalize_gic_version(VirtMachineState *vms)
1912 const char *accel_name = current_accel_name();
1913 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1914 int gics_supported = 0;
1916 /* Determine which GIC versions the current environment supports */
1917 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1918 int probe_bitmap = kvm_arm_vgic_probe();
1920 if (!probe_bitmap) {
1921 error_report("Unable to determine GIC version supported by host");
1922 exit(1);
1925 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1926 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1928 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1929 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1931 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1932 /* KVM w/o kernel irqchip can only deal with GICv2 */
1933 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1934 accel_name = "KVM with kernel-irqchip=off";
1935 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1936 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1937 if (module_object_class_by_name("arm-gicv3")) {
1938 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1939 if (vms->virt) {
1940 /* GICv4 only makes sense if CPU has EL2 */
1941 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1944 } else {
1945 error_report("Unsupported accelerator, can not determine GIC support");
1946 exit(1);
1950 * Then convert helpers like host/max to concrete GIC versions and ensure
1951 * the desired version is supported
1953 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1954 gics_supported, max_cpus);
1958 * virt_cpu_post_init() must be called after the CPUs have
1959 * been realized and the GIC has been created.
1961 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1963 int max_cpus = MACHINE(vms)->smp.max_cpus;
1964 bool aarch64, pmu, steal_time;
1965 CPUState *cpu;
1967 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1968 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1969 steal_time = object_property_get_bool(OBJECT(first_cpu),
1970 "kvm-steal-time", NULL);
1972 if (kvm_enabled()) {
1973 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1974 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1976 if (steal_time) {
1977 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1978 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1980 /* The memory region size must be a multiple of host page size. */
1981 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1983 if (pvtime_size > pvtime_reg_size) {
1984 error_report("pvtime requires a %" HWADDR_PRId
1985 " byte memory region for %d CPUs,"
1986 " but only %" HWADDR_PRId " has been reserved",
1987 pvtime_size, max_cpus, pvtime_reg_size);
1988 exit(1);
1991 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1992 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1995 CPU_FOREACH(cpu) {
1996 if (pmu) {
1997 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1998 if (kvm_irqchip_in_kernel()) {
1999 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2001 kvm_arm_pmu_init(ARM_CPU(cpu));
2003 if (steal_time) {
2004 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2005 + cpu->cpu_index
2006 * PVTIME_SIZE_PER_CPU);
2009 } else {
2010 if (aarch64 && vms->highmem) {
2011 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2012 int pamax = arm_pamax(ARM_CPU(first_cpu));
2014 if (pamax < requested_pa_size) {
2015 error_report("VCPU supports less PA bits (%d) than "
2016 "requested by the memory map (%d)",
2017 pamax, requested_pa_size);
2018 exit(1);
2024 static void machvirt_init(MachineState *machine)
2026 VirtMachineState *vms = VIRT_MACHINE(machine);
2027 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2028 MachineClass *mc = MACHINE_GET_CLASS(machine);
2029 const CPUArchIdList *possible_cpus;
2030 MemoryRegion *sysmem = get_system_memory();
2031 MemoryRegion *secure_sysmem = NULL;
2032 MemoryRegion *tag_sysmem = NULL;
2033 MemoryRegion *secure_tag_sysmem = NULL;
2034 int n, virt_max_cpus;
2035 bool firmware_loaded;
2036 bool aarch64 = true;
2037 bool has_ged = !vmc->no_ged;
2038 unsigned int smp_cpus = machine->smp.cpus;
2039 unsigned int max_cpus = machine->smp.max_cpus;
2041 possible_cpus = mc->possible_cpu_arch_ids(machine);
2044 * In accelerated mode, the memory map is computed earlier in kvm_type()
2045 * to create a VM with the right number of IPA bits.
2047 if (!vms->memmap) {
2048 Object *cpuobj;
2049 ARMCPU *armcpu;
2050 int pa_bits;
2053 * Instantiate a temporary CPU object to find out about what
2054 * we are about to deal with. Once this is done, get rid of
2055 * the object.
2057 cpuobj = object_new(possible_cpus->cpus[0].type);
2058 armcpu = ARM_CPU(cpuobj);
2060 pa_bits = arm_pamax(armcpu);
2062 object_unref(cpuobj);
2064 virt_set_memmap(vms, pa_bits);
2067 /* We can probe only here because during property set
2068 * KVM is not available yet
2070 finalize_gic_version(vms);
2072 if (vms->secure) {
2074 * The Secure view of the world is the same as the NonSecure,
2075 * but with a few extra devices. Create it as a container region
2076 * containing the system memory at low priority; any secure-only
2077 * devices go in at higher priority and take precedence.
2079 secure_sysmem = g_new(MemoryRegion, 1);
2080 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2081 UINT64_MAX);
2082 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2085 firmware_loaded = virt_firmware_init(vms, sysmem,
2086 secure_sysmem ?: sysmem);
2088 /* If we have an EL3 boot ROM then the assumption is that it will
2089 * implement PSCI itself, so disable QEMU's internal implementation
2090 * so it doesn't get in the way. Instead of starting secondary
2091 * CPUs in PSCI powerdown state we will start them all running and
2092 * let the boot ROM sort them out.
