migration: move wait-unplug loop to its own function
[qemu/kevin.git] / hw / intc / arm_gicv3_cpuif.c
blob3e0641aff97893db4a4be971c04325c4fe506b77
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
24 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
26 ARMCPU *arm_cpu = ARM_CPU(cpu);
27 CPUARMState *env = &arm_cpu->env;
29 env->gicv3state = (void *)s;
32 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
34 return env->gicv3state;
37 static bool gicv3_use_ns_bank(CPUARMState *env)
39 /* Return true if we should use the NonSecure bank for a banked GIC
40 * CPU interface register. Note that this differs from the
41 * access_secure_reg() function because GICv3 banked registers are
42 * banked even for AArch64, unlike the other CPU system registers.
44 return !arm_is_secure_below_el3(env);
47 /* The minimum BPR for the virtual interface is a configurable property */
48 static inline int icv_min_vbpr(GICv3CPUState *cs)
50 return 7 - cs->vprebits;
53 /* Simple accessor functions for LR fields */
54 static uint32_t ich_lr_vintid(uint64_t lr)
56 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
59 static uint32_t ich_lr_pintid(uint64_t lr)
61 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
64 static uint32_t ich_lr_prio(uint64_t lr)
66 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
69 static int ich_lr_state(uint64_t lr)
71 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
74 static bool icv_access(CPUARMState *env, int hcr_flags)
76 /* Return true if this ICC_ register access should really be
77 * directed to an ICV_ access. hcr_flags is a mask of
78 * HCR_EL2 bits to check: we treat this as an ICV_ access
79 * if we are in NS EL1 and at least one of the specified
80 * HCR_EL2 bits is set.
82 * ICV registers fall into four categories:
83 * * access if NS EL1 and HCR_EL2.FMO == 1:
84 * all ICV regs with '0' in their name
85 * * access if NS EL1 and HCR_EL2.IMO == 1:
86 * all ICV regs with '1' in their name
87 * * access if NS EL1 and either IMO or FMO == 1:
88 * CTLR, DIR, PMR, RPR
90 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
91 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
93 return flagmatch && arm_current_el(env) == 1
94 && !arm_is_secure_below_el3(env);
97 static int read_vbpr(GICv3CPUState *cs, int grp)
99 /* Read VBPR value out of the VMCR field (caller must handle
100 * VCBPR effects if required)
102 if (grp == GICV3_G0) {
103 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
104 ICH_VMCR_EL2_VBPR0_LENGTH);
105 } else {
106 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
107 ICH_VMCR_EL2_VBPR1_LENGTH);
111 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
113 /* Write new VBPR1 value, handling the "writing a value less than
114 * the minimum sets it to the minimum" semantics.
116 int min = icv_min_vbpr(cs);
118 if (grp != GICV3_G0) {
119 min++;
122 value = MAX(value, min);
124 if (grp == GICV3_G0) {
125 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
126 ICH_VMCR_EL2_VBPR0_LENGTH, value);
127 } else {
128 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
129 ICH_VMCR_EL2_VBPR1_LENGTH, value);
133 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
135 /* Return a mask word which clears the unimplemented priority bits
136 * from a priority value for a virtual interrupt. (Not to be confused
137 * with the group priority, whose mask depends on the value of VBPR
138 * for the interrupt group.)
140 return ~0U << (8 - cs->vpribits);
143 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
145 /* Calculate the current running priority based on the set bits
146 * in the ICH Active Priority Registers.
148 int i;
149 int aprmax = 1 << (cs->vprebits - 5);
151 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
153 for (i = 0; i < aprmax; i++) {
154 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
155 cs->ich_apr[GICV3_G1NS][i];
157 if (!apr) {
158 continue;
160 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
162 /* No current active interrupts: return idle priority */
163 return 0xff;
166 static int hppvi_index(GICv3CPUState *cs)
168 /* Return the list register index of the highest priority pending
169 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
170 * pseudocode. If no pending virtual interrupts, return -1.
172 int idx = -1;
173 int i;
174 /* Note that a list register entry with a priority of 0xff will
175 * never be reported by this function; this is the architecturally
176 * correct behaviour.
178 int prio = 0xff;
180 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
181 /* Both groups disabled, definitely nothing to do */
182 return idx;
185 for (i = 0; i < cs->num_list_regs; i++) {
186 uint64_t lr = cs->ich_lr_el2[i];
187 int thisprio;
189 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
190 /* Not Pending */
191 continue;
194 /* Ignore interrupts if relevant group enable not set */
195 if (lr & ICH_LR_EL2_GROUP) {
196 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
197 continue;
199 } else {
200 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
201 continue;
205 thisprio = ich_lr_prio(lr);
207 if (thisprio < prio) {
208 prio = thisprio;
209 idx = i;
213 return idx;
216 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
218 /* Return a mask word which clears the subpriority bits from
219 * a priority value for a virtual interrupt in the specified group.
220 * This depends on the VBPR value.
221 * If using VBPR0 then:
222 * a BPR of 0 means the group priority bits are [7:1];
223 * a BPR of 1 means they are [7:2], and so on down to
224 * a BPR of 7 meaning no group priority bits at all.
225 * If using VBPR1 then:
226 * a BPR of 0 is impossible (the minimum value is 1)
227 * a BPR of 1 means the group priority bits are [7:1];
228 * a BPR of 2 means they are [7:2], and so on down to
229 * a BPR of 7 meaning the group priority is [7].
231 * Which BPR to use depends on the group of the interrupt and
232 * the current ICH_VMCR_EL2.VCBPR settings.
234 * This corresponds to the VGroupBits() pseudocode.
236 int bpr;
238 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
239 group = GICV3_G0;
242 bpr = read_vbpr(cs, group);
243 if (group == GICV3_G1NS) {
244 assert(bpr > 0);
245 bpr--;
248 return ~0U << (bpr + 1);
251 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
253 /* Return true if we can signal this virtual interrupt defined by
254 * the given list register value; see the pseudocode functions
255 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
256 * Compare also icc_hppi_can_preempt() which is the non-virtual
257 * equivalent of these checks.
259 int grp;
260 uint32_t mask, prio, rprio, vpmr;
262 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
263 /* Virtual interface disabled */
264 return false;
267 /* We don't need to check that this LR is in Pending state because
268 * that has already been done in hppvi_index().
271 prio = ich_lr_prio(lr);
272 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
273 ICH_VMCR_EL2_VPMR_LENGTH);
275 if (prio >= vpmr) {
276 /* Priority mask masks this interrupt */
277 return false;
280 rprio = ich_highest_active_virt_prio(cs);
281 if (rprio == 0xff) {
282 /* No running interrupt so we can preempt */
283 return true;
286 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
288 mask = icv_gprio_mask(cs, grp);
290 /* We only preempt a running interrupt if the pending interrupt's
291 * group priority is sufficient (the subpriorities are not considered).
