2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
18 #include "qemu/main-loop.h"
20 #include "gicv3_internal.h"
24 void gicv3_set_gicv3state(CPUState
*cpu
, GICv3CPUState
*s
)
26 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
27 CPUARMState
*env
= &arm_cpu
->env
;
29 env
->gicv3state
= (void *)s
;
32 static GICv3CPUState
*icc_cs_from_env(CPUARMState
*env
)
34 return env
->gicv3state
;
37 static bool gicv3_use_ns_bank(CPUARMState
*env
)
39 /* Return true if we should use the NonSecure bank for a banked GIC
40 * CPU interface register. Note that this differs from the
41 * access_secure_reg() function because GICv3 banked registers are
42 * banked even for AArch64, unlike the other CPU system registers.
44 return !arm_is_secure_below_el3(env
);
47 /* The minimum BPR for the virtual interface is a configurable property */
48 static inline int icv_min_vbpr(GICv3CPUState
*cs
)
50 return 7 - cs
->vprebits
;
53 /* Simple accessor functions for LR fields */
54 static uint32_t ich_lr_vintid(uint64_t lr
)
56 return extract64(lr
, ICH_LR_EL2_VINTID_SHIFT
, ICH_LR_EL2_VINTID_LENGTH
);
59 static uint32_t ich_lr_pintid(uint64_t lr
)
61 return extract64(lr
, ICH_LR_EL2_PINTID_SHIFT
, ICH_LR_EL2_PINTID_LENGTH
);
64 static uint32_t ich_lr_prio(uint64_t lr
)
66 return extract64(lr
, ICH_LR_EL2_PRIORITY_SHIFT
, ICH_LR_EL2_PRIORITY_LENGTH
);
69 static int ich_lr_state(uint64_t lr
)
71 return extract64(lr
, ICH_LR_EL2_STATE_SHIFT
, ICH_LR_EL2_STATE_LENGTH
);
74 static bool icv_access(CPUARMState
*env
, int hcr_flags
)
76 /* Return true if this ICC_ register access should really be
77 * directed to an ICV_ access. hcr_flags is a mask of
78 * HCR_EL2 bits to check: we treat this as an ICV_ access
79 * if we are in NS EL1 and at least one of the specified
80 * HCR_EL2 bits is set.
82 * ICV registers fall into four categories:
83 * * access if NS EL1 and HCR_EL2.FMO == 1:
84 * all ICV regs with '0' in their name
85 * * access if NS EL1 and HCR_EL2.IMO == 1:
86 * all ICV regs with '1' in their name
87 * * access if NS EL1 and either IMO or FMO == 1:
90 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
91 bool flagmatch
= hcr_el2
& hcr_flags
& (HCR_IMO
| HCR_FMO
);
93 return flagmatch
&& arm_current_el(env
) == 1
94 && !arm_is_secure_below_el3(env
);
97 static int read_vbpr(GICv3CPUState
*cs
, int grp
)
99 /* Read VBPR value out of the VMCR field (caller must handle
100 * VCBPR effects if required)
102 if (grp
== GICV3_G0
) {
103 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
104 ICH_VMCR_EL2_VBPR0_LENGTH
);
106 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
107 ICH_VMCR_EL2_VBPR1_LENGTH
);
111 static void write_vbpr(GICv3CPUState
*cs
, int grp
, int value
)
113 /* Write new VBPR1 value, handling the "writing a value less than
114 * the minimum sets it to the minimum" semantics.
116 int min
= icv_min_vbpr(cs
);
118 if (grp
!= GICV3_G0
) {
122 value
= MAX(value
, min
);
124 if (grp
== GICV3_G0
) {
125 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
126 ICH_VMCR_EL2_VBPR0_LENGTH
, value
);
128 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
129 ICH_VMCR_EL2_VBPR1_LENGTH
, value
);
133 static uint32_t icv_fullprio_mask(GICv3CPUState
*cs
)
135 /* Return a mask word which clears the unimplemented priority bits
136 * from a priority value for a virtual interrupt. (Not to be confused
137 * with the group priority, whose mask depends on the value of VBPR
138 * for the interrupt group.)
140 return ~0U << (8 - cs
->vpribits
);
143 static int ich_highest_active_virt_prio(GICv3CPUState
*cs
)
145 /* Calculate the current running priority based on the set bits
146 * in the ICH Active Priority Registers.
149 int aprmax
= 1 << (cs
->vprebits
- 5);
151 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
153 for (i
= 0; i
< aprmax
; i
++) {
154 uint32_t apr
= cs
->ich_apr
[GICV3_G0
][i
] |
155 cs
->ich_apr
[GICV3_G1NS
][i
];
160 return (i
* 32 + ctz32(apr
)) << (icv_min_vbpr(cs
) + 1);
162 /* No current active interrupts: return idle priority */
166 static int hppvi_index(GICv3CPUState
*cs
)
168 /* Return the list register index of the highest priority pending
169 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
170 * pseudocode. If no pending virtual interrupts, return -1.
174 /* Note that a list register entry with a priority of 0xff will
175 * never be reported by this function; this is the architecturally
180 if (!(cs
->ich_vmcr_el2
& (ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
))) {
181 /* Both groups disabled, definitely nothing to do */
185 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
186 uint64_t lr
= cs
->ich_lr_el2
[i
];
189 if (ich_lr_state(lr
) != ICH_LR_EL2_STATE_PENDING
) {
194 /* Ignore interrupts if relevant group enable not set */
195 if (lr
& ICH_LR_EL2_GROUP
) {
196 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
200 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
205 thisprio
= ich_lr_prio(lr
);
207 if (thisprio
< prio
) {
216 static uint32_t icv_gprio_mask(GICv3CPUState
*cs
, int group
)
218 /* Return a mask word which clears the subpriority bits from
219 * a priority value for a virtual interrupt in the specified group.
220 * This depends on the VBPR value.
221 * If using VBPR0 then:
222 * a BPR of 0 means the group priority bits are [7:1];
223 * a BPR of 1 means they are [7:2], and so on down to
224 * a BPR of 7 meaning no group priority bits at all.
225 * If using VBPR1 then:
226 * a BPR of 0 is impossible (the minimum value is 1)
227 * a BPR of 1 means the group priority bits are [7:1];
228 * a BPR of 2 means they are [7:2], and so on down to
229 * a BPR of 7 meaning the group priority is [7].
231 * Which BPR to use depends on the group of the interrupt and
232 * the current ICH_VMCR_EL2.VCBPR settings.
234 * This corresponds to the VGroupBits() pseudocode.
238 if (group
== GICV3_G1NS
&& cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
242 bpr
= read_vbpr(cs
, group
);
243 if (group
== GICV3_G1NS
) {
248 return ~0U << (bpr
+ 1);
251 static bool icv_hppi_can_preempt(GICv3CPUState
*cs
, uint64_t lr
)
253 /* Return true if we can signal this virtual interrupt defined by
254 * the given list register value; see the pseudocode functions
255 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
256 * Compare also icc_hppi_can_preempt() which is the non-virtual
257 * equivalent of these checks.
260 uint32_t mask
, prio
, rprio
, vpmr
;
262 if (!(cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
)) {
263 /* Virtual interface disabled */
267 /* We don't need to check that this LR is in Pending state because
268 * that has already been done in hppvi_index().
271 prio
= ich_lr_prio(lr
);
272 vpmr
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
273 ICH_VMCR_EL2_VPMR_LENGTH
);
276 /* Priority mask masks this interrupt */
280 rprio
= ich_highest_active_virt_prio(cs
);
282 /* No running interrupt so we can preempt */
286 grp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
288 mask
= icv_gprio_mask(cs
, grp
);
290 /* We only preempt a running interrupt if the pending interrupt's
291 * group priority is sufficient (the subpriorities are not considered).
293 if ((prio
& mask
) < (rprio
& mask
)) {
300 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState
*cs
,
303 /* Return a set of bits indicating the EOI maintenance interrupt status
304 * for each list register. The EOI maintenance interrupt status is
305 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
306 * (see the GICv3 spec for the ICH_EISR_EL2 register).
307 * If misr is not NULL then we should also collect the information
308 * about the MISR.EOI, MISR.NP and MISR.U bits.
312 bool seenpending
= false;
315 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
316 uint64_t lr
= cs
->ich_lr_el2
[i
];
318 if ((lr
& (ICH_LR_EL2_STATE_MASK
| ICH_LR_EL2_HW
| ICH_LR_EL2_EOI
))
322 if ((lr
& ICH_LR_EL2_STATE_MASK
)) {
325 if (ich_lr_state(lr
) == ICH_LR_EL2_STATE_PENDING
) {
331 if (validcount
< 2 && (cs
->ich_hcr_el2
& ICH_HCR_EL2_UIE
)) {
332 *misr
|= ICH_MISR_EL2_U
;
334 if (!seenpending
&& (cs
->ich_hcr_el2
& ICH_HCR_EL2_NPIE
)) {
335 *misr
|= ICH_MISR_EL2_NP
;
338 *misr
|= ICH_MISR_EL2_EOI
;
344 static uint32_t maintenance_interrupt_state(GICv3CPUState
*cs
)
346 /* Return a set of bits indicating the maintenance interrupt status
347 * (as seen in the ICH_MISR_EL2 register).