2093 * The usual case is that we do use QEMU's PSCI implementation;
2094 * if the guest has EL2 then we will use SMC as the conduit,
2095 * and otherwise we will use HVC (for backwards compatibility and
2096 * because if we're using KVM then we must use HVC).
2098 if (vms->secure && firmware_loaded) {
2099 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2100 } else if (vms->virt) {
2101 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2102 } else {
2103 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2107 * The maximum number of CPUs depends on the GIC version, or on how
2108 * many redistributors we can fit into the memory map (which in turn
2109 * depends on whether this is a GICv3 or v4).
2111 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2112 virt_max_cpus = GIC_NCPU;
2113 } else {
2114 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2115 if (vms->highmem_redists) {
2116 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2120 if (max_cpus > virt_max_cpus) {
2121 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2122 "supported by machine 'mach-virt' (%d)",
2123 max_cpus, virt_max_cpus);
2124 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2125 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2128 exit(1);
2131 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2132 error_report("mach-virt: %s does not support providing "
2133 "Security extensions (TrustZone) to the guest CPU",
2134 current_accel_name());
2135 exit(1);
2138 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2139 error_report("mach-virt: %s does not support providing "
2140 "Virtualization extensions to the guest CPU",
2141 current_accel_name());
2142 exit(1);
2145 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2146 error_report("mach-virt: %s does not support providing "
2147 "MTE to the guest CPU",
2148 current_accel_name());
2149 exit(1);
2152 create_fdt(vms);
2154 assert(possible_cpus->len == max_cpus);
2155 for (n = 0; n < possible_cpus->len; n++) {
2156 Object *cpuobj;
2157 CPUState *cs;
2159 if (n >= smp_cpus) {
2160 break;
2163 cpuobj = object_new(possible_cpus->cpus[n].type);
2164 object_property_set_int(cpuobj, "mp-affinity",
2165 possible_cpus->cpus[n].arch_id, NULL);
2167 cs = CPU(cpuobj);
2168 cs->cpu_index = n;
2170 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2171 &error_fatal);
2173 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2175 if (!vms->secure) {
2176 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2179 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2180 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2183 if (vmc->kvm_no_adjvtime &&
2184 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2185 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2188 if (vmc->no_kvm_steal_time &&
2189 object_property_find(cpuobj, "kvm-steal-time")) {
2190 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2193 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2194 object_property_set_bool(cpuobj, "pmu", false, NULL);
2197 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2198 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2201 if (object_property_find(cpuobj, "reset-cbar")) {
2202 object_property_set_int(cpuobj, "reset-cbar",
2203 vms->memmap[VIRT_CPUPERIPHS].base,
2204 &error_abort);
2207 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2208 &error_abort);
2209 if (vms->secure) {
2210 object_property_set_link(cpuobj, "secure-memory",
2211 OBJECT(secure_sysmem), &error_abort);
2214 if (vms->mte) {
2215 /* Create the memory region only once, but link to all cpus. */
2216 if (!tag_sysmem) {
2218 * The property exists only if MemTag is supported.
2219 * If it is, we must allocate the ram to back that up.
2221 if (!object_property_find(cpuobj, "tag-memory")) {
2222 error_report("MTE requested, but not supported "
2223 "by the guest CPU");
2224 exit(1);
2227 tag_sysmem = g_new(MemoryRegion, 1);
2228 memory_region_init(tag_sysmem, OBJECT(machine),
2229 "tag-memory", UINT64_MAX / 32);
2231 if (vms->secure) {
2232 secure_tag_sysmem = g_new(MemoryRegion, 1);
2233 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2234 "secure-tag-memory", UINT64_MAX / 32);
2236 /* As with ram, secure-tag takes precedence over tag. */
2237 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2238 tag_sysmem, -1);
2242 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2243 &error_abort);
2244 if (vms->secure) {
2245 object_property_set_link(cpuobj, "secure-tag-memory",
2246 OBJECT(secure_tag_sysmem),
2247 &error_abort);
2251 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2252 object_unref(cpuobj);
2255 /* Now we've created the CPUs we can see if they have the hypvirt timer */
2256 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2257 !vmc->no_ns_el2_virt_timer_irq;
2259 fdt_add_timer_nodes(vms);
2260 fdt_add_cpu_nodes(vms);
2262 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2263 machine->ram);
2265 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2267 create_gic(vms, sysmem);
2269 virt_cpu_post_init(vms, sysmem);
2271 fdt_add_pmu_nodes(vms);
2273 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2275 if (vms->secure) {
2276 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2277 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2280 if (tag_sysmem) {
2281 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2282 machine->ram_size, "mach-virt.tag");
2285 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2287 create_rtc(vms);
2289 create_pcie(vms);
2291 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2292 vms->acpi_dev = create_acpi_ged(vms);
2293 } else {
2294 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2297 if (vms->secure && !vmc->no_secure_gpio) {
2298 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2301 /* connect powerdown request */
2302 vms->powerdown_notifier.notify = virt_powerdown_req;
2303 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2305 /* Create mmio transports, so the user can create virtio backends
2306 * (which will be automatically plugged in to the transports). If
2307 * no backend is created the transport will just sit harmlessly idle.