293 if ((prio & mask) < (rprio & mask)) {
294 return true;
297 return false;
300 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
301 uint32_t *misr)
303 /* Return a set of bits indicating the EOI maintenance interrupt status
304 * for each list register. The EOI maintenance interrupt status is
305 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
306 * (see the GICv3 spec for the ICH_EISR_EL2 register).
307 * If misr is not NULL then we should also collect the information
308 * about the MISR.EOI, MISR.NP and MISR.U bits.
310 uint32_t value = 0;
311 int validcount = 0;
312 bool seenpending = false;
313 int i;
315 for (i = 0; i < cs->num_list_regs; i++) {
316 uint64_t lr = cs->ich_lr_el2[i];
318 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
319 == ICH_LR_EL2_EOI) {
320 value |= (1 << i);
322 if ((lr & ICH_LR_EL2_STATE_MASK)) {
323 validcount++;
325 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
326 seenpending = true;
330 if (misr) {
331 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
332 *misr |= ICH_MISR_EL2_U;
334 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
335 *misr |= ICH_MISR_EL2_NP;
337 if (value) {
338 *misr |= ICH_MISR_EL2_EOI;
341 return value;
344 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
346 /* Return a set of bits indicating the maintenance interrupt status
347 * (as seen in the ICH_MISR_EL2 register).
349 uint32_t value = 0;
351 /* Scan list registers and fill in the U, NP and EOI bits */
352 eoi_maintenance_interrupt_state(cs, &value);
354 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
355 value |= ICH_MISR_EL2_LRENP;
358 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
359 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
360 value |= ICH_MISR_EL2_VGRP0E;
363 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
364 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
365 value |= ICH_MISR_EL2_VGRP0D;
367 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
368 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
369 value |= ICH_MISR_EL2_VGRP1E;
372 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
373 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
374 value |= ICH_MISR_EL2_VGRP1D;
377 return value;
380 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
382 /* Tell the CPU about any pending virtual interrupts or
383 * maintenance interrupts, following a change to the state
384 * of the CPU interface relevant to virtual interrupts.
386 * CAUTION: this function will call qemu_set_irq() on the
387 * CPU maintenance IRQ line, which is typically wired up
388 * to the GIC as a per-CPU interrupt. This means that it
389 * will recursively call back into the GIC code via
390 * gicv3_redist_set_irq() and thus into the CPU interface code's
391 * gicv3_cpuif_update(). It is therefore important that this
392 * function is only called as the final action of a CPU interface
393 * register write implementation, after all the GIC state
394 * fields have been updated. gicv3_cpuif_update() also must
395 * not cause this function to be called, but that happens
396 * naturally as a result of there being no architectural
397 * linkage between the physical and virtual GIC logic.
399 int idx;
400 int irqlevel = 0;
401 int fiqlevel = 0;
402 int maintlevel = 0;
403 ARMCPU *cpu = ARM_CPU(cs->cpu);
405 idx = hppvi_index(cs);
406 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
407 if (idx >= 0) {
408 uint64_t lr = cs->ich_lr_el2[idx];
410 if (icv_hppi_can_preempt(cs, lr)) {
411 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
412 if (lr & ICH_LR_EL2_GROUP) {
413 irqlevel = 1;
414 } else {
415 fiqlevel = 1;
420 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
421 maintlevel = maintenance_interrupt_state(cs);
424 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
425 irqlevel, maintlevel);
427 qemu_set_irq(cs->parent_vfiq, fiqlevel);
428 qemu_set_irq(cs->parent_virq, irqlevel);
429 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
432 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
434 GICv3CPUState *cs = icc_cs_from_env(env);
435 int regno = ri->opc2 & 3;
436 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
437 uint64_t value = cs->ich_apr[grp][regno];
439 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
440 return value;
443 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
444 uint64_t value)
446 GICv3CPUState *cs = icc_cs_from_env(env);
447 int regno = ri->opc2 & 3;
448 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
450 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
452 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
454 gicv3_cpuif_virt_update(cs);
455 return;
458 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
460 GICv3CPUState *cs = icc_cs_from_env(env);
461 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
462 uint64_t bpr;
463 bool satinc = false;
465 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
466 /* reads return bpr0 + 1 saturated to 7, writes ignored */
467 grp = GICV3_G0;
468 satinc = true;
471 bpr = read_vbpr(cs, grp);
473 if (satinc) {
474 bpr++;
475 bpr = MIN(bpr, 7);
478 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
480 return bpr;
483 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
486 GICv3CPUState *cs = icc_cs_from_env(env);
487 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
489 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
490 gicv3_redist_affid(cs), value);
492 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
493 /* reads return bpr0 + 1 saturated to 7, writes ignored */
494 return;
497 write_vbpr(cs, grp, value);
499 gicv3_cpuif_virt_update(cs);
502 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
504 GICv3CPUState *cs = icc_cs_from_env(env);
505 uint64_t value;
507 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
508 ICH_VMCR_EL2_VPMR_LENGTH);
510 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
511 return value;
514 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
515 uint64_t value)
517 GICv3CPUState *cs = icc_cs_from_env(env);
519 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
521 value &= icv_fullprio_mask(cs);
523 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
524 ICH_VMCR_EL2_VPMR_LENGTH, value);
526 gicv3_cpuif_virt_update(cs);
529 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
531 GICv3CPUState *cs = icc_cs_from_env(env);
532 int enbit;
533 uint64_t value;
535 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
536 value = extract64(cs->ich_vmcr_el2, enbit, 1);
538 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
539 gicv3_redist_affid(cs), value);
540 return value;
543 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
544 uint64_t value)
546 GICv3CPUState *cs = icc_cs_from_env(env);
547 int enbit;
549 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
550 gicv3_redist_affid(cs), value);
552 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
554 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
555 gicv3_cpuif_virt_update(cs);
558 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
560 GICv3CPUState *cs = icc_cs_from_env(env);
561 uint64_t value;
563 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
564 * should match the ones reported in ich_vtr_read().
566 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
567 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
569 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
570 value |= ICC_CTLR_EL1_EOIMODE;
573 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
574 value |= ICC_CTLR_EL1_CBPR;
577 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
578 return value;
581 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
582 uint64_t value)
584 GICv3CPUState *cs = icc_cs_from_env(env);
586 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
588 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
589 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
590 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
591 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
593 gicv3_cpuif_virt_update(cs);
596 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
598 GICv3CPUState *cs = icc_cs_from_env(env);
599 int prio = ich_highest_active_virt_prio(cs);
601 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
602 return prio;
605 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
607 GICv3CPUState *cs = icc_cs_from_env(env);
608 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
609 int idx = hppvi_index(cs);
610 uint64_t value = INTID_SPURIOUS;
612 if (idx >= 0) {
613 uint64_t lr = cs->ich_lr_el2[idx];
614 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
616 if (grp == thisgrp) {
617 value = ich_lr_vintid(lr);
621 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
622 return value;
625 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
627 /* Activate the interrupt in the specified list register
628 * by moving it from Pending to Active state, and update the
629 * Active Priority Registers.