351 /* Scan list registers and fill in the U, NP and EOI bits */
352 eoi_maintenance_interrupt_state(cs
, &value
);
354 if (cs
->ich_hcr_el2
& (ICH_HCR_EL2_LRENPIE
| ICH_HCR_EL2_EOICOUNT_MASK
)) {
355 value
|= ICH_MISR_EL2_LRENP
;
358 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0EIE
) &&
359 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
360 value
|= ICH_MISR_EL2_VGRP0E
;
363 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0DIE
) &&
364 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
365 value
|= ICH_MISR_EL2_VGRP0D
;
367 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1EIE
) &&
368 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
369 value
|= ICH_MISR_EL2_VGRP1E
;
372 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1DIE
) &&
373 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
374 value
|= ICH_MISR_EL2_VGRP1D
;
380 static void gicv3_cpuif_virt_update(GICv3CPUState
*cs
)
382 /* Tell the CPU about any pending virtual interrupts or
383 * maintenance interrupts, following a change to the state
384 * of the CPU interface relevant to virtual interrupts.
386 * CAUTION: this function will call qemu_set_irq() on the
387 * CPU maintenance IRQ line, which is typically wired up
388 * to the GIC as a per-CPU interrupt. This means that it
389 * will recursively call back into the GIC code via
390 * gicv3_redist_set_irq() and thus into the CPU interface code's
391 * gicv3_cpuif_update(). It is therefore important that this
392 * function is only called as the final action of a CPU interface
393 * register write implementation, after all the GIC state
394 * fields have been updated. gicv3_cpuif_update() also must
395 * not cause this function to be called, but that happens
396 * naturally as a result of there being no architectural
397 * linkage between the physical and virtual GIC logic.
403 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
405 idx
= hppvi_index(cs
);
406 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs
), idx
);
408 uint64_t lr
= cs
->ich_lr_el2
[idx
];
410 if (icv_hppi_can_preempt(cs
, lr
)) {
411 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
412 if (lr
& ICH_LR_EL2_GROUP
) {
420 if (cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
) {
421 maintlevel
= maintenance_interrupt_state(cs
);
424 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs
), fiqlevel
,
425 irqlevel
, maintlevel
);
427 qemu_set_irq(cs
->parent_vfiq
, fiqlevel
);
428 qemu_set_irq(cs
->parent_virq
, irqlevel
);
429 qemu_set_irq(cpu
->gicv3_maintenance_interrupt
, maintlevel
);
432 static uint64_t icv_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
434 GICv3CPUState
*cs
= icc_cs_from_env(env
);
435 int regno
= ri
->opc2
& 3;
436 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
437 uint64_t value
= cs
->ich_apr
[grp
][regno
];
439 trace_gicv3_icv_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
443 static void icv_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
446 GICv3CPUState
*cs
= icc_cs_from_env(env
);
447 int regno
= ri
->opc2
& 3;
448 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
450 trace_gicv3_icv_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
452 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
454 gicv3_cpuif_virt_update(cs
);
458 static uint64_t icv_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
460 GICv3CPUState
*cs
= icc_cs_from_env(env
);
461 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
465 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
466 /* reads return bpr0 + 1 saturated to 7, writes ignored */
471 bpr
= read_vbpr(cs
, grp
);
478 trace_gicv3_icv_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
483 static void icv_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
486 GICv3CPUState
*cs
= icc_cs_from_env(env
);
487 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
489 trace_gicv3_icv_bpr_write(ri
->crm
== 8 ? 0 : 1,
490 gicv3_redist_affid(cs
), value
);
492 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
493 /* reads return bpr0 + 1 saturated to 7, writes ignored */
497 write_vbpr(cs
, grp
, value
);
499 gicv3_cpuif_virt_update(cs
);
502 static uint64_t icv_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
504 GICv3CPUState
*cs
= icc_cs_from_env(env
);
507 value
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
508 ICH_VMCR_EL2_VPMR_LENGTH
);
510 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs
), value
);
514 static void icv_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
517 GICv3CPUState
*cs
= icc_cs_from_env(env
);
519 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs
), value
);
521 value
&= icv_fullprio_mask(cs
);
523 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
524 ICH_VMCR_EL2_VPMR_LENGTH
, value
);
526 gicv3_cpuif_virt_update(cs
);
529 static uint64_t icv_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
531 GICv3CPUState
*cs
= icc_cs_from_env(env
);
535 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
536 value
= extract64(cs
->ich_vmcr_el2
, enbit
, 1);
538 trace_gicv3_icv_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
539 gicv3_redist_affid(cs
), value
);
543 static void icv_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
546 GICv3CPUState
*cs
= icc_cs_from_env(env
);
549 trace_gicv3_icv_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
550 gicv3_redist_affid(cs
), value
);
552 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
554 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, enbit
, 1, value
);
555 gicv3_cpuif_virt_update(cs
);
558 static uint64_t icv_ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
560 GICv3CPUState
*cs
= icc_cs_from_env(env
);
563 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
564 * should match the ones reported in ich_vtr_read().
566 value
= ICC_CTLR_EL1_A3V
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
567 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
569 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
) {
570 value
|= ICC_CTLR_EL1_EOIMODE
;
573 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
574 value
|= ICC_CTLR_EL1_CBPR
;
577 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs
), value
);
581 static void icv_ctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
584 GICv3CPUState
*cs
= icc_cs_from_env(env
);
586 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs
), value
);
588 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VCBPR_SHIFT
,
589 1, value
& ICC_CTLR_EL1_CBPR
? 1 : 0);
590 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VEOIM_SHIFT
,
591 1, value
& ICC_CTLR_EL1_EOIMODE
? 1 : 0);
593 gicv3_cpuif_virt_update(cs
);
596 static uint64_t icv_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
598 GICv3CPUState
*cs
= icc_cs_from_env(env
);
599 int prio
= ich_highest_active_virt_prio(cs
);
601 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs
), prio
);
605 static uint64_t icv_hppir_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
607 GICv3CPUState
*cs
= icc_cs_from_env(env
);
608 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
609 int idx
= hppvi_index(cs
);
610 uint64_t value
= INTID_SPURIOUS
;
613 uint64_t lr
= cs
->ich_lr_el2
[idx
];
614 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
616 if (grp
== thisgrp
) {
617 value
= ich_lr_vintid(lr
);
621 trace_gicv3_icv_hppir_read(grp
, gicv3_redist_affid(cs
), value
);
625 static void icv_activate_irq(GICv3CPUState
*cs
, int idx
, int grp
)
627 /* Activate the interrupt in the specified list register
628 * by moving it from Pending to Active state, and update the
629 * Active Priority Registers.
631 uint32_t mask
= icv_gprio_mask(cs
, grp
);
632 int prio
= ich_lr_prio(cs
->ich_lr_el2
[idx
]) & mask
;
633 int aprbit
= prio
>> (8 - cs
->vprebits
);
634 int regno
= aprbit
/ 32;
635 int regbit
= aprbit
% 32;
637 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
638 cs
->ich_lr_el2
[idx
] |= ICH_LR_EL2_STATE_ACTIVE_BIT
;
639 cs
->ich_apr
[grp
][regno
] |= (1 << regbit
);
642 static uint64_t icv_iar_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
644 GICv3CPUState
*cs
= icc_cs_from_env(env
);
645 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
646 int idx
= hppvi_index(cs
);
647 uint64_t intid
= INTID_SPURIOUS
;
650 uint64_t lr
= cs
->ich_lr_el2
[idx
];
651 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
653 if (thisgrp
== grp
&& icv_hppi_can_preempt(cs
, lr
)) {
654 intid
= ich_lr_vintid(lr
);
655 if (intid
< INTID_SECURE
) {
656 icv_activate_irq(cs
, idx
, grp
);
658 /* Interrupt goes from Pending to Invalid */
659 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
660 /* We will now return the (bogus) ID from the list register,
661 * as per the pseudocode.
667 trace_gicv3_icv_iar_read(ri
->crm
== 8 ? 0 : 1,
668 gicv3_redist_affid(cs
), intid
);
670 gicv3_cpuif_virt_update(cs
);
675 static int icc_highest_active_prio(GICv3CPUState
*cs
)
677 /* Calculate the current running priority based on the set bits
678 * in the Active Priority Registers.