2309 create_virtio_devices(vms);
2311 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2312 rom_set_fw(vms->fw_cfg);
2314 create_platform_bus(vms);
2316 if (machine->nvdimms_state->is_enabled) {
2317 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2318 .space_id = AML_AS_SYSTEM_MEMORY,
2319 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2320 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2323 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2324 arm_virt_nvdimm_acpi_dsmio,
2325 vms->fw_cfg, OBJECT(vms));
2328 vms->bootinfo.ram_size = machine->ram_size;
2329 vms->bootinfo.board_id = -1;
2330 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2331 vms->bootinfo.get_dtb = machvirt_dtb;
2332 vms->bootinfo.skip_dtb_autoload = true;
2333 vms->bootinfo.firmware_loaded = firmware_loaded;
2334 vms->bootinfo.psci_conduit = vms->psci_conduit;
2335 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2337 vms->machine_done.notify = virt_machine_done;
2338 qemu_add_machine_init_done_notifier(&vms->machine_done);
2341 static bool virt_get_secure(Object *obj, Error **errp)
2343 VirtMachineState *vms = VIRT_MACHINE(obj);
2345 return vms->secure;
2348 static void virt_set_secure(Object *obj, bool value, Error **errp)
2350 VirtMachineState *vms = VIRT_MACHINE(obj);
2352 vms->secure = value;
2355 static bool virt_get_virt(Object *obj, Error **errp)
2357 VirtMachineState *vms = VIRT_MACHINE(obj);
2359 return vms->virt;
2362 static void virt_set_virt(Object *obj, bool value, Error **errp)
2364 VirtMachineState *vms = VIRT_MACHINE(obj);
2366 vms->virt = value;
2369 static bool virt_get_highmem(Object *obj, Error **errp)
2371 VirtMachineState *vms = VIRT_MACHINE(obj);
2373 return vms->highmem;
2376 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2378 VirtMachineState *vms = VIRT_MACHINE(obj);
2380 vms->highmem = value;
2383 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2385 VirtMachineState *vms = VIRT_MACHINE(obj);
2387 return vms->highmem_compact;
2390 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2392 VirtMachineState *vms = VIRT_MACHINE(obj);
2394 vms->highmem_compact = value;
2397 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2399 VirtMachineState *vms = VIRT_MACHINE(obj);
2401 return vms->highmem_redists;
2404 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2406 VirtMachineState *vms = VIRT_MACHINE(obj);
2408 vms->highmem_redists = value;
2411 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2413 VirtMachineState *vms = VIRT_MACHINE(obj);
2415 return vms->highmem_ecam;
2418 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2420 VirtMachineState *vms = VIRT_MACHINE(obj);
2422 vms->highmem_ecam = value;
2425 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2427 VirtMachineState *vms = VIRT_MACHINE(obj);
2429 return vms->highmem_mmio;
2432 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2434 VirtMachineState *vms = VIRT_MACHINE(obj);
2436 vms->highmem_mmio = value;
2440 static bool virt_get_its(Object *obj, Error **errp)
2442 VirtMachineState *vms = VIRT_MACHINE(obj);
2444 return vms->its;
2447 static void virt_set_its(Object *obj, bool value, Error **errp)
2449 VirtMachineState *vms = VIRT_MACHINE(obj);
2451 vms->its = value;
2454 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2456 VirtMachineState *vms = VIRT_MACHINE(obj);
2458 return vms->dtb_randomness;
2461 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2463 VirtMachineState *vms = VIRT_MACHINE(obj);
2465 vms->dtb_randomness = value;
2468 static char *virt_get_oem_id(Object *obj, Error **errp)
2470 VirtMachineState *vms = VIRT_MACHINE(obj);
2472 return g_strdup(vms->oem_id);
2475 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2477 VirtMachineState *vms = VIRT_MACHINE(obj);
2478 size_t len = strlen(value);
2480 if (len > 6) {
2481 error_setg(errp,
2482 "User specified oem-id value is bigger than 6 bytes in size");
2483 return;
2486 strncpy(vms->oem_id, value, 6);
2489 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2491 VirtMachineState *vms = VIRT_MACHINE(obj);
2493 return g_strdup(vms->oem_table_id);
2496 static void virt_set_oem_table_id(Object *obj, const char *value,
2497 Error **errp)
2499 VirtMachineState *vms = VIRT_MACHINE(obj);
2500 size_t len = strlen(value);
2502 if (len > 8) {
2503 error_setg(errp,
2504 "User specified oem-table-id value is bigger than 8 bytes in size");
2505 return;
2507 strncpy(vms->oem_table_id, value, 8);
2511 bool virt_is_acpi_enabled(VirtMachineState *vms)
2513 if (vms->acpi == ON_OFF_AUTO_OFF) {
2514 return false;
2516 return true;
2519 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2520 void *opaque, Error **errp)
2522 VirtMachineState *vms = VIRT_MACHINE(obj);
2523 OnOffAuto acpi = vms->acpi;
2525 visit_type_OnOffAuto(v, name, &acpi, errp);
2528 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2529 void *opaque, Error **errp)
2531 VirtMachineState *vms = VIRT_MACHINE(obj);
2533 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2536 static bool virt_get_ras(Object *obj, Error **errp)
2538 VirtMachineState *vms = VIRT_MACHINE(obj);
2540 return vms->ras;
2543 static void virt_set_ras(Object *obj, bool value, Error **errp)
2545 VirtMachineState *vms = VIRT_MACHINE(obj);
2547 vms->ras = value;
2550 static bool virt_get_mte(Object *obj, Error **errp)
2552 VirtMachineState *vms = VIRT_MACHINE(obj);
2554 return vms->mte;
2557 static void virt_set_mte(Object *obj, bool value, Error **errp)
2559 VirtMachineState *vms = VIRT_MACHINE(obj);
2561 vms->mte = value;
2564 static char *virt_get_gic_version(Object *obj, Error **errp)
2566 VirtMachineState *vms = VIRT_MACHINE(obj);
2567 const char *val;
2569 switch (vms->gic_version) {
2570 case VIRT_GIC_VERSION_4:
2571 val = "4";
2572 break;