631 uint32_t mask = icv_gprio_mask(cs, grp);
632 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
633 int aprbit = prio >> (8 - cs->vprebits);
634 int regno = aprbit / 32;
635 int regbit = aprbit % 32;
637 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
638 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
639 cs->ich_apr[grp][regno] |= (1 << regbit);
642 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
644 GICv3CPUState *cs = icc_cs_from_env(env);
645 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
646 int idx = hppvi_index(cs);
647 uint64_t intid = INTID_SPURIOUS;
649 if (idx >= 0) {
650 uint64_t lr = cs->ich_lr_el2[idx];
651 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
653 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
654 intid = ich_lr_vintid(lr);
655 if (intid < INTID_SECURE) {
656 icv_activate_irq(cs, idx, grp);
657 } else {
658 /* Interrupt goes from Pending to Invalid */
659 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
660 /* We will now return the (bogus) ID from the list register,
661 * as per the pseudocode.
667 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
668 gicv3_redist_affid(cs), intid);
670 gicv3_cpuif_virt_update(cs);
672 return intid;
675 static int icc_highest_active_prio(GICv3CPUState *cs)
677 /* Calculate the current running priority based on the set bits
678 * in the Active Priority Registers.
680 int i;
682 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
683 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
684 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
686 if (!apr) {
687 continue;
689 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
691 /* No current active interrupts: return idle priority */
692 return 0xff;
695 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
697 /* Return a mask word which clears the subpriority bits from
698 * a priority value for an interrupt in the specified group.
699 * This depends on the BPR value. For CBPR0 (S or NS):
700 * a BPR of 0 means the group priority bits are [7:1];
701 * a BPR of 1 means they are [7:2], and so on down to
702 * a BPR of 7 meaning no group priority bits at all.
703 * For CBPR1 NS:
704 * a BPR of 0 is impossible (the minimum value is 1)
705 * a BPR of 1 means the group priority bits are [7:1];
706 * a BPR of 2 means they are [7:2], and so on down to
707 * a BPR of 7 meaning the group priority is [7].
709 * Which BPR to use depends on the group of the interrupt and
710 * the current ICC_CTLR.CBPR settings.
712 * This corresponds to the GroupBits() pseudocode.
714 int bpr;
716 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
717 (group == GICV3_G1NS &&
718 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
719 group = GICV3_G0;
722 bpr = cs->icc_bpr[group] & 7;
724 if (group == GICV3_G1NS) {
725 assert(bpr > 0);
726 bpr--;
729 return ~0U << (bpr + 1);
732 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
734 /* Return true if there is no pending interrupt, or the
735 * highest priority pending interrupt is in a group which has been
736 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
738 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
741 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
743 /* Return true if we have a pending interrupt of sufficient
744 * priority to preempt.
746 int rprio;
747 uint32_t mask;
749 if (icc_no_enabled_hppi(cs)) {
750 return false;
753 if (cs->hppi.prio >= cs->icc_pmr_el1) {
754 /* Priority mask masks this interrupt */
755 return false;
758 rprio = icc_highest_active_prio(cs);
759 if (rprio == 0xff) {
760 /* No currently running interrupt so we can preempt */
761 return true;
764 mask = icc_gprio_mask(cs, cs->hppi.grp);
766 /* We only preempt a running interrupt if the pending interrupt's
767 * group priority is sufficient (the subpriorities are not considered).
769 if ((cs->hppi.prio & mask) < (rprio & mask)) {
770 return true;
773 return false;
776 void gicv3_cpuif_update(GICv3CPUState *cs)
778 /* Tell the CPU about its highest priority pending interrupt */
779 int irqlevel = 0;
780 int fiqlevel = 0;
781 ARMCPU *cpu = ARM_CPU(cs->cpu);
782 CPUARMState *env = &cpu->env;
784 g_assert(qemu_mutex_iothread_locked());
786 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
787 cs->hppi.grp, cs->hppi.prio);
789 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
790 /* If a Security-enabled GIC sends a G1S interrupt to a
791 * Security-disabled CPU, we must treat it as if it were G0.
793 cs->hppi.grp = GICV3_G0;
796 if (icc_hppi_can_preempt(cs)) {
797 /* We have an interrupt: should we signal it as IRQ or FIQ?
798 * This is described in the GICv3 spec section 4.6.2.
800 bool isfiq;
802 switch (cs->hppi.grp) {
803 case GICV3_G0:
804 isfiq = true;
805 break;
806 case GICV3_G1:
807 isfiq = (!arm_is_secure(env) ||
808 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
809 break;
810 case GICV3_G1NS:
811 isfiq = arm_is_secure(env);
812 break;
813 default:
814 g_assert_not_reached();
817 if (isfiq) {
818 fiqlevel = 1;
819 } else {
820 irqlevel = 1;
824 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
826 qemu_set_irq(cs->parent_fiq, fiqlevel);
827 qemu_set_irq(cs->parent_irq, irqlevel);
830 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
832 GICv3CPUState *cs = icc_cs_from_env(env);
833 uint32_t value = cs->icc_pmr_el1;
835 if (icv_access(env, HCR_FMO | HCR_IMO)) {
836 return icv_pmr_read(env, ri);
839 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
840 (env->cp15.scr_el3 & SCR_FIQ)) {
841 /* NS access and Group 0 is inaccessible to NS: return the
842 * NS view of the current priority
844 if ((value & 0x80) == 0) {
845 /* Secure priorities not visible to NS */
846 value = 0;
847 } else if (value != 0xff) {
848 value = (value << 1) & 0xff;
852 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
854 return value;
857 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
858 uint64_t value)
860 GICv3CPUState *cs = icc_cs_from_env(env);
862 if (icv_access(env, HCR_FMO | HCR_IMO)) {
863 return icv_pmr_write(env, ri, value);
866 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
868 value &= 0xff;
870 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
871 (env->cp15.scr_el3 & SCR_FIQ)) {
872 /* NS access and Group 0 is inaccessible to NS: return the
873 * NS view of the current priority
875 if (!(cs->icc_pmr_el1 & 0x80)) {
876 /* Current PMR in the secure range, don't allow NS to change it */
877 return;
879 value = (value >> 1) | 0x80;
881 cs->icc_pmr_el1 = value;
882 gicv3_cpuif_update(cs);
885 static void icc_activate_irq(GICv3CPUState *cs, int irq)
887 /* Move the interrupt from the Pending state to Active, and update
888 * the Active Priority Registers
890 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
891 int prio = cs->hppi.prio & mask;
892 int aprbit = prio >> 1;
893 int regno = aprbit / 32;
894 int regbit = aprbit % 32;
896 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
898 if (irq < GIC_INTERNAL) {
899 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
900 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
901 gicv3_redist_update(cs);
902 } else {
903 gicv3_gicd_active_set(cs->gic, irq);
904 gicv3_gicd_pending_clear(cs->gic, irq);
905 gicv3_update(cs->gic, irq, 1);
909 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
911 /* Return the highest priority pending interrupt register value
912 * for group 0.
