migration: move wait-unplug loop to its own function
[qemu/kevin.git] / plugins / api.c
blob332e2c60e291723a273bc8e76bb1497237c7896b
1 /*
2 * QEMU Plugin API
4 * This provides the API that is available to the plugins to interact
5 * with QEMU. We have to be careful not to expose internal details of
6 * how QEMU works so we abstract out things like translation and
7 * instructions to anonymous data types:
9 * qemu_plugin_tb
10 * qemu_plugin_insn
12 * Which can then be passed back into the API to do additional things.
13 * As such all the public functions in here are exported in
14 * qemu-plugin.h.
16 * The general life-cycle of a plugin is:
18 * - plugin is loaded, public qemu_plugin_install called
19 * - the install func registers callbacks for events
20 * - usually an atexit_cb is registered to dump info at the end
21 * - when a registered event occurs the plugin is called
22 * - some events pass additional info
23 * - during translation the plugin can decide to instrument any
24 * instruction
25 * - when QEMU exits all the registered atexit callbacks are called
27 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
28 * Copyright (C) 2019, Linaro
30 * License: GNU GPL, version 2 or later.
31 * See the COPYING file in the top-level directory.
33 * SPDX-License-Identifier: GPL-2.0-or-later
37 #include "qemu/osdep.h"
38 #include "qemu/plugin.h"
39 #include "tcg/tcg.h"
40 #include "exec/exec-all.h"
41 #include "exec/ram_addr.h"
42 #include "disas/disas.h"
43 #include "plugin.h"
44 #ifndef CONFIG_USER_ONLY
45 #include "qemu/plugin-memory.h"
46 #include "hw/boards.h"
47 #endif
48 #include "trace/mem.h"
50 /* Uninstall and Reset handlers */
52 void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
54 plugin_reset_uninstall(id, cb, false);
57 void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
59 plugin_reset_uninstall(id, cb, true);
63 * Plugin Register Functions
65 * This allows the plugin to register callbacks for various events
66 * during the translation.
69 void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
70 qemu_plugin_vcpu_simple_cb_t cb)
72 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
75 void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
76 qemu_plugin_vcpu_simple_cb_t cb)
78 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
81 void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
82 qemu_plugin_vcpu_udata_cb_t cb,
83 enum qemu_plugin_cb_flags flags,
84 void *udata)
86 if (!tb->mem_only) {
87 plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
88 cb, flags, udata);
92 void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
93 enum qemu_plugin_op op,
94 void *ptr, uint64_t imm)
96 if (!tb->mem_only) {
97 plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
101 void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
102 qemu_plugin_vcpu_udata_cb_t cb,
103 enum qemu_plugin_cb_flags flags,
104 void *udata)
106 if (!insn->mem_only) {
107 plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
108 cb, flags, udata);
112 void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
113 enum qemu_plugin_op op,
114 void *ptr, uint64_t imm)
116 if (!insn->mem_only) {
117 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
118 0, op, ptr, imm);
124 * We always plant memory instrumentation because they don't finalise until
125 * after the operation has complete.
127 void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
128 qemu_plugin_vcpu_mem_cb_t cb,
129 enum qemu_plugin_cb_flags flags,
130 enum qemu_plugin_mem_rw rw,
131 void *udata)
133 plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
134 cb, flags, rw, udata);
137 void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
138 enum qemu_plugin_mem_rw rw,
139 enum qemu_plugin_op op, void *ptr,
140 uint64_t imm)
142 plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
143 rw, op, ptr, imm);
146 void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
147 qemu_plugin_vcpu_tb_trans_cb_t cb)
149 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
152 void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
153 qemu_plugin_vcpu_syscall_cb_t cb)
155 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
158 void
159 qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
160 qemu_plugin_vcpu_syscall_ret_cb_t cb)
162 plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
166 * Plugin Queries
168 * These are queries that the plugin can make to gauge information
169 * from our opaque data types. We do not want to leak internal details
170 * here just information useful to the plugin.
174 * Translation block information:
176 * A plugin can query the virtual address of the start of the block
177 * and the number of instructions in it. It can also get access to
178 * each translated instruction.