2573 case VIRT_GIC_VERSION_3:
2574 val = "3";
2575 break;
2576 default:
2577 val = "2";
2578 break;
2580 return g_strdup(val);
2583 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2585 VirtMachineState *vms = VIRT_MACHINE(obj);
2587 if (!strcmp(value, "4")) {
2588 vms->gic_version = VIRT_GIC_VERSION_4;
2589 } else if (!strcmp(value, "3")) {
2590 vms->gic_version = VIRT_GIC_VERSION_3;
2591 } else if (!strcmp(value, "2")) {
2592 vms->gic_version = VIRT_GIC_VERSION_2;
2593 } else if (!strcmp(value, "host")) {
2594 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2595 } else if (!strcmp(value, "max")) {
2596 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2597 } else {
2598 error_setg(errp, "Invalid gic-version value");
2599 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2603 static char *virt_get_iommu(Object *obj, Error **errp)
2605 VirtMachineState *vms = VIRT_MACHINE(obj);
2607 switch (vms->iommu) {
2608 case VIRT_IOMMU_NONE:
2609 return g_strdup("none");
2610 case VIRT_IOMMU_SMMUV3:
2611 return g_strdup("smmuv3");
2612 default:
2613 g_assert_not_reached();
2617 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2619 VirtMachineState *vms = VIRT_MACHINE(obj);
2621 if (!strcmp(value, "smmuv3")) {
2622 vms->iommu = VIRT_IOMMU_SMMUV3;
2623 } else if (!strcmp(value, "none")) {
2624 vms->iommu = VIRT_IOMMU_NONE;
2625 } else {
2626 error_setg(errp, "Invalid iommu value");
2627 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2631 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2633 VirtMachineState *vms = VIRT_MACHINE(obj);
2635 return vms->default_bus_bypass_iommu;
2638 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2639 Error **errp)
2641 VirtMachineState *vms = VIRT_MACHINE(obj);
2643 vms->default_bus_bypass_iommu = value;
2646 static CpuInstanceProperties
2647 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2649 MachineClass *mc = MACHINE_GET_CLASS(ms);
2650 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2652 assert(cpu_index < possible_cpus->len);
2653 return possible_cpus->cpus[cpu_index].props;
2656 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2658 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2660 return socket_id % ms->numa_state->num_nodes;
2663 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2665 int n;
2666 unsigned int max_cpus = ms->smp.max_cpus;
2667 VirtMachineState *vms = VIRT_MACHINE(ms);
2668 MachineClass *mc = MACHINE_GET_CLASS(vms);
2670 if (ms->possible_cpus) {
2671 assert(ms->possible_cpus->len == max_cpus);
2672 return ms->possible_cpus;
2675 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2676 sizeof(CPUArchId) * max_cpus);
2677 ms->possible_cpus->len = max_cpus;
2678 for (n = 0; n < ms->possible_cpus->len; n++) {
2679 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2680 ms->possible_cpus->cpus[n].arch_id =
2681 virt_cpu_mp_affinity(vms, n);
2683 assert(!mc->smp_props.dies_supported);
2684 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2685 ms->possible_cpus->cpus[n].props.socket_id =
2686 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2687 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2688 ms->possible_cpus->cpus[n].props.cluster_id =
2689 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2690 ms->possible_cpus->cpus[n].props.has_core_id = true;
2691 ms->possible_cpus->cpus[n].props.core_id =
2692 (n / ms->smp.threads) % ms->smp.cores;
2693 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2694 ms->possible_cpus->cpus[n].props.thread_id =
2695 n % ms->smp.threads;
2697 return ms->possible_cpus;
2700 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2701 Error **errp)
2703 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2704 const MachineState *ms = MACHINE(hotplug_dev);
2705 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2707 if (!vms->acpi_dev) {
2708 error_setg(errp,
2709 "memory hotplug is not enabled: missing acpi-ged device");
2710 return;
2713 if (vms->mte) {
2714 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2715 return;
2718 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2719 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2720 return;
2723 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2726 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2727 DeviceState *dev, Error **errp)
2729 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2730 MachineState *ms = MACHINE(hotplug_dev);
2731 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2733 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2735 if (is_nvdimm) {
2736 nvdimm_plug(ms->nvdimms_state);
2739 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2740 dev, &error_abort);
2743 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2744 DeviceState *dev, Error **errp)
2746 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2748 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2749 virt_memory_pre_plug(hotplug_dev, dev, errp);
2750 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2751 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2752 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2753 hwaddr db_start = 0, db_end = 0;
2754 QList *reserved_regions;
2755 char *resv_prop_str;
2757 if (vms->iommu != VIRT_IOMMU_NONE) {
2758 error_setg(errp, "virt machine does not support multiple IOMMUs");
2759 return;
2762 switch (vms->msi_controller) {
2763 case VIRT_MSI_CTRL_NONE:
2764 return;
2765 case VIRT_MSI_CTRL_ITS:
2766 /* GITS_TRANSLATER page */
2767 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2768 db_end = base_memmap[VIRT_GIC_ITS].base +
2769 base_memmap[VIRT_GIC_ITS].size - 1;
2770 break;
2771 case VIRT_MSI_CTRL_GICV2M:
2772 /* MSI_SETSPI_NS page */
2773 db_start = base_memmap[VIRT_GIC_V2M].base;