914 bool irq_is_secure;
916 if (cs->hppi.prio == 0xff) {
917 return INTID_SPURIOUS;
920 /* Check whether we can return the interrupt or if we should return
921 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
922 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
923 * is always zero.)
925 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
926 (cs->hppi.grp != GICV3_G1NS));
928 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
929 return INTID_SPURIOUS;
931 if (irq_is_secure && !arm_is_secure(env)) {
932 /* Secure interrupts not visible to Nonsecure */
933 return INTID_SPURIOUS;
936 if (cs->hppi.grp != GICV3_G0) {
937 /* Indicate to EL3 that there's a Group 1 interrupt for the other
938 * state pending.
940 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
943 return cs->hppi.irq;
946 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
948 /* Return the highest priority pending interrupt register value
949 * for group 1.
951 bool irq_is_secure;
953 if (cs->hppi.prio == 0xff) {
954 return INTID_SPURIOUS;
957 /* Check whether we can return the interrupt or if we should return
958 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
959 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
960 * is always zero.)
962 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
963 (cs->hppi.grp != GICV3_G1NS));
965 if (cs->hppi.grp == GICV3_G0) {
966 /* Group 0 interrupts not visible via HPPIR1 */
967 return INTID_SPURIOUS;
969 if (irq_is_secure) {
970 if (!arm_is_secure(env)) {
971 /* Secure interrupts not visible in Non-secure */
972 return INTID_SPURIOUS;
974 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
975 /* Group 1 non-secure interrupts not visible in Secure EL1 */
976 return INTID_SPURIOUS;
979 return cs->hppi.irq;
982 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
984 GICv3CPUState *cs = icc_cs_from_env(env);
985 uint64_t intid;
987 if (icv_access(env, HCR_FMO)) {
988 return icv_iar_read(env, ri);
991 if (!icc_hppi_can_preempt(cs)) {
992 intid = INTID_SPURIOUS;
993 } else {
994 intid = icc_hppir0_value(cs, env);
997 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
998 icc_activate_irq(cs, intid);
1001 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1002 return intid;
1005 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1007 GICv3CPUState *cs = icc_cs_from_env(env);
1008 uint64_t intid;
1010 if (icv_access(env, HCR_IMO)) {
1011 return icv_iar_read(env, ri);
1014 if (!icc_hppi_can_preempt(cs)) {
1015 intid = INTID_SPURIOUS;
1016 } else {
1017 intid = icc_hppir1_value(cs, env);
1020 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1021 icc_activate_irq(cs, intid);
1024 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1025 return intid;
1028 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1030 /* Drop the priority of the currently active interrupt in
1031 * the specified group.
1033 * Note that we can guarantee (because of the requirement to nest
1034 * ICC_IAR reads [which activate an interrupt and raise priority]
1035 * with ICC_EOIR writes [which drop the priority for the interrupt])
1036 * that the interrupt we're being called for is the highest priority
1037 * active interrupt, meaning that it has the lowest set bit in the
1038 * APR registers.
1040 * If the guest does not honour the ordering constraints then the
1041 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1042 * the values of the APR registers might become incorrect and the
1043 * running priority will be wrong, so interrupts that should preempt
1044 * might not do so, and interrupts that should not preempt might do so.
1046 int i;
1048 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1049 uint64_t *papr = &cs->icc_apr[grp][i];
1051 if (!*papr) {
1052 continue;
1054 /* Clear the lowest set bit */
1055 *papr &= *papr - 1;
1056 break;
1059 /* running priority change means we need an update for this cpu i/f */
1060 gicv3_cpuif_update(cs);
1063 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1065 /* Return true if we should split priority drop and interrupt
1066 * deactivation, ie whether the relevant EOIMode bit is set.
1068 if (arm_is_el3_or_mon(env)) {
1069 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1071 if (arm_is_secure_below_el3(env)) {
1072 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1073 } else {
1074 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1078 static int icc_highest_active_group(GICv3CPUState *cs)
1080 /* Return the group with the highest priority active interrupt.
1081 * We can do this by just comparing the APRs to see which one
1082 * has the lowest set bit.
1083 * (If more than one group is active at the same priority then
1084 * we're in UNPREDICTABLE territory.)
1086 int i;
1088 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1089 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1090 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1091 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1093 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1094 return GICV3_G1NS;
1096 if (g1ctz < g0ctz) {
1097 return GICV3_G1;
1099 if (g0ctz < 32) {
1100 return GICV3_G0;
1103 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1104 * ignores the spurious EOI attempt.
1106 return -1;
1109 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1111 if (irq < GIC_INTERNAL) {
1112 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1113 gicv3_redist_update(cs);
1114 } else {
1115 gicv3_gicd_active_clear(cs->gic, irq);
1116 gicv3_update(cs->gic, irq, 1);
1120 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1122 /* Return true if we should split priority drop and interrupt
1123 * deactivation, ie whether the virtual EOIMode bit is set.
1125 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1128 static int icv_find_active(GICv3CPUState *cs, int irq)
1130 /* Given an interrupt number for an active interrupt, return the index
1131 * of the corresponding list register, or -1 if there is no match.
1132 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1134 int i;
1136 for (i = 0; i < cs->num_list_regs; i++) {
1137 uint64_t lr = cs->ich_lr_el2[i];
1139 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1140 return i;
1144 return -1;
1147 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1149 /* Deactivate the interrupt in the specified list register index */
1150 uint64_t lr = cs->ich_lr_el2[idx];
1152 if (lr & ICH_LR_EL2_HW) {
1153 /* Deactivate the associated physical interrupt */
1154 int pirq = ich_lr_pintid(lr);
1156 if (pirq < INTID_SECURE) {
1157 icc_deactivate_irq(cs, pirq);
1161 /* Clear the 'active' part of the state, so ActivePending->Pending
1162 * and Active->Invalid.
1164 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1165 cs->ich_lr_el2[idx] = lr;
1168 static void icv_increment_eoicount(GICv3CPUState *cs)
1170 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1171 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1172 ICH_HCR_EL2_EOICOUNT_LENGTH);
1174 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1175 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1178 static int icv_drop_prio(GICv3CPUState *cs)
1180 /* Drop the priority of the currently active virtual interrupt
1181 * (favouring group 0 if there is a set active bit at
1182 * the same priority for both group 0 and group 1).