682 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
683 uint32_t apr
= cs
->icc_apr
[GICV3_G0
][i
] |
684 cs
->icc_apr
[GICV3_G1
][i
] | cs
->icc_apr
[GICV3_G1NS
][i
];
689 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
691 /* No current active interrupts: return idle priority */
695 static uint32_t icc_gprio_mask(GICv3CPUState
*cs
, int group
)
697 /* Return a mask word which clears the subpriority bits from
698 * a priority value for an interrupt in the specified group.
699 * This depends on the BPR value. For CBPR0 (S or NS):
700 * a BPR of 0 means the group priority bits are [7:1];
701 * a BPR of 1 means they are [7:2], and so on down to
702 * a BPR of 7 meaning no group priority bits at all.
704 * a BPR of 0 is impossible (the minimum value is 1)
705 * a BPR of 1 means the group priority bits are [7:1];
706 * a BPR of 2 means they are [7:2], and so on down to
707 * a BPR of 7 meaning the group priority is [7].
709 * Which BPR to use depends on the group of the interrupt and
710 * the current ICC_CTLR.CBPR settings.
712 * This corresponds to the GroupBits() pseudocode.
716 if ((group
== GICV3_G1
&& cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
) ||
717 (group
== GICV3_G1NS
&&
718 cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
722 bpr
= cs
->icc_bpr
[group
] & 7;
724 if (group
== GICV3_G1NS
) {
729 return ~0U << (bpr
+ 1);
732 static bool icc_no_enabled_hppi(GICv3CPUState
*cs
)
734 /* Return true if there is no pending interrupt, or the
735 * highest priority pending interrupt is in a group which has been
736 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
738 return cs
->hppi
.prio
== 0xff || (cs
->icc_igrpen
[cs
->hppi
.grp
] == 0);
741 static bool icc_hppi_can_preempt(GICv3CPUState
*cs
)
743 /* Return true if we have a pending interrupt of sufficient
744 * priority to preempt.
749 if (icc_no_enabled_hppi(cs
)) {
753 if (cs
->hppi
.prio
>= cs
->icc_pmr_el1
) {
754 /* Priority mask masks this interrupt */
758 rprio
= icc_highest_active_prio(cs
);
760 /* No currently running interrupt so we can preempt */
764 mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
766 /* We only preempt a running interrupt if the pending interrupt's
767 * group priority is sufficient (the subpriorities are not considered).
769 if ((cs
->hppi
.prio
& mask
) < (rprio
& mask
)) {
776 void gicv3_cpuif_update(GICv3CPUState
*cs
)
778 /* Tell the CPU about its highest priority pending interrupt */
781 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
782 CPUARMState
*env
= &cpu
->env
;
784 g_assert(qemu_mutex_iothread_locked());
786 trace_gicv3_cpuif_update(gicv3_redist_affid(cs
), cs
->hppi
.irq
,
787 cs
->hppi
.grp
, cs
->hppi
.prio
);
789 if (cs
->hppi
.grp
== GICV3_G1
&& !arm_feature(env
, ARM_FEATURE_EL3
)) {
790 /* If a Security-enabled GIC sends a G1S interrupt to a
791 * Security-disabled CPU, we must treat it as if it were G0.
793 cs
->hppi
.grp
= GICV3_G0
;
796 if (icc_hppi_can_preempt(cs
)) {
797 /* We have an interrupt: should we signal it as IRQ or FIQ?
798 * This is described in the GICv3 spec section 4.6.2.
802 switch (cs
->hppi
.grp
) {
807 isfiq
= (!arm_is_secure(env
) ||
808 (arm_current_el(env
) == 3 && arm_el_is_aa64(env
, 3)));
811 isfiq
= arm_is_secure(env
);
814 g_assert_not_reached();
824 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs
), fiqlevel
, irqlevel
);
826 qemu_set_irq(cs
->parent_fiq
, fiqlevel
);
827 qemu_set_irq(cs
->parent_irq
, irqlevel
);
830 static uint64_t icc_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
832 GICv3CPUState
*cs
= icc_cs_from_env(env
);
833 uint32_t value
= cs
->icc_pmr_el1
;
835 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
836 return icv_pmr_read(env
, ri
);
839 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
840 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
841 /* NS access and Group 0 is inaccessible to NS: return the
842 * NS view of the current priority
844 if ((value
& 0x80) == 0) {
845 /* Secure priorities not visible to NS */
847 } else if (value
!= 0xff) {
848 value
= (value
<< 1) & 0xff;
852 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs
), value
);
857 static void icc_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
860 GICv3CPUState
*cs
= icc_cs_from_env(env
);
862 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
863 return icv_pmr_write(env
, ri
, value
);
866 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs
), value
);
870 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
871 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
872 /* NS access and Group 0 is inaccessible to NS: return the
873 * NS view of the current priority
875 if (!(cs
->icc_pmr_el1
& 0x80)) {
876 /* Current PMR in the secure range, don't allow NS to change it */
879 value
= (value
>> 1) | 0x80;
881 cs
->icc_pmr_el1
= value
;
882 gicv3_cpuif_update(cs
);
885 static void icc_activate_irq(GICv3CPUState
*cs
, int irq
)
887 /* Move the interrupt from the Pending state to Active, and update
888 * the Active Priority Registers
890 uint32_t mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
891 int prio
= cs
->hppi
.prio
& mask
;
892 int aprbit
= prio
>> 1;
893 int regno
= aprbit
/ 32;
894 int regbit
= aprbit
% 32;
896 cs
->icc_apr
[cs
->hppi
.grp
][regno
] |= (1 << regbit
);
898 if (irq
< GIC_INTERNAL
) {
899 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 1);
900 cs
->gicr_ipendr0
= deposit32(cs
->gicr_ipendr0
, irq
, 1, 0);
901 gicv3_redist_update(cs
);
903 gicv3_gicd_active_set(cs
->gic
, irq
);
904 gicv3_gicd_pending_clear(cs
->gic
, irq
);
905 gicv3_update(cs
->gic
, irq
, 1);
909 static uint64_t icc_hppir0_value(GICv3CPUState
*cs
, CPUARMState
*env
)
911 /* Return the highest priority pending interrupt register value
916 if (cs
->hppi
.prio
== 0xff) {
917 return INTID_SPURIOUS
;
920 /* Check whether we can return the interrupt or if we should return
921 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
922 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
925 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
926 (cs
->hppi
.grp
!= GICV3_G1NS
));
928 if (cs
->hppi
.grp
!= GICV3_G0
&& !arm_is_el3_or_mon(env
)) {
929 return INTID_SPURIOUS
;
931 if (irq_is_secure
&& !arm_is_secure(env
)) {
932 /* Secure interrupts not visible to Nonsecure */
933 return INTID_SPURIOUS
;
936 if (cs
->hppi
.grp
!= GICV3_G0
) {
937 /* Indicate to EL3 that there's a Group 1 interrupt for the other
940 return irq_is_secure
? INTID_SECURE
: INTID_NONSECURE
;
946 static uint64_t icc_hppir1_value(GICv3CPUState
*cs
, CPUARMState
*env
)
948 /* Return the highest priority pending interrupt register value
953 if (cs
->hppi
.prio
== 0xff) {
954 return INTID_SPURIOUS
;
957 /* Check whether we can return the interrupt or if we should return
958 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
959 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
962 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
963 (cs
->hppi
.grp
!= GICV3_G1NS
));
965 if (cs
->hppi
.grp
== GICV3_G0
) {
966 /* Group 0 interrupts not visible via HPPIR1 */
967 return INTID_SPURIOUS
;
970 if (!arm_is_secure(env
)) {
971 /* Secure interrupts not visible in Non-secure */
972 return INTID_SPURIOUS
;
974 } else if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
975 /* Group 1 non-secure interrupts not visible in Secure EL1 */
976 return INTID_SPURIOUS
;
982 static uint64_t icc_iar0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
984 GICv3CPUState
*cs
= icc_cs_from_env(env
);
987 if (icv_access(env
, HCR_FMO
)) {
988 return icv_iar_read(env
, ri
);
991 if (!icc_hppi_can_preempt(cs
)) {
992 intid
= INTID_SPURIOUS
;
994 intid
= icc_hppir0_value(cs
, env
);
997 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
998 icc_activate_irq(cs
, intid
);
1001 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs
), intid
);
1005 static uint64_t icc_iar1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1007 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1010 if (icv_access(env
, HCR_IMO
)) {
1011 return icv_iar_read(env
, ri
);
1014 if (!icc_hppi_can_preempt(cs
)) {
1015 intid
= INTID_SPURIOUS
;
1017 intid
= icc_hppir1_value(cs
, env
);
1020 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
1021 icc_activate_irq(cs
, intid
);
1024 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs
), intid
);
1028 static void icc_drop_prio(GICv3CPUState
*cs
, int grp
)
1030 /* Drop the priority of the currently active interrupt in
1031 * the specified group.