2774 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2775 break;
2777 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2778 db_start, db_end,
2779 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2781 reserved_regions = qlist_new();
2782 qlist_append_str(reserved_regions, resv_prop_str);
2783 qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2784 g_free(resv_prop_str);
2788 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2789 DeviceState *dev, Error **errp)
2791 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2793 if (vms->platform_bus_dev) {
2794 MachineClass *mc = MACHINE_GET_CLASS(vms);
2796 if (device_is_dynamic_sysbus(mc, dev)) {
2797 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2798 SYS_BUS_DEVICE(dev));
2802 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2803 virt_memory_plug(hotplug_dev, dev, errp);
2804 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2805 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2808 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2809 PCIDevice *pdev = PCI_DEVICE(dev);
2811 vms->iommu = VIRT_IOMMU_VIRTIO;
2812 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2813 create_virtio_iommu_dt_bindings(vms);
2817 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2818 DeviceState *dev, Error **errp)
2820 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2822 if (!vms->acpi_dev) {
2823 error_setg(errp,
2824 "memory hotplug is not enabled: missing acpi-ged device");
2825 return;
2828 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2829 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2830 return;
2833 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2834 errp);
2837 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2838 DeviceState *dev, Error **errp)
2840 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2841 Error *local_err = NULL;
2843 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2844 if (local_err) {
2845 goto out;
2848 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2849 qdev_unrealize(dev);
2851 out:
2852 error_propagate(errp, local_err);
2855 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2856 DeviceState *dev, Error **errp)
2858 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2859 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2860 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2861 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2862 errp);
2863 } else {
2864 error_setg(errp, "device unplug request for unsupported device"
2865 " type: %s", object_get_typename(OBJECT(dev)));
2869 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2870 DeviceState *dev, Error **errp)
2872 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2873 virt_dimm_unplug(hotplug_dev, dev, errp);
2874 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2875 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2876 } else {
2877 error_setg(errp, "virt: device unplug for unsupported device"
2878 " type: %s", object_get_typename(OBJECT(dev)));
2882 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2883 DeviceState *dev)
2885 MachineClass *mc = MACHINE_GET_CLASS(machine);
2887 if (device_is_dynamic_sysbus(mc, dev) ||
2888 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2889 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2890 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2891 return HOTPLUG_HANDLER(machine);
2893 return NULL;
2897 * for arm64 kvm_type [7-0] encodes the requested number of bits
2898 * in the IPA address space
2900 static int virt_kvm_type(MachineState *ms, const char *type_str)
2902 VirtMachineState *vms = VIRT_MACHINE(ms);
2903 int max_vm_pa_size, requested_pa_size;
2904 bool fixed_ipa;
2906 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2908 /* we freeze the memory map to compute the highest gpa */
2909 virt_set_memmap(vms, max_vm_pa_size);
2911 requested_pa_size = 64 - clz64(vms->highest_gpa);
2914 * KVM requires the IPA size to be at least 32 bits.
2916 if (requested_pa_size < 32) {
2917 requested_pa_size = 32;
2920 if (requested_pa_size > max_vm_pa_size) {
2921 error_report("-m and ,maxmem option values "
2922 "require an IPA range (%d bits) larger than "
2923 "the one supported by the host (%d bits)",
2924 requested_pa_size, max_vm_pa_size);
2925 return -1;
2928 * We return the requested PA log size, unless KVM only supports
2929 * the implicit legacy 40b IPA setting, in which case the kvm_type
2930 * must be 0.
2932 return fixed_ipa ? 0 : requested_pa_size;
2935 static void virt_machine_class_init(ObjectClass *oc, void *data)
2937 MachineClass *mc = MACHINE_CLASS(oc);
2938 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2939 static const char * const valid_cpu_types[] = {
2940 #ifdef CONFIG_TCG
2941 ARM_CPU_TYPE_NAME("cortex-a7"),
2942 ARM_CPU_TYPE_NAME("cortex-a15"),
2943 #ifdef TARGET_AARCH64
2944 ARM_CPU_TYPE_NAME("cortex-a35"),
2945 ARM_CPU_TYPE_NAME("cortex-a55"),
2946 ARM_CPU_TYPE_NAME("cortex-a72"),
2947 ARM_CPU_TYPE_NAME("cortex-a76"),
2948 ARM_CPU_TYPE_NAME("cortex-a710"),
2949 ARM_CPU_TYPE_NAME("a64fx"),
2950 ARM_CPU_TYPE_NAME("neoverse-n1"),
2951 ARM_CPU_TYPE_NAME("neoverse-v1"),
2952 ARM_CPU_TYPE_NAME("neoverse-n2"),
2953 #endif /* TARGET_AARCH64 */
2954 #endif /* CONFIG_TCG */
2955 #ifdef TARGET_AARCH64
2956 ARM_CPU_TYPE_NAME("cortex-a53"),
2957 ARM_CPU_TYPE_NAME("cortex-a57"),
2958 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2959 ARM_CPU_TYPE_NAME("host"),
2960 #endif /* CONFIG_KVM || CONFIG_HVF */
2961 #endif /* TARGET_AARCH64 */
2962 ARM_CPU_TYPE_NAME("max"),
2963 NULL
2966 mc->init = machvirt_init;
2967 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2968 * The value may be reduced later when we have more information about the
2969 * configuration of the particular instance.