181 size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
183 return tb->n;
186 uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
188 return tb->vaddr;
191 struct qemu_plugin_insn *
192 qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
194 struct qemu_plugin_insn *insn;
195 if (unlikely(idx >= tb->n)) {
196 return NULL;
198 insn = g_ptr_array_index(tb->insns, idx);
199 insn->mem_only = tb->mem_only;
200 return insn;
204 * Instruction information
206 * These queries allow the plugin to retrieve information about each
207 * instruction being translated.
210 const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
212 return insn->data->data;
215 size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
217 return insn->data->len;
220 uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
222 return insn->vaddr;
225 void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
227 return insn->haddr;
230 char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
232 CPUState *cpu = current_cpu;
233 return plugin_disas(cpu, insn->vaddr, insn->data->len);
236 const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
238 const char *sym = lookup_symbol(insn->vaddr);
239 return sym[0] != 0 ? sym : NULL;
243 * The memory queries allow the plugin to query information about a
244 * memory access.
247 unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
249 return info & TRACE_MEM_SZ_SHIFT_MASK;
252 bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
254 return !!(info & TRACE_MEM_SE);
257 bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
259 return !!(info & TRACE_MEM_BE);
262 bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
264 return !!(info & TRACE_MEM_ST);
268 * Virtual Memory queries
271 #ifdef CONFIG_SOFTMMU
272 static __thread struct qemu_plugin_hwaddr hwaddr_info;
273 #endif
275 struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
276 uint64_t vaddr)
278 #ifdef CONFIG_SOFTMMU
279 CPUState *cpu = current_cpu;
280 unsigned int mmu_idx = info >> TRACE_MEM_MMU_SHIFT;
281 hwaddr_info.is_store = info & TRACE_MEM_ST;
283 if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
284 info & TRACE_MEM_ST, &hwaddr_info)) {
285 error_report("invalid use of qemu_plugin_get_hwaddr");
286 return NULL;
289 return &hwaddr_info;
290 #else
291 return NULL;
292 #endif
295 bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
297 #ifdef CONFIG_SOFTMMU
298 return haddr->is_io;
299 #else
300 return false;
301 #endif
304 uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
306 #ifdef CONFIG_SOFTMMU
307 if (haddr) {
308 if (!haddr->is_io) {
309 RAMBlock *block;
310 ram_addr_t offset;
311 void *hostaddr = (void *) haddr->v.ram.hostaddr;
313 block = qemu_ram_block_from_host(hostaddr, false, &offset);
314 if (!block) {
315 error_report("Bad ram pointer %"PRIx64"", haddr->v.ram.hostaddr);
316 abort();
319 return block->offset + offset + block->mr->addr;
320 } else {
321 MemoryRegionSection *mrs = haddr->v.io.section;
322 return haddr->v.io.offset + mrs->mr->addr;
325 #endif
326 return 0;
329 const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
331 #ifdef CONFIG_SOFTMMU
332 if (h && h->is_io) {
333 MemoryRegionSection *mrs = h->v.io.section;
334 if (!mrs->mr->name) {
335 unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
336 g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
337 return g_intern_string(temp);
338 } else {
339 return g_intern_string(mrs->mr->name);
341 } else {
342 return g_intern_static_string("RAM");
344 #else
345 return g_intern_static_string("Invalid");
346 #endif
350 * Queries to the number and potential maximum number of vCPUs there
351 * will be. This helps the plugin dimension per-vcpu arrays.
354 #ifndef CONFIG_USER_ONLY
355 static MachineState * get_ms(void)
357 return MACHINE(qdev_get_machine());
359 #endif
361 int qemu_plugin_n_vcpus(void)
363 #ifdef CONFIG_USER_ONLY
364 return -1;
365 #else
366 return get_ms()->smp.cpus;
367 #endif
370 int qemu_plugin_n_max_vcpus(void)
372 #ifdef CONFIG_USER_ONLY
373 return -1;
374 #else
375 return get_ms()->smp.max_cpus;
376 #endif
380 * Plugin output
382 void qemu_plugin_outs(const char *string)
384 qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);