1033 * Note that we can guarantee (because of the requirement to nest
1034 * ICC_IAR reads [which activate an interrupt and raise priority]
1035 * with ICC_EOIR writes [which drop the priority for the interrupt])
1036 * that the interrupt we're being called for is the highest priority
1037 * active interrupt, meaning that it has the lowest set bit in the
1040 * If the guest does not honour the ordering constraints then the
1041 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1042 * the values of the APR registers might become incorrect and the
1043 * running priority will be wrong, so interrupts that should preempt
1044 * might not do so, and interrupts that should not preempt might do so.
1048 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[grp
]); i
++) {
1049 uint64_t *papr
= &cs
->icc_apr
[grp
][i
];
1054 /* Clear the lowest set bit */
1059 /* running priority change means we need an update for this cpu i/f */
1060 gicv3_cpuif_update(cs
);
1063 static bool icc_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1065 /* Return true if we should split priority drop and interrupt
1066 * deactivation, ie whether the relevant EOIMode bit is set.
1068 if (arm_is_el3_or_mon(env
)) {
1069 return cs
->icc_ctlr_el3
& ICC_CTLR_EL3_EOIMODE_EL3
;
1071 if (arm_is_secure_below_el3(env
)) {
1072 return cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_EOIMODE
;
1074 return cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
;
1078 static int icc_highest_active_group(GICv3CPUState
*cs
)
1080 /* Return the group with the highest priority active interrupt.
1081 * We can do this by just comparing the APRs to see which one
1082 * has the lowest set bit.
1083 * (If more than one group is active at the same priority then
1084 * we're in UNPREDICTABLE territory.)
1088 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
1089 int g0ctz
= ctz32(cs
->icc_apr
[GICV3_G0
][i
]);
1090 int g1ctz
= ctz32(cs
->icc_apr
[GICV3_G1
][i
]);
1091 int g1nsctz
= ctz32(cs
->icc_apr
[GICV3_G1NS
][i
]);
1093 if (g1nsctz
< g0ctz
&& g1nsctz
< g1ctz
) {
1096 if (g1ctz
< g0ctz
) {
1103 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1104 * ignores the spurious EOI attempt.
1109 static void icc_deactivate_irq(GICv3CPUState
*cs
, int irq
)
1111 if (irq
< GIC_INTERNAL
) {
1112 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 0);
1113 gicv3_redist_update(cs
);
1115 gicv3_gicd_active_clear(cs
->gic
, irq
);
1116 gicv3_update(cs
->gic
, irq
, 1);
1120 static bool icv_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1122 /* Return true if we should split priority drop and interrupt
1123 * deactivation, ie whether the virtual EOIMode bit is set.
1125 return cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
;
1128 static int icv_find_active(GICv3CPUState
*cs
, int irq
)
1130 /* Given an interrupt number for an active interrupt, return the index
1131 * of the corresponding list register, or -1 if there is no match.
1132 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1136 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
1137 uint64_t lr
= cs
->ich_lr_el2
[i
];
1139 if ((lr
& ICH_LR_EL2_STATE_ACTIVE_BIT
) && ich_lr_vintid(lr
) == irq
) {
1147 static void icv_deactivate_irq(GICv3CPUState
*cs
, int idx
)
1149 /* Deactivate the interrupt in the specified list register index */
1150 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1152 if (lr
& ICH_LR_EL2_HW
) {
1153 /* Deactivate the associated physical interrupt */
1154 int pirq
= ich_lr_pintid(lr
);
1156 if (pirq
< INTID_SECURE
) {
1157 icc_deactivate_irq(cs
, pirq
);
1161 /* Clear the 'active' part of the state, so ActivePending->Pending
1162 * and Active->Invalid.
1164 lr
&= ~ICH_LR_EL2_STATE_ACTIVE_BIT
;
1165 cs
->ich_lr_el2
[idx
] = lr
;
1168 static void icv_increment_eoicount(GICv3CPUState
*cs
)
1170 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1171 int eoicount
= extract64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1172 ICH_HCR_EL2_EOICOUNT_LENGTH
);
1174 cs
->ich_hcr_el2
= deposit64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1175 ICH_HCR_EL2_EOICOUNT_LENGTH
, eoicount
+ 1);
1178 static int icv_drop_prio(GICv3CPUState
*cs
)
1180 /* Drop the priority of the currently active virtual interrupt
1181 * (favouring group 0 if there is a set active bit at
1182 * the same priority for both group 0 and group 1).
1183 * Return the priority value for the bit we just cleared,
1184 * or 0xff if no bits were set in the AP registers at all.
1185 * Note that though the ich_apr[] are uint64_t only the low
1186 * 32 bits are actually relevant.
1189 int aprmax
= 1 << (cs
->vprebits
- 5);
1191 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
1193 for (i
= 0; i
< aprmax
; i
++) {
1194 uint64_t *papr0
= &cs
->ich_apr
[GICV3_G0
][i
];
1195 uint64_t *papr1
= &cs
->ich_apr
[GICV3_G1NS
][i
];
1196 int apr0count
, apr1count
;
1198 if (!*papr0
&& !*papr1
) {
1202 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1203 * because we need to return the bit number we cleared so
1204 * it can be compared against the list register's priority field.
1206 apr0count
= ctz32(*papr0
);
1207 apr1count
= ctz32(*papr1
);
1209 if (apr0count
<= apr1count
) {
1210 *papr0
&= *papr0
- 1;
1211 return (apr0count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1213 *papr1
&= *papr1
- 1;
1214 return (apr1count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1220 static void icv_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1223 /* Deactivate interrupt */
1224 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1226 int irq
= value
& 0xffffff;
1228 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs
), value
);
1230 if (irq
>= cs
->gic
->num_irq
) {
1231 /* Also catches special interrupt numbers and LPIs */
1235 if (!icv_eoi_split(env
, cs
)) {
1239 idx
= icv_find_active(cs
, irq
);
1242 /* No list register matching this, so increment the EOI count
1243 * (might trigger a maintenance interrupt)
1245 icv_increment_eoicount(cs
);
1247 icv_deactivate_irq(cs
, idx
);
1250 gicv3_cpuif_virt_update(cs
);
1253 static void icv_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1256 /* End of Interrupt */
1257 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1258 int irq
= value
& 0xffffff;
1259 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
1262 trace_gicv3_icv_eoir_write(ri
->crm
== 8 ? 0 : 1,
1263 gicv3_redist_affid(cs
), value
);
1265 if (irq
>= cs
->gic
->num_irq
) {
1266 /* Also catches special interrupt numbers and LPIs */
1270 /* We implement the IMPDEF choice of "drop priority before doing
1271 * error checks" (because that lets us avoid scanning the AP
1274 dropprio
= icv_drop_prio(cs
);
1275 if (dropprio
== 0xff) {
1276 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1277 * whether the list registers are checked in this
1278 * situation; we choose not to.
1283 idx
= icv_find_active(cs
, irq
);
1286 /* No valid list register corresponding to EOI ID */
1287 icv_increment_eoicount(cs
);
1289 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1290 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
1291 int lr_gprio
= ich_lr_prio(lr
) & icv_gprio_mask(cs
, grp
);
1293 if (thisgrp
== grp
&& lr_gprio
== dropprio
) {
1294 if (!icv_eoi_split(env
, cs
)) {
1295 /* Priority drop and deactivate not split: deactivate irq now */
1296 icv_deactivate_irq(cs
, idx
);
1301 gicv3_cpuif_virt_update(cs
);
1304 static void icc_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1307 /* End of Interrupt */
1308 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1309 int irq
= value
& 0xffffff;
1311 bool is_eoir0
= ri
->crm
== 8;
1313 if (icv_access(env
, is_eoir0
? HCR_FMO
: HCR_IMO
)) {
1314 icv_eoir_write(env
, ri
, value
);
1318 trace_gicv3_icc_eoir_write(is_eoir0
? 0 : 1,
1319 gicv3_redist_affid(cs
), value
);
1321 if (irq
>= cs
->gic
->num_irq
) {
1322 /* This handles two cases:
1323 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1324 * to the GICC_EOIR, the GIC ignores that write.