2971 mc->max_cpus = 512;
2972 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2973 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2974 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2975 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2976 #ifdef CONFIG_TPM
2977 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2978 #endif
2979 mc->block_default_type = IF_VIRTIO;
2980 mc->no_cdrom = 1;
2981 mc->pci_allow_0_address = true;
2982 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2983 mc->minimum_page_bits = 12;
2984 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2985 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2986 #ifdef CONFIG_TCG
2987 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2988 #else
2989 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2990 #endif
2991 mc->valid_cpu_types = valid_cpu_types;
2992 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2993 mc->kvm_type = virt_kvm_type;
2994 assert(!mc->get_hotplug_handler);
2995 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2996 hc->pre_plug = virt_machine_device_pre_plug_cb;
2997 hc->plug = virt_machine_device_plug_cb;
2998 hc->unplug_request = virt_machine_device_unplug_request_cb;
2999 hc->unplug = virt_machine_device_unplug_cb;
3000 mc->nvdimm_supported = true;
3001 mc->smp_props.clusters_supported = true;
3002 mc->auto_enable_numa_with_memhp = true;
3003 mc->auto_enable_numa_with_memdev = true;
3004 /* platform instead of architectural choice */
3005 mc->cpu_cluster_has_numa_boundary = true;
3006 mc->default_ram_id = "mach-virt.ram";
3007 mc->default_nic = "virtio-net-pci";
3009 object_class_property_add(oc, "acpi", "OnOffAuto",
3010 virt_get_acpi, virt_set_acpi,
3011 NULL, NULL);
3012 object_class_property_set_description(oc, "acpi",
3013 "Enable ACPI");
3014 object_class_property_add_bool(oc, "secure", virt_get_secure,
3015 virt_set_secure);
3016 object_class_property_set_description(oc, "secure",
3017 "Set on/off to enable/disable the ARM "
3018 "Security Extensions (TrustZone)");
3020 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3021 virt_set_virt);
3022 object_class_property_set_description(oc, "virtualization",
3023 "Set on/off to enable/disable emulating a "
3024 "guest CPU which implements the ARM "
3025 "Virtualization Extensions");
3027 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3028 virt_set_highmem);
3029 object_class_property_set_description(oc, "highmem",
3030 "Set on/off to enable/disable using "
3031 "physical address space above 32 bits");
3033 object_class_property_add_bool(oc, "compact-highmem",
3034 virt_get_compact_highmem,
3035 virt_set_compact_highmem);
3036 object_class_property_set_description(oc, "compact-highmem",
3037 "Set on/off to enable/disable compact "
3038 "layout for high memory regions");
3040 object_class_property_add_bool(oc, "highmem-redists",
3041 virt_get_highmem_redists,
3042 virt_set_highmem_redists);
3043 object_class_property_set_description(oc, "highmem-redists",
3044 "Set on/off to enable/disable high "
3045 "memory region for GICv3 or GICv4 "
3046 "redistributor");
3048 object_class_property_add_bool(oc, "highmem-ecam",
3049 virt_get_highmem_ecam,
3050 virt_set_highmem_ecam);
3051 object_class_property_set_description(oc, "highmem-ecam",
3052 "Set on/off to enable/disable high "
3053 "memory region for PCI ECAM");
3055 object_class_property_add_bool(oc, "highmem-mmio",
3056 virt_get_highmem_mmio,
3057 virt_set_highmem_mmio);
3058 object_class_property_set_description(oc, "highmem-mmio",
3059 "Set on/off to enable/disable high "
3060 "memory region for PCI MMIO");
3062 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3063 virt_set_gic_version);
3064 object_class_property_set_description(oc, "gic-version",
3065 "Set GIC version. "
3066 "Valid values are 2, 3, 4, host and max");
3068 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3069 object_class_property_set_description(oc, "iommu",
3070 "Set the IOMMU type. "
3071 "Valid values are none and smmuv3");
3073 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3074 virt_get_default_bus_bypass_iommu,
3075 virt_set_default_bus_bypass_iommu);
3076 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3077 "Set on/off to enable/disable "
3078 "bypass_iommu for default root bus");
3080 object_class_property_add_bool(oc, "ras", virt_get_ras,
3081 virt_set_ras);
3082 object_class_property_set_description(oc, "ras",
3083 "Set on/off to enable/disable reporting host memory errors "
3084 "to a KVM guest using ACPI and guest external abort exceptions");
3086 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3087 object_class_property_set_description(oc, "mte",
3088 "Set on/off to enable/disable emulating a "
3089 "guest CPU which implements the ARM "
3090 "Memory Tagging Extension");
3092 object_class_property_add_bool(oc, "its", virt_get_its,
3093 virt_set_its);
3094 object_class_property_set_description(oc, "its",
3095 "Set on/off to enable/disable "
3096 "ITS instantiation");
3098 object_class_property_add_bool(oc, "dtb-randomness",
3099 virt_get_dtb_randomness,
3100 virt_set_dtb_randomness);
3101 object_class_property_set_description(oc, "dtb-randomness",
3102 "Set off to disable passing random or "
3103 "non-deterministic dtb nodes to guest");
3105 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3106 virt_get_dtb_randomness,
3107 virt_set_dtb_randomness);
3108 object_class_property_set_description(oc, "dtb-kaslr-seed",
3109 "Deprecated synonym of dtb-randomness");
3111 object_class_property_add_str(oc, "x-oem-id",
3112 virt_get_oem_id,
3113 virt_set_oem_id);
3114 object_class_property_set_description(oc, "x-oem-id",
3115 "Override the default value of field OEMID "
3116 "in ACPI table header."