1183 * Return the priority value for the bit we just cleared,
1184 * or 0xff if no bits were set in the AP registers at all.
1185 * Note that though the ich_apr[] are uint64_t only the low
1186 * 32 bits are actually relevant.
1188 int i;
1189 int aprmax = 1 << (cs->vprebits - 5);
1191 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1193 for (i = 0; i < aprmax; i++) {
1194 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1195 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1196 int apr0count, apr1count;
1198 if (!*papr0 && !*papr1) {
1199 continue;
1202 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1203 * because we need to return the bit number we cleared so
1204 * it can be compared against the list register's priority field.
1206 apr0count = ctz32(*papr0);
1207 apr1count = ctz32(*papr1);
1209 if (apr0count <= apr1count) {
1210 *papr0 &= *papr0 - 1;
1211 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1212 } else {
1213 *papr1 &= *papr1 - 1;
1214 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1217 return 0xff;
1220 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1221 uint64_t value)
1223 /* Deactivate interrupt */
1224 GICv3CPUState *cs = icc_cs_from_env(env);
1225 int idx;
1226 int irq = value & 0xffffff;
1228 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1230 if (irq >= cs->gic->num_irq) {
1231 /* Also catches special interrupt numbers and LPIs */
1232 return;
1235 if (!icv_eoi_split(env, cs)) {
1236 return;
1239 idx = icv_find_active(cs, irq);
1241 if (idx < 0) {
1242 /* No list register matching this, so increment the EOI count
1243 * (might trigger a maintenance interrupt)
1245 icv_increment_eoicount(cs);
1246 } else {
1247 icv_deactivate_irq(cs, idx);
1250 gicv3_cpuif_virt_update(cs);
1253 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1254 uint64_t value)
1256 /* End of Interrupt */
1257 GICv3CPUState *cs = icc_cs_from_env(env);
1258 int irq = value & 0xffffff;
1259 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1260 int idx, dropprio;
1262 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1263 gicv3_redist_affid(cs), value);
1265 if (irq >= cs->gic->num_irq) {
1266 /* Also catches special interrupt numbers and LPIs */
1267 return;
1270 /* We implement the IMPDEF choice of "drop priority before doing
1271 * error checks" (because that lets us avoid scanning the AP
1272 * registers twice).
1274 dropprio = icv_drop_prio(cs);
1275 if (dropprio == 0xff) {
1276 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1277 * whether the list registers are checked in this
1278 * situation; we choose not to.
1280 return;
1283 idx = icv_find_active(cs, irq);
1285 if (idx < 0) {
1286 /* No valid list register corresponding to EOI ID */
1287 icv_increment_eoicount(cs);
1288 } else {
1289 uint64_t lr = cs->ich_lr_el2[idx];
1290 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1291 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1293 if (thisgrp == grp && lr_gprio == dropprio) {
1294 if (!icv_eoi_split(env, cs)) {
1295 /* Priority drop and deactivate not split: deactivate irq now */
1296 icv_deactivate_irq(cs, idx);
1301 gicv3_cpuif_virt_update(cs);
1304 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1305 uint64_t value)
1307 /* End of Interrupt */
1308 GICv3CPUState *cs = icc_cs_from_env(env);
1309 int irq = value & 0xffffff;
1310 int grp;
1311 bool is_eoir0 = ri->crm == 8;
1313 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1314 icv_eoir_write(env, ri, value);
1315 return;
1318 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1319 gicv3_redist_affid(cs), value);
1321 if (irq >= cs->gic->num_irq) {
1322 /* This handles two cases:
1323 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1324 * to the GICC_EOIR, the GIC ignores that write.
1325 * 2. If software writes the number of a non-existent interrupt
1326 * this must be a subcase of "value written does not match the last
1327 * valid interrupt value read from the Interrupt Acknowledge
1328 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1330 return;
1333 grp = icc_highest_active_group(cs);
1334 switch (grp) {
1335 case GICV3_G0:
1336 if (!is_eoir0) {
1337 return;
1339 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1340 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1341 return;
1343 break;
1344 case GICV3_G1:
1345 if (is_eoir0) {
1346 return;
1348 if (!arm_is_secure(env)) {
1349 return;
1351 break;
1352 case GICV3_G1NS:
1353 if (is_eoir0) {
1354 return;
1356 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1357 return;
1359 break;
1360 default:
1361 qemu_log_mask(LOG_GUEST_ERROR,
1362 "%s: IRQ %d isn't active\n", __func__, irq);
1363 return;
1366 icc_drop_prio(cs, grp);
1368 if (!icc_eoi_split(env, cs)) {
1369 /* Priority drop and deactivate not split: deactivate irq now */
1370 icc_deactivate_irq(cs, irq);
1374 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1376 GICv3CPUState *cs = icc_cs_from_env(env);
1377 uint64_t value;
1379 if (icv_access(env, HCR_FMO)) {
1380 return icv_hppir_read(env, ri);
1383 value = icc_hppir0_value(cs, env);
1384 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1385 return value;
1388 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1390 GICv3CPUState *cs = icc_cs_from_env(env);
1391 uint64_t value;
1393 if (icv_access(env, HCR_IMO)) {
1394 return icv_hppir_read(env, ri);
1397 value = icc_hppir1_value(cs, env);
1398 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1399 return value;
1402 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1404 GICv3CPUState *cs = icc_cs_from_env(env);
1405 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1406 bool satinc = false;
1407 uint64_t bpr;
1409 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1410 return icv_bpr_read(env, ri);
1413 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1414 grp = GICV3_G1NS;
1417 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1418 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1419 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1420 * modify BPR0
1422 grp = GICV3_G0;
1425 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1426 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1427 /* reads return bpr0 + 1 sat to 7, writes ignored */
1428 grp = GICV3_G0;
1429 satinc = true;
1432 bpr = cs->icc_bpr[grp];
1433 if (satinc) {
1434 bpr++;
1435 bpr = MIN(bpr, 7);
1438 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1440 return bpr;
1443 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1444 uint64_t value)
1446 GICv3CPUState *cs = icc_cs_from_env(env);
1447 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1448 uint64_t minval;
1450 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1451 icv_bpr_write(env, ri, value);
1452 return;
1455 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1456 gicv3_redist_affid(cs), value);
1458 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1459 grp = GICV3_G1NS;
1462 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1463 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1464 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1465 * modify BPR0
1467 grp = GICV3_G0;
1470 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1471 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1472 /* reads return bpr0 + 1 sat to 7, writes ignored */
1473 return;
1476 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1477 if (value < minval) {
1478 value = minval;
1481 cs->icc_bpr[grp] = value & 7;
1482 gicv3_cpuif_update(cs);
1485 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1487 GICv3CPUState *cs = icc_cs_from_env(env);
1488 uint64_t value;
1490 int regno = ri->opc2 & 3;
1491 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1493 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1494 return icv_ap_read(env, ri);
1497 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1498 grp = GICV3_G1NS;
1501 value = cs->icc_apr[grp][regno];
1503 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1504 return value;
1507 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1508 uint64_t value)
1510 GICv3CPUState *cs = icc_cs_from_env(env);
1512 int regno = ri->opc2 & 3;
1513 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1515 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1516 icv_ap_write(env, ri, value);
1517 return;
1520 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1522 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1523 grp = GICV3_G1NS;
1526 /* It's not possible to claim that a Non-secure interrupt is active
1527 * at a priority outside the Non-secure range (128..255), since this
1528 * would otherwise allow malicious NS code to block delivery of S interrupts
1529 * by writing a bad value to these registers.