1325 * 2. If software writes the number of a non-existent interrupt
1326 * this must be a subcase of "value written does not match the last
1327 * valid interrupt value read from the Interrupt Acknowledge
1328 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1333 grp
= icc_highest_active_group(cs
);
1339 if (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
)
1340 && arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
)) {
1348 if (!arm_is_secure(env
)) {
1356 if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
1361 qemu_log_mask(LOG_GUEST_ERROR
,
1362 "%s: IRQ %d isn't active\n", __func__
, irq
);
1366 icc_drop_prio(cs
, grp
);
1368 if (!icc_eoi_split(env
, cs
)) {
1369 /* Priority drop and deactivate not split: deactivate irq now */
1370 icc_deactivate_irq(cs
, irq
);
1374 static uint64_t icc_hppir0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1376 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1379 if (icv_access(env
, HCR_FMO
)) {
1380 return icv_hppir_read(env
, ri
);
1383 value
= icc_hppir0_value(cs
, env
);
1384 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs
), value
);
1388 static uint64_t icc_hppir1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1390 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1393 if (icv_access(env
, HCR_IMO
)) {
1394 return icv_hppir_read(env
, ri
);
1397 value
= icc_hppir1_value(cs
, env
);
1398 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs
), value
);
1402 static uint64_t icc_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1404 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1405 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1406 bool satinc
= false;
1409 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1410 return icv_bpr_read(env
, ri
);
1413 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1417 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1418 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1419 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1425 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1426 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1427 /* reads return bpr0 + 1 sat to 7, writes ignored */
1432 bpr
= cs
->icc_bpr
[grp
];
1438 trace_gicv3_icc_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
1443 static void icc_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1446 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1447 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1450 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1451 icv_bpr_write(env
, ri
, value
);
1455 trace_gicv3_icc_bpr_write(ri
->crm
== 8 ? 0 : 1,
1456 gicv3_redist_affid(cs
), value
);
1458 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1462 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1463 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1464 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1470 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1471 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1472 /* reads return bpr0 + 1 sat to 7, writes ignored */
1476 minval
= (grp
== GICV3_G1NS
) ? GIC_MIN_BPR_NS
: GIC_MIN_BPR
;
1477 if (value
< minval
) {
1481 cs
->icc_bpr
[grp
] = value
& 7;
1482 gicv3_cpuif_update(cs
);
1485 static uint64_t icc_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1487 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1490 int regno
= ri
->opc2
& 3;
1491 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1493 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1494 return icv_ap_read(env
, ri
);
1497 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1501 value
= cs
->icc_apr
[grp
][regno
];
1503 trace_gicv3_icc_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1507 static void icc_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1510 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1512 int regno
= ri
->opc2
& 3;
1513 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1515 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1516 icv_ap_write(env
, ri
, value
);
1520 trace_gicv3_icc_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1522 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1526 /* It's not possible to claim that a Non-secure interrupt is active
1527 * at a priority outside the Non-secure range (128..255), since this
1528 * would otherwise allow malicious NS code to block delivery of S interrupts
1529 * by writing a bad value to these registers.
1531 if (grp
== GICV3_G1NS
&& regno
< 2 && arm_feature(env
, ARM_FEATURE_EL3
)) {
1535 cs
->icc_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
1536 gicv3_cpuif_update(cs
);
1539 static void icc_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1542 /* Deactivate interrupt */
1543 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1544 int irq
= value
& 0xffffff;
1545 bool irq_is_secure
, single_sec_state
, irq_is_grp0
;
1546 bool route_fiq_to_el3
, route_irq_to_el3
, route_fiq_to_el2
, route_irq_to_el2
;
1548 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1549 icv_dir_write(env
, ri
, value
);
1553 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs
), value
);
1555 if (irq
>= cs
->gic
->num_irq
) {
1556 /* Also catches special interrupt numbers and LPIs */
1560 if (!icc_eoi_split(env
, cs
)) {
1564 int grp
= gicv3_irq_group(cs
->gic
, cs
, irq
);
1566 single_sec_state
= cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
;
1567 irq_is_secure
= !single_sec_state
&& (grp
!= GICV3_G1NS
);
1568 irq_is_grp0
= grp
== GICV3_G0
;
1570 /* Check whether we're allowed to deactivate this interrupt based
1571 * on its group and the current CPU state.
1572 * These checks are laid out to correspond to the spec's pseudocode.
1574 route_fiq_to_el3
= env
->cp15
.scr_el3
& SCR_FIQ
;
1575 route_irq_to_el3
= env
->cp15
.scr_el3
& SCR_IRQ
;
1576 /* No need to include !IsSecure in route_*_to_el2 as it's only
1577 * tested in cases where we know !IsSecure is true.
1579 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
1580 route_fiq_to_el2
= hcr_el2
& HCR_FMO
;
1581 route_irq_to_el2
= hcr_el2
& HCR_IMO
;
1583 switch (arm_current_el(env
)) {
1587 if (single_sec_state
&& irq_is_grp0
&& !route_fiq_to_el3
) {
1590 if (!irq_is_secure
&& !irq_is_grp0
&& !route_irq_to_el3
) {
1595 if (!arm_is_secure_below_el3(env
)) {
1596 if (single_sec_state
&& irq_is_grp0
&&
1597 !route_fiq_to_el3
&& !route_fiq_to_el2
) {
1600 if (!irq_is_secure
&& !irq_is_grp0
&&
1601 !route_irq_to_el3
&& !route_irq_to_el2
) {
1605 if (irq_is_grp0
&& !route_fiq_to_el3
) {
1609 (!irq_is_secure
|| !single_sec_state
) &&
1610 !route_irq_to_el3
) {
1616 g_assert_not_reached();
1619 icc_deactivate_irq(cs
, irq
);
1622 static uint64_t icc_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1624 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1627 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1628 return icv_rpr_read(env
, ri
);
1631 prio
= icc_highest_active_prio(cs
);
1633 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1634 !arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_FIQ
)) {
1635 /* NS GIC access and Group 0 is inaccessible to NS */
1636 if ((prio
& 0x80) == 0) {
1637 /* NS mustn't see priorities in the Secure half of the range */
1639 } else if (prio
!= 0xff) {
1640 /* Non-idle priority: show the Non-secure view of it */
1641 prio
= (prio
<< 1) & 0xff;
1645 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs
), prio
);
1649 static void icc_generate_sgi(CPUARMState
*env
, GICv3CPUState
*cs
,
1650 uint64_t value
, int grp
, bool ns
)
1652 GICv3State
*s
= cs
->gic
;
1654 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1655 uint64_t aff
= extract64(value
, 48, 8) << 16 |
1656 extract64(value
, 32, 8) << 8 |
1657 extract64(value
, 16, 8);
1658 uint32_t targetlist
= extract64(value
, 0, 16);
1659 uint32_t irq
= extract64(value
, 24, 4);
1660 bool irm
= extract64(value
, 40, 1);
1663 if (grp
== GICV3_G1
&& s
->gicd_ctlr
& GICD_CTLR_DS
) {
1664 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1665 * interrupts as Group 0 interrupts and must send Secure Group 0
1666 * interrupts to the target CPUs.