3117 "The string may be up to 6 bytes in size");
3120 object_class_property_add_str(oc, "x-oem-table-id",
3121 virt_get_oem_table_id,
3122 virt_set_oem_table_id);
3123 object_class_property_set_description(oc, "x-oem-table-id",
3124 "Override the default value of field OEM Table ID "
3125 "in ACPI table header."
3126 "The string may be up to 8 bytes in size");
3130 static void virt_instance_init(Object *obj)
3132 VirtMachineState *vms = VIRT_MACHINE(obj);
3133 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3135 /* EL3 is disabled by default on virt: this makes us consistent
3136 * between KVM and TCG for this board, and it also allows us to
3137 * boot UEFI blobs which assume no TrustZone support.
3139 vms->secure = false;
3141 /* EL2 is also disabled by default, for similar reasons */
3142 vms->virt = false;
3144 /* High memory is enabled by default */
3145 vms->highmem = true;
3146 vms->highmem_compact = !vmc->no_highmem_compact;
3147 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3149 vms->highmem_ecam = !vmc->no_highmem_ecam;
3150 vms->highmem_mmio = true;
3151 vms->highmem_redists = true;
3153 if (vmc->no_its) {
3154 vms->its = false;
3155 } else {
3156 /* Default allows ITS instantiation */
3157 vms->its = true;
3159 if (vmc->no_tcg_its) {
3160 vms->tcg_its = false;
3161 } else {
3162 vms->tcg_its = true;
3166 /* Default disallows iommu instantiation */
3167 vms->iommu = VIRT_IOMMU_NONE;
3169 /* The default root bus is attached to iommu by default */
3170 vms->default_bus_bypass_iommu = false;
3172 /* Default disallows RAS instantiation */
3173 vms->ras = false;
3175 /* MTE is disabled by default. */
3176 vms->mte = false;
3178 /* Supply kaslr-seed and rng-seed by default */
3179 vms->dtb_randomness = true;
3181 vms->irqmap = a15irqmap;
3183 virt_flash_create(vms);
3185 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3186 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3189 static const TypeInfo virt_machine_info = {
3190 .name = TYPE_VIRT_MACHINE,
3191 .parent = TYPE_MACHINE,
3192 .abstract = true,
3193 .instance_size = sizeof(VirtMachineState),
3194 .class_size = sizeof(VirtMachineClass),
3195 .class_init = virt_machine_class_init,
3196 .instance_init = virt_instance_init,
3197 .interfaces = (InterfaceInfo[]) {
3198 { TYPE_HOTPLUG_HANDLER },
3203 static void machvirt_machine_init(void)
3205 type_register_static(&virt_machine_info);
3207 type_init(machvirt_machine_init);
3209 static void virt_machine_9_0_options(MachineClass *mc)
3212 DEFINE_VIRT_MACHINE_AS_LATEST(9, 0)
3214 static void virt_machine_8_2_options(MachineClass *mc)
3216 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3218 virt_machine_9_0_options(mc);
3219 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3221 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3222 * earlier machines. (Exposing it tickles a bug in older EDK2
3223 * guest BIOS binaries.)