1531 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1532 return;
1535 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1536 gicv3_cpuif_update(cs);
1539 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1540 uint64_t value)
1542 /* Deactivate interrupt */
1543 GICv3CPUState *cs = icc_cs_from_env(env);
1544 int irq = value & 0xffffff;
1545 bool irq_is_secure, single_sec_state, irq_is_grp0;
1546 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1548 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1549 icv_dir_write(env, ri, value);
1550 return;
1553 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1555 if (irq >= cs->gic->num_irq) {
1556 /* Also catches special interrupt numbers and LPIs */
1557 return;
1560 if (!icc_eoi_split(env, cs)) {
1561 return;
1564 int grp = gicv3_irq_group(cs->gic, cs, irq);
1566 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1567 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1568 irq_is_grp0 = grp == GICV3_G0;
1570 /* Check whether we're allowed to deactivate this interrupt based
1571 * on its group and the current CPU state.
1572 * These checks are laid out to correspond to the spec's pseudocode.
1574 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1575 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1576 /* No need to include !IsSecure in route_*_to_el2 as it's only
1577 * tested in cases where we know !IsSecure is true.
1579 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1580 route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1581 route_irq_to_el2 = hcr_el2 & HCR_IMO;
1583 switch (arm_current_el(env)) {
1584 case 3:
1585 break;
1586 case 2:
1587 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1588 break;
1590 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1591 break;
1593 return;
1594 case 1:
1595 if (!arm_is_secure_below_el3(env)) {
1596 if (single_sec_state && irq_is_grp0 &&
1597 !route_fiq_to_el3 && !route_fiq_to_el2) {
1598 break;
1600 if (!irq_is_secure && !irq_is_grp0 &&
1601 !route_irq_to_el3 && !route_irq_to_el2) {
1602 break;
1604 } else {
1605 if (irq_is_grp0 && !route_fiq_to_el3) {
1606 break;
1608 if (!irq_is_grp0 &&
1609 (!irq_is_secure || !single_sec_state) &&
1610 !route_irq_to_el3) {
1611 break;
1614 return;
1615 default:
1616 g_assert_not_reached();
1619 icc_deactivate_irq(cs, irq);
1622 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1624 GICv3CPUState *cs = icc_cs_from_env(env);
1625 int prio;
1627 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1628 return icv_rpr_read(env, ri);
1631 prio = icc_highest_active_prio(cs);
1633 if (arm_feature(env, ARM_FEATURE_EL3) &&
1634 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1635 /* NS GIC access and Group 0 is inaccessible to NS */
1636 if ((prio & 0x80) == 0) {
1637 /* NS mustn't see priorities in the Secure half of the range */
1638 prio = 0;
1639 } else if (prio != 0xff) {
1640 /* Non-idle priority: show the Non-secure view of it */
1641 prio = (prio << 1) & 0xff;
1645 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1646 return prio;
1649 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1650 uint64_t value, int grp, bool ns)
1652 GICv3State *s = cs->gic;
1654 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1655 uint64_t aff = extract64(value, 48, 8) << 16 |
1656 extract64(value, 32, 8) << 8 |
1657 extract64(value, 16, 8);
1658 uint32_t targetlist = extract64(value, 0, 16);
1659 uint32_t irq = extract64(value, 24, 4);
1660 bool irm = extract64(value, 40, 1);
1661 int i;
1663 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1664 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1665 * interrupts as Group 0 interrupts and must send Secure Group 0
1666 * interrupts to the target CPUs.
1668 grp = GICV3_G0;
1671 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1672 aff, targetlist);
1674 for (i = 0; i < s->num_cpu; i++) {
1675 GICv3CPUState *ocs = &s->cpu[i];
1677 if (irm) {
1678 /* IRM == 1 : route to all CPUs except self */
1679 if (cs == ocs) {
1680 continue;
1682 } else {
1683 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1684 * where the corresponding bit is set in targetlist
1686 int aff0;
1688 if (ocs->gicr_typer >> 40 != aff) {
1689 continue;
1691 aff0 = extract64(ocs->gicr_typer, 32, 8);
1692 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1693 continue;
1697 /* The redistributor will check against its own GICR_NSACR as needed */
1698 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1702 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1703 uint64_t value)
1705 /* Generate Secure Group 0 SGI. */
1706 GICv3CPUState *cs = icc_cs_from_env(env);
1707 bool ns = !arm_is_secure(env);
1709 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1712 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1713 uint64_t value)
1715 /* Generate Group 1 SGI for the current Security state */
1716 GICv3CPUState *cs = icc_cs_from_env(env);
1717 int grp;
1718 bool ns = !arm_is_secure(env);
1720 grp = ns ? GICV3_G1NS : GICV3_G1;
1721 icc_generate_sgi(env, cs, value, grp, ns);
1724 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725 uint64_t value)
1727 /* Generate Group 1 SGI for the Security state that is not
1728 * the current state
1730 GICv3CPUState *cs = icc_cs_from_env(env);
1731 int grp;
1732 bool ns = !arm_is_secure(env);
1734 grp = ns ? GICV3_G1 : GICV3_G1NS;
1735 icc_generate_sgi(env, cs, value, grp, ns);
1738 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1740 GICv3CPUState *cs = icc_cs_from_env(env);
1741 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1742 uint64_t value;
1744 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1745 return icv_igrpen_read(env, ri);
1748 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1749 grp = GICV3_G1NS;
1752 value = cs->icc_igrpen[grp];
1753 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1754 gicv3_redist_affid(cs), value);
1755 return value;
1758 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1759 uint64_t value)
1761 GICv3CPUState *cs = icc_cs_from_env(env);
1762 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1764 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1765 icv_igrpen_write(env, ri, value);
1766 return;
1769 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1770 gicv3_redist_affid(cs), value);
1772 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1773 grp = GICV3_G1NS;
1776 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1777 gicv3_cpuif_update(cs);
1780 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1782 GICv3CPUState *cs = icc_cs_from_env(env);
1783 uint64_t value;
1785 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1786 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1787 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1788 return value;
1791 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 GICv3CPUState *cs = icc_cs_from_env(env);
1796 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1798 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1799 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1800 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1801 gicv3_cpuif_update(cs);
1804 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1806 GICv3CPUState *cs = icc_cs_from_env(env);
1807 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1808 uint64_t value;
1810 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1811 return icv_ctlr_read(env, ri);
1814 value = cs->icc_ctlr_el1[bank];
1815 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1816 return value;
1819 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820 uint64_t value)
1822 GICv3CPUState *cs = icc_cs_from_env(env);
1823 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1824 uint64_t mask;
1826 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1827 icv_ctlr_write(env, ri, value);
1828 return;
1831 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1833 /* Only CBPR and EOIMODE can be RW;
1834 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1835 * the asseciated priority-based routing of them);
1836 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1838 if (arm_feature(env, ARM_FEATURE_EL3) &&
1839 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1840 mask = ICC_CTLR_EL1_EOIMODE;
1841 } else {
1842 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1845 cs->icc_ctlr_el1[bank] &= ~mask;
1846 cs->icc_ctlr_el1[bank] |= (value & mask);
1847 gicv3_cpuif_update(cs);
1851 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1853 GICv3CPUState *cs = icc_cs_from_env(env);
1854 uint64_t value;
1856 value = cs->icc_ctlr_el3;
1857 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1858 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1860 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1861 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1863 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1864 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1866 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1867 value |= ICC_CTLR_EL3_CBPR_EL1S;