1671 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs
), irq
, irm
,
1674 for (i
= 0; i
< s
->num_cpu
; i
++) {
1675 GICv3CPUState
*ocs
= &s
->cpu
[i
];
1678 /* IRM == 1 : route to all CPUs except self */
1683 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1684 * where the corresponding bit is set in targetlist
1688 if (ocs
->gicr_typer
>> 40 != aff
) {
1691 aff0
= extract64(ocs
->gicr_typer
, 32, 8);
1692 if (aff0
> 15 || extract32(targetlist
, aff0
, 1) == 0) {
1697 /* The redistributor will check against its own GICR_NSACR as needed */
1698 gicv3_redist_send_sgi(ocs
, grp
, irq
, ns
);
1702 static void icc_sgi0r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1705 /* Generate Secure Group 0 SGI. */
1706 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1707 bool ns
= !arm_is_secure(env
);
1709 icc_generate_sgi(env
, cs
, value
, GICV3_G0
, ns
);
1712 static void icc_sgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1715 /* Generate Group 1 SGI for the current Security state */
1716 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1718 bool ns
= !arm_is_secure(env
);
1720 grp
= ns
? GICV3_G1NS
: GICV3_G1
;
1721 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1724 static void icc_asgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1727 /* Generate Group 1 SGI for the Security state that is not
1730 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1732 bool ns
= !arm_is_secure(env
);
1734 grp
= ns
? GICV3_G1
: GICV3_G1NS
;
1735 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1738 static uint64_t icc_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1740 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1741 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1744 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1745 return icv_igrpen_read(env
, ri
);
1748 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1752 value
= cs
->icc_igrpen
[grp
];
1753 trace_gicv3_icc_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
1754 gicv3_redist_affid(cs
), value
);
1758 static void icc_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1761 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1762 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1764 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1765 icv_igrpen_write(env
, ri
, value
);
1769 trace_gicv3_icc_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
1770 gicv3_redist_affid(cs
), value
);
1772 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1776 cs
->icc_igrpen
[grp
] = value
& ICC_IGRPEN_ENABLE
;
1777 gicv3_cpuif_update(cs
);
1780 static uint64_t icc_igrpen1_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1782 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1785 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1786 value
= cs
->icc_igrpen
[GICV3_G1NS
] | (cs
->icc_igrpen
[GICV3_G1
] << 1);
1787 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs
), value
);
1791 static void icc_igrpen1_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1794 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1796 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs
), value
);
1798 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1799 cs
->icc_igrpen
[GICV3_G1NS
] = extract32(value
, 0, 1);
1800 cs
->icc_igrpen
[GICV3_G1
] = extract32(value
, 1, 1);
1801 gicv3_cpuif_update(cs
);
1804 static uint64_t icc_ctlr_el1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1806 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1807 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1810 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1811 return icv_ctlr_read(env
, ri
);
1814 value
= cs
->icc_ctlr_el1
[bank
];
1815 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs
), value
);
1819 static void icc_ctlr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1822 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1823 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1826 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1827 icv_ctlr_write(env
, ri
, value
);
1831 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs
), value
);
1833 /* Only CBPR and EOIMODE can be RW;
1834 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1835 * the asseciated priority-based routing of them);
1836 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1838 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1839 ((cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) == 0)) {
1840 mask
= ICC_CTLR_EL1_EOIMODE
;
1842 mask
= ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
;
1845 cs
->icc_ctlr_el1
[bank
] &= ~mask
;
1846 cs
->icc_ctlr_el1
[bank
] |= (value
& mask
);
1847 gicv3_cpuif_update(cs
);
1851 static uint64_t icc_ctlr_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1853 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1856 value
= cs
->icc_ctlr_el3
;
1857 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1858 value
|= ICC_CTLR_EL3_EOIMODE_EL1NS
;
1860 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1861 value
|= ICC_CTLR_EL3_CBPR_EL1NS
;
1863 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1864 value
|= ICC_CTLR_EL3_EOIMODE_EL1S
;
1866 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1867 value
|= ICC_CTLR_EL3_CBPR_EL1S
;
1870 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs
), value
);
1874 static void icc_ctlr_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1877 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1880 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs
), value
);
1882 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1883 cs
->icc_ctlr_el1
[GICV3_NS
] &= ~(ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1884 if (value
& ICC_CTLR_EL3_EOIMODE_EL1NS
) {
1885 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_EOIMODE
;
1887 if (value
& ICC_CTLR_EL3_CBPR_EL1NS
) {
1888 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_CBPR
;
1891 cs
->icc_ctlr_el1
[GICV3_S
] &= ~(ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1892 if (value
& ICC_CTLR_EL3_EOIMODE_EL1S
) {
1893 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_EOIMODE
;
1895 if (value
& ICC_CTLR_EL3_CBPR_EL1S
) {
1896 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_CBPR
;
1899 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1900 mask
= ICC_CTLR_EL3_EOIMODE_EL3
;
1902 cs
->icc_ctlr_el3
&= ~mask
;
1903 cs
->icc_ctlr_el3
|= (value
& mask
);
1904 gicv3_cpuif_update(cs
);
1907 static CPAccessResult
gicv3_irqfiq_access(CPUARMState
*env
,
1908 const ARMCPRegInfo
*ri
, bool isread
)
1910 CPAccessResult r
= CP_ACCESS_OK
;
1911 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1912 int el
= arm_current_el(env
);
1914 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TC
) &&
1915 el
== 1 && !arm_is_secure_below_el3(env
)) {
1916 /* Takes priority over a possible EL3 trap */
1917 return CP_ACCESS_TRAP_EL2
;
1920 if ((env
->cp15
.scr_el3
& (SCR_FIQ
| SCR_IRQ
)) == (SCR_FIQ
| SCR_IRQ
)) {
1923 /* Note that arm_hcr_el2_eff takes secure state into account. */
1924 if ((arm_hcr_el2_eff(env
) & (HCR_IMO
| HCR_FMO
)) == 0) {
1925 r
= CP_ACCESS_TRAP_EL3
;
1929 r
= CP_ACCESS_TRAP_EL3
;
1932 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1933 r
= CP_ACCESS_TRAP_EL3
;
1937 g_assert_not_reached();
1941 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1947 static CPAccessResult
gicv3_dir_access(CPUARMState
*env
,
1948 const ARMCPRegInfo
*ri
, bool isread
)
1950 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1952 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TDIR
) &&
1953 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1954 /* Takes priority over a possible EL3 trap */
1955 return CP_ACCESS_TRAP_EL2
;
1958 return gicv3_irqfiq_access(env
, ri
, isread
);
1961 static CPAccessResult
gicv3_sgi_access(CPUARMState
*env
,
1962 const ARMCPRegInfo
*ri
, bool isread
)
1964 if (arm_current_el(env
) == 1 &&
1965 (arm_hcr_el2_eff(env
) & (HCR_IMO
| HCR_FMO
)) != 0) {
1966 /* Takes priority over a possible EL3 trap */
1967 return CP_ACCESS_TRAP_EL2
;
1970 return gicv3_irqfiq_access(env
, ri
, isread
);
1973 static CPAccessResult
gicv3_fiq_access(CPUARMState
*env
,
1974 const ARMCPRegInfo
*ri
, bool isread
)
1976 CPAccessResult r
= CP_ACCESS_OK
;
1977 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1978 int el
= arm_current_el(env
);
1980 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL0
) &&
1981 el
== 1 && !arm_is_secure_below_el3(env
)) {
1982 /* Takes priority over a possible EL3 trap */
1983 return CP_ACCESS_TRAP_EL2
;
1986 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
1989 if ((arm_hcr_el2_eff(env
) & HCR_FMO
) == 0) {
1990 r
= CP_ACCESS_TRAP_EL3
;
1994 r
= CP_ACCESS_TRAP_EL3
;
1997 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1998 r
= CP_ACCESS_TRAP_EL3
;
2002 g_assert_not_reached();
2006 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2012 static CPAccessResult
gicv3_irq_access(CPUARMState
*env
,
2013 const ARMCPRegInfo
*ri
, bool isread
)
2015 CPAccessResult r
= CP_ACCESS_OK
;
2016 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2017 int el
= arm_current_el(env
);
2019 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL1
) &&
2020 el
== 1 && !arm_is_secure_below_el3(env
)) {
2021 /* Takes priority over a possible EL3 trap */
2022 return CP_ACCESS_TRAP_EL2
;
2025 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
2028 if ((arm_hcr_el2_eff(env
) & HCR_IMO
) == 0) {
2029 r
= CP_ACCESS_TRAP_EL3
;
2033 r
= CP_ACCESS_TRAP_EL3
;
2036 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
2037 r
= CP_ACCESS_TRAP_EL3
;
2041 g_assert_not_reached();
2045 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2051 static void icc_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2053 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2055 cs
->icc_ctlr_el1
[GICV3_S
] = ICC_CTLR_EL1_A3V
|
2056 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2057 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2058 cs
->icc_ctlr_el1
[GICV3_NS
] = ICC_CTLR_EL1_A3V
|
2059 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2060 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2061 cs
->icc_pmr_el1
= 0;
2062 cs
->icc_bpr
[GICV3_G0
] = GIC_MIN_BPR
;
2063 cs
->icc_bpr
[GICV3_G1
] = GIC_MIN_BPR
;
2064 cs
->icc_bpr
[GICV3_G1NS
] = GIC_MIN_BPR_NS
;
2065 memset(cs
->icc_apr
, 0, sizeof(cs
->icc_apr
));
2066 memset(cs
->icc_igrpen
, 0, sizeof(cs
->icc_igrpen
));
2067 cs
->icc_ctlr_el3
= ICC_CTLR_EL3_NDS
| ICC_CTLR_EL3_A3V
|
2068 (1 << ICC_CTLR_EL3_IDBITS_SHIFT
) |
2069 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT
);
2071 memset(cs
->ich_apr
, 0, sizeof(cs
->ich_apr
));
2072 cs
->ich_hcr_el2
= 0;
2073 memset(cs
->ich_lr_el2
, 0, sizeof(cs
->ich_lr_el2
));
2074 cs
->ich_vmcr_el2
= ICH_VMCR_EL2_VFIQEN
|
2075 ((icv_min_vbpr(cs
) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT
) |
2076 (icv_min_vbpr(cs
) << ICH_VMCR_EL2_VBPR0_SHIFT
);
2079 static const ARMCPRegInfo gicv3_cpuif_reginfo
[] = {
2080 { .name
= "ICC_PMR_EL1", .state
= ARM_CP_STATE_BOTH
,
2081 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 6, .opc2
= 0,
2082 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2083 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2084 .readfn
= icc_pmr_read
,
2085 .writefn
= icc_pmr_write
,
2086 /* We hang the whole cpu interface reset routine off here
2087 * rather than parcelling it out into one little function
2090 .resetfn
= icc_reset
,
2092 { .name
= "ICC_IAR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2093 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 0,
2094 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2095 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2096 .readfn