3225 vmc->no_ns_el2_virt_timer_irq = true;
3227 DEFINE_VIRT_MACHINE(8, 2)
3229 static void virt_machine_8_1_options(MachineClass *mc)
3231 virt_machine_8_2_options(mc);
3232 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3234 DEFINE_VIRT_MACHINE(8, 1)
3236 static void virt_machine_8_0_options(MachineClass *mc)
3238 virt_machine_8_1_options(mc);
3239 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3241 DEFINE_VIRT_MACHINE(8, 0)
3243 static void virt_machine_7_2_options(MachineClass *mc)
3245 virt_machine_8_0_options(mc);
3246 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3248 DEFINE_VIRT_MACHINE(7, 2)
3250 static void virt_machine_7_1_options(MachineClass *mc)
3252 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3254 virt_machine_7_2_options(mc);
3255 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3256 /* Compact layout for high memory regions was introduced with 7.2 */
3257 vmc->no_highmem_compact = true;
3259 DEFINE_VIRT_MACHINE(7, 1)
3261 static void virt_machine_7_0_options(MachineClass *mc)
3263 virt_machine_7_1_options(mc);
3264 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3266 DEFINE_VIRT_MACHINE(7, 0)
3268 static void virt_machine_6_2_options(MachineClass *mc)
3270 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3272 virt_machine_7_0_options(mc);
3273 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3274 vmc->no_tcg_lpa2 = true;
3276 DEFINE_VIRT_MACHINE(6, 2)
3278 static void virt_machine_6_1_options(MachineClass *mc)
3280 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3282 virt_machine_6_2_options(mc);
3283 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3284 mc->smp_props.prefer_sockets = true;
3285 vmc->no_cpu_topology = true;
3287 /* qemu ITS was introduced with 6.2 */
3288 vmc->no_tcg_its = true;
3290 DEFINE_VIRT_MACHINE(6, 1)
3292 static void virt_machine_6_0_options(MachineClass *mc)
3294 virt_machine_6_1_options(mc);
3295 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3297 DEFINE_VIRT_MACHINE(6, 0)
3299 static void virt_machine_5_2_options(MachineClass *mc)
3301 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3303 virt_machine_6_0_options(mc);
3304 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3305 vmc->no_secure_gpio = true;
3307 DEFINE_VIRT_MACHINE(5, 2)
3309 static void virt_machine_5_1_options(MachineClass *mc)
3311 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3313 virt_machine_5_2_options(mc);
3314 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3315 vmc->no_kvm_steal_time = true;
3317 DEFINE_VIRT_MACHINE(5, 1)
3319 static void virt_machine_5_0_options(MachineClass *mc)
3321 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3323 virt_machine_5_1_options(mc);
3324 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3325 mc->numa_mem_supported = true;
3326 vmc->acpi_expose_flash = true;
3327 mc->auto_enable_numa_with_memdev = false;
3329 DEFINE_VIRT_MACHINE(5, 0)
3331 static void virt_machine_4_2_options(MachineClass *mc)
3333 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3335 virt_machine_5_0_options(mc);
3336 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3337 vmc->kvm_no_adjvtime = true;
3339 DEFINE_VIRT_MACHINE(4, 2)
3341 static void virt_machine_4_1_options(MachineClass *mc)
3343 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3345 virt_machine_4_2_options(mc);
3346 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3347 vmc->no_ged = true;
3348 mc->auto_enable_numa_with_memhp = false;
3350 DEFINE_VIRT_MACHINE(4, 1)
3352 static void virt_machine_4_0_options(MachineClass *mc)
3354 virt_machine_4_1_options(mc);
3355 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3357 DEFINE_VIRT_MACHINE(4, 0)
3359 static void virt_machine_3_1_options(MachineClass *mc)
3361 virt_machine_4_0_options(mc);
3362 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3364 DEFINE_VIRT_MACHINE(3, 1)
3366 static void virt_machine_3_0_options(MachineClass *mc)
3368 virt_machine_3_1_options(mc);
3369 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3371 DEFINE_VIRT_MACHINE(3, 0)
3373 static void virt_machine_2_12_options(MachineClass *mc)
3375 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3377 virt_machine_3_0_options(mc);
3378 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3379 vmc->no_highmem_ecam = true;
3380 mc->max_cpus = 255;
3382 DEFINE_VIRT_MACHINE(2, 12)
3384 static void virt_machine_2_11_options(MachineClass *mc)
3386 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3388 virt_machine_2_12_options(mc);
3389 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3390 vmc->smbios_old_sys_ver = true;
3392 DEFINE_VIRT_MACHINE(2, 11)
3394 static void virt_machine_2_10_options(MachineClass *mc)
3396 virt_machine_2_11_options(mc);
3397 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3398 /* before 2.11 we never faulted accesses to bad addresses */
3399 mc->ignore_memory_transaction_failures = true;
3401 DEFINE_VIRT_MACHINE(2, 10)
3403 static void virt_machine_2_9_options(MachineClass *mc)
3405 virt_machine_2_10_options(mc);
3406 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3408 DEFINE_VIRT_MACHINE(2, 9)
3410 static void virt_machine_2_8_options(MachineClass *mc)
3412 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3414 virt_machine_2_9_options(mc);
3415 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3416 /* For 2.8 and earlier we falsely claimed in the DT that
3417 * our timers were edge-triggered, not level-triggered.
3419 vmc->claim_edge_triggered_timers = true;
3421 DEFINE_VIRT_MACHINE(2, 8)
3423 static void virt_machine_2_7_options(MachineClass *mc)
3425 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3427 virt_machine_2_8_options(mc);
3428 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3429 /* ITS was introduced with 2.8 */
3430 vmc->no_its = true;
3431 /* Stick with 1K pages for migration compatibility */
3432 mc->minimum_page_bits = 0;
3434 DEFINE_VIRT_MACHINE(2, 7)
3436 static void virt_machine_2_6_options(MachineClass *mc)
3438 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3440 virt_machine_2_7_options(mc);
3441 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3442 vmc->disallow_affinity_adjustment = true;
3443 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3444 vmc->no_pmu = true;
3446 DEFINE_VIRT_MACHINE(2, 6)