1870 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1871 return value;
1874 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 GICv3CPUState *cs = icc_cs_from_env(env);
1878 uint64_t mask;
1880 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1882 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1883 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1884 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1885 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1887 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1888 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1891 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1892 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1893 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1895 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1896 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1899 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1900 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1902 cs->icc_ctlr_el3 &= ~mask;
1903 cs->icc_ctlr_el3 |= (value & mask);
1904 gicv3_cpuif_update(cs);
1907 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1908 const ARMCPRegInfo *ri, bool isread)
1910 CPAccessResult r = CP_ACCESS_OK;
1911 GICv3CPUState *cs = icc_cs_from_env(env);
1912 int el = arm_current_el(env);
1914 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1915 el == 1 && !arm_is_secure_below_el3(env)) {
1916 /* Takes priority over a possible EL3 trap */
1917 return CP_ACCESS_TRAP_EL2;
1920 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1921 switch (el) {
1922 case 1:
1923 /* Note that arm_hcr_el2_eff takes secure state into account. */
1924 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1925 r = CP_ACCESS_TRAP_EL3;
1927 break;
1928 case 2:
1929 r = CP_ACCESS_TRAP_EL3;
1930 break;
1931 case 3:
1932 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1933 r = CP_ACCESS_TRAP_EL3;
1935 break;
1936 default:
1937 g_assert_not_reached();
1941 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1942 r = CP_ACCESS_TRAP;
1944 return r;
1947 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1948 const ARMCPRegInfo *ri, bool isread)
1950 GICv3CPUState *cs = icc_cs_from_env(env);
1952 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1953 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1954 /* Takes priority over a possible EL3 trap */
1955 return CP_ACCESS_TRAP_EL2;
1958 return gicv3_irqfiq_access(env, ri, isread);
1961 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1962 const ARMCPRegInfo *ri, bool isread)
1964 if (arm_current_el(env) == 1 &&
1965 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1966 /* Takes priority over a possible EL3 trap */
1967 return CP_ACCESS_TRAP_EL2;
1970 return gicv3_irqfiq_access(env, ri, isread);
1973 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1974 const ARMCPRegInfo *ri, bool isread)
1976 CPAccessResult r = CP_ACCESS_OK;
1977 GICv3CPUState *cs = icc_cs_from_env(env);
1978 int el = arm_current_el(env);
1980 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1981 el == 1 && !arm_is_secure_below_el3(env)) {
1982 /* Takes priority over a possible EL3 trap */
1983 return CP_ACCESS_TRAP_EL2;
1986 if (env->cp15.scr_el3 & SCR_FIQ) {
1987 switch (el) {
1988 case 1:
1989 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
1990 r = CP_ACCESS_TRAP_EL3;
1992 break;
1993 case 2:
1994 r = CP_ACCESS_TRAP_EL3;
1995 break;
1996 case 3:
1997 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1998 r = CP_ACCESS_TRAP_EL3;
2000 break;
2001 default:
2002 g_assert_not_reached();
2006 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2007 r = CP_ACCESS_TRAP;
2009 return r;
2012 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2013 const ARMCPRegInfo *ri, bool isread)
2015 CPAccessResult r = CP_ACCESS_OK;
2016 GICv3CPUState *cs = icc_cs_from_env(env);
2017 int el = arm_current_el(env);
2019 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2020 el == 1 && !arm_is_secure_below_el3(env)) {
2021 /* Takes priority over a possible EL3 trap */
2022 return CP_ACCESS_TRAP_EL2;
2025 if (env->cp15.scr_el3 & SCR_IRQ) {
2026 switch (el) {
2027 case 1:
2028 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2029 r = CP_ACCESS_TRAP_EL3;
2031 break;
2032 case 2:
2033 r = CP_ACCESS_TRAP_EL3;
2034 break;
2035 case 3:
2036 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2037 r = CP_ACCESS_TRAP_EL3;
2039 break;
2040 default:
2041 g_assert_not_reached();
2045 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2046 r = CP_ACCESS_TRAP;
2048 return r;
2051 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2053 GICv3CPUState *cs = icc_cs_from_env(env);
2055 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2056 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2057 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2058 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2059 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2060 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2061 cs->icc_pmr_el1 = 0;
2062 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2063 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2064 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2065 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2066 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2067 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2068 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2069 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2071 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2072 cs->ich_hcr_el2 = 0;
2073 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2074 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2075 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2076 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2079 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2080 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2081 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2082 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2083 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2084 .readfn = icc_pmr_read,
2085 .writefn = icc_pmr_write,
2086 /* We hang the whole cpu interface reset routine off here
2087 * rather than parcelling it out into one little function
2088 * per register
2090 .resetfn = icc_reset,
2092 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2093 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2094 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2095 .access = PL1_R, .accessfn = gicv3_fiq_access,
2096 .readfn = icc_iar0_read,
2098 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2100 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2101 .access = PL1_W, .accessfn = gicv3_fiq_access,
2102 .writefn = icc_eoir_write,
2104 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2105 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2106 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2107 .access = PL1_R, .accessfn = gicv3_fiq_access,
2108 .readfn = icc_hppir0_read,
2110 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2111 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2112 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2113 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2114 .readfn = icc_bpr_read,
2115 .writefn = icc_bpr_write,
2117 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2118 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2119 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2120 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2121 .readfn = icc_ap_read,
2122 .writefn = icc_ap_write,
2124 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2125 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2126 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2127 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2128 .readfn = icc_ap_read,
2129 .writefn = icc_ap_write,
2131 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2132 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2133 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2134 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2135 .readfn = icc_ap_read,
2136 .writefn = icc_ap_write,
2138 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2139 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2140 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2141 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2142 .readfn = icc_ap_read,
2143 .writefn = icc_ap_write,
2145 /* All the ICC_AP1R*_EL1 registers are banked */
2146 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2147 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2148 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2149 .access = PL1_RW, .accessfn = gicv3_irq_access,
2150 .readfn = icc_ap_read,
2151 .writefn = icc_ap_write,
2153 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2154 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2155 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2156 .access = PL1_RW, .accessfn = gicv3_irq_access,