= icc_iar0_read
,
2098 { .name
= "ICC_EOIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2099 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 1,
2100 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2101 .access
= PL1_W
, .accessfn
= gicv3_fiq_access
,
2102 .writefn
= icc_eoir_write
,
2104 { .name
= "ICC_HPPIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2105 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 2,
2106 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2107 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2108 .readfn
= icc_hppir0_read
,
2110 { .name
= "ICC_BPR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2111 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 3,
2112 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2113 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2114 .readfn
= icc_bpr_read
,
2115 .writefn
= icc_bpr_write
,
2117 { .name
= "ICC_AP0R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2118 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 4,
2119 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2120 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2121 .readfn
= icc_ap_read
,
2122 .writefn
= icc_ap_write
,
2124 { .name
= "ICC_AP0R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2125 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 5,
2126 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2127 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2128 .readfn
= icc_ap_read
,
2129 .writefn
= icc_ap_write
,
2131 { .name
= "ICC_AP0R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2132 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 6,
2133 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2134 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2135 .readfn
= icc_ap_read
,
2136 .writefn
= icc_ap_write
,
2138 { .name
= "ICC_AP0R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2139 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 7,
2140 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2141 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2142 .readfn
= icc_ap_read
,
2143 .writefn
= icc_ap_write
,
2145 /* All the ICC_AP1R*_EL1 registers are banked */
2146 { .name
= "ICC_AP1R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2147 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 0,
2148 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2149 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2150 .readfn
= icc_ap_read
,
2151 .writefn
= icc_ap_write
,
2153 { .name
= "ICC_AP1R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2154 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 1,
2155 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2156 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2157 .readfn
= icc_ap_read
,
2158 .writefn
= icc_ap_write
,
2160 { .name
= "ICC_AP1R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2161 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 2,
2162 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2163 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2164 .readfn
= icc_ap_read
,
2165 .writefn
= icc_ap_write
,
2167 { .name
= "ICC_AP1R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2168 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 3,
2169 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2170 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2171 .readfn
= icc_ap_read
,
2172 .writefn
= icc_ap_write
,
2174 { .name
= "ICC_DIR_EL1", .state
= ARM_CP_STATE_BOTH
,
2175 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 1,
2176 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2177 .access
= PL1_W
, .accessfn
= gicv3_dir_access
,
2178 .writefn
= icc_dir_write
,
2180 { .name
= "ICC_RPR_EL1", .state
= ARM_CP_STATE_BOTH
,
2181 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 3,
2182 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2183 .access
= PL1_R
, .accessfn
= gicv3_irqfiq_access
,
2184 .readfn
= icc_rpr_read
,
2186 { .name
= "ICC_SGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2187 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 5,
2188 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2189 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2190 .writefn
= icc_sgi1r_write
,
2192 { .name
= "ICC_SGI1R",
2193 .cp
= 15, .opc1
= 0, .crm
= 12,
2194 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2195 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2196 .writefn
= icc_sgi1r_write
,
2198 { .name
= "ICC_ASGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2199 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 6,
2200 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2201 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2202 .writefn
= icc_asgi1r_write
,
2204 { .name
= "ICC_ASGI1R",
2205 .cp
= 15, .opc1
= 1, .crm
= 12,
2206 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2207 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2208 .writefn
= icc_asgi1r_write
,
2210 { .name
= "ICC_SGI0R_EL1", .state
= ARM_CP_STATE_AA64
,
2211 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 7,
2212 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2213 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2214 .writefn
= icc_sgi0r_write
,
2216 { .name
= "ICC_SGI0R",
2217 .cp
= 15, .opc1
= 2, .crm
= 12,
2218 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2219 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2220 .writefn
= icc_sgi0r_write
,
2222 { .name
= "ICC_IAR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2223 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 0,
2224 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2225 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2226 .readfn
= icc_iar1_read
,
2228 { .name
= "ICC_EOIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2229 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 1,
2230 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2231 .access
= PL1_W
, .accessfn
= gicv3_irq_access
,
2232 .writefn
= icc_eoir_write
,
2234 { .name
= "ICC_HPPIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2235 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 2,
2236 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2237 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2238 .readfn
= icc_hppir1_read
,
2240 /* This register is banked */
2241 { .name
= "ICC_BPR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2242 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 3,
2243 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2244 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2245 .readfn
= icc_bpr_read
,
2246 .writefn
= icc_bpr_write
,
2248 /* This register is banked */
2249 { .name
= "ICC_CTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2250 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 4,
2251 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2252 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2253 .readfn
= icc_ctlr_el1_read
,
2254 .writefn
= icc_ctlr_el1_write
,
2256 { .name
= "ICC_SRE_EL1", .state
= ARM_CP_STATE_BOTH
,
2257 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 5,
2258 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2260 /* We don't support IRQ/FIQ bypass and system registers are
2261 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2262 * This register is banked but since it's constant we don't
2263 * need to do anything special.
2267 { .name
= "ICC_IGRPEN0_EL1", .state
= ARM_CP_STATE_BOTH
,
2268 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 6,
2269 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2270 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2271 .readfn
= icc_igrpen_read
,
2272 .writefn
= icc_igrpen_write
,
2274 /* This register is banked */
2275 { .name
= "ICC_IGRPEN1_EL1", .state
= ARM_CP_STATE_BOTH
,
2276 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 7,
2277 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2278 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2279 .readfn
= icc_igrpen_read
,
2280 .writefn
= icc_igrpen_write
,
2282 { .name
= "ICC_SRE_EL2", .state
= ARM_CP_STATE_BOTH
,
2283 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 5,
2284 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2286 /* We don't support IRQ/FIQ bypass and system registers are
2287 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2291 { .name
= "ICC_CTLR_EL3", .state
= ARM_CP_STATE_BOTH
,
2292 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 4,
2293 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2295 .readfn
= icc_ctlr_el3_read
,
2296 .writefn
= icc_ctlr_el3_write
,
2298 { .name
= "ICC_SRE_EL3", .state
= ARM_CP_STATE_BOTH
,
2299 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 5,
2300 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2302 /* We don't support IRQ/FIQ bypass and system registers are
2303 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2307 { .name
= "ICC_IGRPEN1_EL3", .state
= ARM_CP_STATE_BOTH
,
2308 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 7,
2309 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2311 .readfn
= icc_igrpen1_el3_read
,
2312 .writefn
= icc_igrpen1_el3_write
,
2317 static uint64_t ich_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2319 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2320 int regno
= ri
->opc2
& 3;
2321 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2324 value
= cs
->ich_apr
[grp
][regno
];
2325 trace_gicv3_ich_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2329 static void ich_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2332 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2333 int regno
= ri
->opc2
& 3;
2334 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2336 trace_gicv3_ich_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2338 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
2339 gicv3_cpuif_virt_update(cs
);
2342 static uint64_t ich_hcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2344 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2345 uint64_t value
= cs
->ich_hcr_el2
;
2347 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs
), value
);
2351 static void ich_hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2354 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2356 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs
), value
);
2358 value
&= ICH_HCR_EL2_EN
| ICH_HCR_EL2_UIE
| ICH_HCR_EL2_LRENPIE
|
2359 ICH_HCR_EL2_NPIE
| ICH_HCR_EL2_VGRP0EIE
| ICH_HCR_EL2_VGRP0DIE
|
2360 ICH_HCR_EL2_VGRP1EIE
| ICH_HCR_EL2_VGRP1DIE
| ICH_HCR_EL2_TC
|
2361 ICH_HCR_EL2_TALL0
| ICH_HCR_EL2_TALL1
| ICH_HCR_EL2_TSEI
|
2362 ICH_HCR_EL2_TDIR
| ICH_HCR_EL2_EOICOUNT_MASK
;
2364 cs
->ich_hcr_el2
= value
;
2365 gicv3_cpuif_virt_update(cs
);
2368 static uint64_t ich_vmcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2370 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2371 uint64_t value
= cs
->ich_vmcr_el2
;
2373 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs
), value
);
2377 static void ich_vmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2380 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2382 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs
), value
);
2384 value
&= ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
| ICH_VMCR_EL2_VCBPR
|
2385 ICH_VMCR_EL2_VEOIM
| ICH_VMCR_EL2_VBPR1_MASK
|
2386 ICH_VMCR_EL2_VBPR0_MASK
| ICH_VMCR_EL2_VPMR_MASK
;
2387 value
|= ICH_VMCR_EL2_VFIQEN
;
2389 cs
->ich_vmcr_el2
= value
;
2390 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2391 * by reading and writing back the fields.
2393 write_vbpr(cs
, GICV3_G0
, read_vbpr(cs
, GICV3_G0
));
2394 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G1
));
2396 gicv3_cpuif_virt_update(cs
);
2399 static uint64_t ich_lr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2401 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2402 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2405 /* This read function handles all of:
2406 * 64-bit reads of the whole LR
2407 * 32-bit reads of the low half of the LR
2408 * 32-bit reads of the high half of the LR
2410 if (ri
->state
== ARM_CP_STATE_AA32
) {
2411 if (ri
->crm
>= 14) {
2412 value
= extract64(cs
->ich_lr_el2
[regno
], 32, 32);
2413 trace_gicv3_ich_lrc_read(regno
, gicv3_redist_affid(cs
), value
);
2415 value
= extract64(cs
->ich_lr_el2
[regno
], 0, 32);
2416 trace_gicv3_ich_lr32_read(regno
, gicv3_redist_affid(cs
), value
);
2419 value
= cs
->ich_lr_el2
[regno
];
2420 trace_gicv3_ich_lr_read(regno
, gicv3_redist_affid(cs
), value
);
2426 static void ich_lr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2429 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2430 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2432 /* This write function handles all of:
2433 * 64-bit writes to the whole LR
2434 * 32-bit writes to the low half of the LR
2435 * 32-bit writes to the high half of the LR
2437 if (ri
->state
== ARM_CP_STATE_AA32
) {
2438 if (ri
->crm
>= 14) {
2439 trace_gicv3_ich_lrc_write(regno
, gicv3_redist_affid(cs
), value
);
2440 value
= deposit64(cs
->ich_lr_el2
[regno
], 32, 32, value
);
2442 trace_gicv3_ich_lr32_write(regno
, gicv3_redist_affid(cs
), value
);
2443 value
= deposit64(cs
->ich_lr_el2
[regno
], 0, 32, value
);
2446 trace_gicv3_ich_lr_write(regno
, gicv3_redist_affid(cs
), value
);
2449 /* Enforce RES0 bits in priority field */
2450 if (cs
->vpribits
< 8) {
2451 value
= deposit64(value
, ICH_LR_EL2_PRIORITY_SHIFT
,
2452 8 - cs
->vpribits
, 0);
2455 cs
->ich_lr_el2
[regno
] = value
;
2456 gicv3_cpuif_virt_update(cs
);
2459 static uint64_t ich_vtr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2461 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2464 value
= ((cs
->num_list_regs
- 1) << ICH_VTR_EL2_LISTREGS_SHIFT
)
2465 | ICH_VTR_EL2_TDS
| ICH_VTR_EL2_NV4
| ICH_VTR_EL2_A3V
2466 | (1 << ICH_VTR_EL2_IDBITS_SHIFT
)
2467 | ((cs
->vprebits
- 1) << ICH_VTR_EL2_PREBITS_SHIFT
)
2468 | ((cs
->vpribits
- 1) << ICH_VTR_EL2_PRIBITS_SHIFT
);
2470 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs
), value
);
2474 static uint64_t ich_misr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2476 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2477 uint64_t value
= maintenance_interrupt_state(cs
);
2479 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs
), value
);
2483 static uint64_t ich_eisr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2485 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2486 uint64_t value
= eoi_maintenance_interrupt_state(cs
, NULL
);
2488 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs
), value
);
2492 static uint64_t ich_elrsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2494 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2498 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
2499 uint64_t lr
= cs
->ich_lr_el2
[i
];
2501 if ((lr
& ICH_LR_EL2_STATE_MASK
) == 0 &&
2502 ((lr
& ICH_LR_EL2_HW
) != 0 || (lr
& ICH_LR_EL2_EOI
) == 0)) {
2507 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs
), value
);
2511 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo
[] = {
2512 { .name
= "ICH_AP0R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2513 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 0,
2514 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2516 .readfn
= ich_ap_read
,
2517 .writefn
= ich_ap_write
,
2519 { .name
= "ICH_AP1R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2520 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 0,
2521 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2523 .readfn
= ich_ap_read
,
2524 .writefn
= ich_ap_write
,
2526 { .name
= "ICH_HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2527 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 0,
2528 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2530 .readfn
= ich_hcr_read
,
2531 .writefn
= ich_hcr_write
,
2533 { .name
= "ICH_VTR_EL2", .state
= ARM_CP_STATE_BOTH
,
2534 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 1,
2535 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2537 .readfn
= ich_vtr_read
,
2539 { .name
= "ICH_MISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2540 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 2,
2541 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2543 .readfn
= ich_misr_read
,
2545 { .name
= "ICH_EISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2546 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 3,
2547 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2549 .readfn
= ich_eisr_read
,
2551 { .name
= "ICH_ELRSR_EL2", .state
= ARM_CP_STATE_BOTH
,
2552 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 5,
2553 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2555 .readfn
= ich_elrsr_read
,
2557 { .name
= "ICH_VMCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2558 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 7,
2559 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2561 .readfn
= ich_vmcr_read
,
2562 .writefn
= ich_vmcr_write
,
2567 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo
[] = {
2568 { .name
= "ICH_AP0R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2569 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 1,
2570 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2572 .readfn
= ich_ap_read
,
2573 .writefn
= ich_ap_write
,
2575 { .name
= "ICH_AP1R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2576 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 1,
2577 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2579 .readfn
= ich_ap_read
,
2580 .writefn
= ich_ap_write
,
2585 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo
[] = {
2586 { .name
= "ICH_AP0R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2587 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 2,
2588 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2590 .readfn
= ich_ap_read
,
2591 .writefn
= ich_ap_write
,
2593 { .name
= "ICH_AP0R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2594 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 3,
2595 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2597 .readfn
= ich_ap_read
,
2598 .writefn
= ich_ap_write
,
2600 { .name
= "ICH_AP1R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2601 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 2,
2602 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2604 .readfn
= ich_ap_read
,
2605 .writefn
= ich_ap_write
,
2607 { .name
= "ICH_AP1R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2608 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 3,
2609 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2611 .readfn
= ich_ap_read
,
2612 .writefn
= ich_ap_write
,
2617 static void gicv3_cpuif_el_change_hook(ARMCPU
*cpu
, void *opaque
)
2619 GICv3CPUState
*cs
= opaque
;
2621 gicv3_cpuif_update(cs
);
2624 void gicv3_init_cpuif(GICv3State
*s
)
2626 /* Called from the GICv3 realize function; register our system
2627 * registers with the CPU
2631 for (i
= 0; i
< s
->num_cpu
; i
++) {
2632 ARMCPU
*cpu
= ARM_CPU(qemu_get_cpu(i
));
2633 GICv3CPUState
*cs
= &s
->cpu
[i
];
2635 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2636 * in define_arm_cp_regs_with_opaque(), because when we're called back
2637 * it might be with code translated by CPU 0 but run by CPU 1, in
2638 * which case we'd get the wrong value.
2639 * So instead we define the regs with no ri->opaque info, and
2640 * get back to the GICv3CPUState from the CPUARMState.
2642 define_arm_cp_regs(cpu
, gicv3_cpuif_reginfo
);
2643 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)
2644 && cpu
->gic_num_lrs
) {
2647 cs
->num_list_regs
= cpu
->gic_num_lrs
;
2648 cs
->vpribits
= cpu
->gic_vpribits
;
2649 cs
->vprebits
= cpu
->gic_vprebits
;
2651 /* Check against architectural constraints: getting these
2652 * wrong would be a bug in the CPU code defining these,
2653 * and the implementation relies on them holding.
2655 g_assert(cs
->vprebits
<= cs
->vpribits
);
2656 g_assert(cs
->vprebits
>= 5 && cs
->vprebits
<= 7);
2657 g_assert(cs
->vpribits
>= 5 && cs
->vpribits
<= 8);
2659 define_arm_cp_regs(cpu
, gicv3_cpuif_hcr_reginfo
);
2661 for (j
= 0; j
< cs
->num_list_regs
; j
++) {
2662 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2663 * are split into two cp15 regs, LR (the low part, with the
2664 * same encoding as the AArch64 LR) and LRC (the high part).
2666 ARMCPRegInfo lr_regset
[] = {
2667 { .name
= "ICH_LRn_EL2", .state
= ARM_CP_STATE_BOTH
,
2668 .opc0
= 3, .opc1
= 4, .crn
= 12,
2669 .crm
= 12 + (j
>> 3), .opc2
= j
& 7,
2670 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2672 .readfn
= ich_lr_read
,
2673 .writefn
= ich_lr_write
,
2675 { .name
= "ICH_LRCn_EL2", .state
= ARM_CP_STATE_AA32
,
2676 .cp
= 15, .opc1
= 4, .crn
= 12,
2677 .crm
= 14 + (j
>> 3), .opc2
= j
& 7,
2678 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2680 .readfn
= ich_lr_read
,
2681 .writefn
= ich_lr_write
,
2685 define_arm_cp_regs(cpu
, lr_regset
);
2687 if (cs
->vprebits
>= 6) {
2688 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr1_reginfo
);
2690 if (cs
->vprebits
== 7) {
2691 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr23_reginfo
);
2694 arm_register_el_change_hook(cpu
, gicv3_cpuif_el_change_hook
, cs
);