2157 .readfn = icc_ap_read,
2158 .writefn = icc_ap_write,
2160 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2161 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2162 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2163 .access = PL1_RW, .accessfn = gicv3_irq_access,
2164 .readfn = icc_ap_read,
2165 .writefn = icc_ap_write,
2167 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2168 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2169 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2170 .access = PL1_RW, .accessfn = gicv3_irq_access,
2171 .readfn = icc_ap_read,
2172 .writefn = icc_ap_write,
2174 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2175 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2176 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2177 .access = PL1_W, .accessfn = gicv3_dir_access,
2178 .writefn = icc_dir_write,
2180 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2181 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2182 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2183 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2184 .readfn = icc_rpr_read,
2186 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2187 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2188 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2189 .access = PL1_W, .accessfn = gicv3_sgi_access,
2190 .writefn = icc_sgi1r_write,
2192 { .name = "ICC_SGI1R",
2193 .cp = 15, .opc1 = 0, .crm = 12,
2194 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2195 .access = PL1_W, .accessfn = gicv3_sgi_access,
2196 .writefn = icc_sgi1r_write,
2198 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2199 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2200 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2201 .access = PL1_W, .accessfn = gicv3_sgi_access,
2202 .writefn = icc_asgi1r_write,
2204 { .name = "ICC_ASGI1R",
2205 .cp = 15, .opc1 = 1, .crm = 12,
2206 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2207 .access = PL1_W, .accessfn = gicv3_sgi_access,
2208 .writefn = icc_asgi1r_write,
2210 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2211 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2212 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2213 .access = PL1_W, .accessfn = gicv3_sgi_access,
2214 .writefn = icc_sgi0r_write,
2216 { .name = "ICC_SGI0R",
2217 .cp = 15, .opc1 = 2, .crm = 12,
2218 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2219 .access = PL1_W, .accessfn = gicv3_sgi_access,
2220 .writefn = icc_sgi0r_write,
2222 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2223 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2224 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2225 .access = PL1_R, .accessfn = gicv3_irq_access,
2226 .readfn = icc_iar1_read,
2228 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2229 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2230 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2231 .access = PL1_W, .accessfn = gicv3_irq_access,
2232 .writefn = icc_eoir_write,
2234 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2235 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2236 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2237 .access = PL1_R, .accessfn = gicv3_irq_access,
2238 .readfn = icc_hppir1_read,
2240 /* This register is banked */
2241 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2242 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2243 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2244 .access = PL1_RW, .accessfn = gicv3_irq_access,
2245 .readfn = icc_bpr_read,
2246 .writefn = icc_bpr_write,
2248 /* This register is banked */
2249 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2250 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2251 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2252 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2253 .readfn = icc_ctlr_el1_read,
2254 .writefn = icc_ctlr_el1_write,
2256 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2258 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2259 .access = PL1_RW,
2260 /* We don't support IRQ/FIQ bypass and system registers are
2261 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2262 * This register is banked but since it's constant we don't
2263 * need to do anything special.
2265 .resetvalue = 0x7,
2267 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2268 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2269 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2270 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2271 .readfn = icc_igrpen_read,
2272 .writefn = icc_igrpen_write,
2274 /* This register is banked */
2275 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2276 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2277 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2278 .access = PL1_RW, .accessfn = gicv3_irq_access,
2279 .readfn = icc_igrpen_read,
2280 .writefn = icc_igrpen_write,
2282 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2283 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2284 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2285 .access = PL2_RW,
2286 /* We don't support IRQ/FIQ bypass and system registers are
2287 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2289 .resetvalue = 0xf,
2291 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2292 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2293 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2294 .access = PL3_RW,
2295 .readfn = icc_ctlr_el3_read,
2296 .writefn = icc_ctlr_el3_write,
2298 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2299 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2300 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2301 .access = PL3_RW,
2302 /* We don't support IRQ/FIQ bypass and system registers are
2303 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2305 .resetvalue = 0xf,
2307 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2308 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2309 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2310 .access = PL3_RW,
2311 .readfn = icc_igrpen1_el3_read,
2312 .writefn = icc_igrpen1_el3_write,
2314 REGINFO_SENTINEL
2317 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2319 GICv3CPUState *cs = icc_cs_from_env(env);
2320 int regno = ri->opc2 & 3;
2321 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2322 uint64_t value;
2324 value = cs->ich_apr[grp][regno];
2325 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2326 return value;
2329 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2330 uint64_t value)
2332 GICv3CPUState *cs = icc_cs_from_env(env);
2333 int regno = ri->opc2 & 3;
2334 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2336 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2338 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2339 gicv3_cpuif_virt_update(cs);
2342 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2344 GICv3CPUState *cs = icc_cs_from_env(env);
2345 uint64_t value = cs->ich_hcr_el2;
2347 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2348 return value;
2351 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2352 uint64_t value)
2354 GICv3CPUState *cs = icc_cs_from_env(env);
2356 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2358 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2359 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2360 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2361 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2362 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2364 cs->ich_hcr_el2 = value;
2365 gicv3_cpuif_virt_update(cs);
2368 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2370 GICv3CPUState *cs = icc_cs_from_env(env);
2371 uint64_t value = cs->ich_vmcr_el2;
2373 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2374 return value;
2377 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2378 uint64_t value)
2380 GICv3CPUState *cs = icc_cs_from_env(env);
2382 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2384 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2385 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2386 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2387 value |= ICH_VMCR_EL2_VFIQEN;
2389 cs->ich_vmcr_el2 = value;
2390 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2391 * by reading and writing back the fields.
2393 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2394 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2396 gicv3_cpuif_virt_update(cs);
2399 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2401 GICv3CPUState *cs = icc_cs_from_env(env);
2402 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2403 uint64_t value;
2405 /* This read function handles all of:
2406 * 64-bit reads of the whole LR
2407 * 32-bit reads of the low half of the LR
2408 * 32-bit reads of the high half of the LR
2410 if (ri->state == ARM_CP_STATE_AA32) {
2411 if (ri->crm >= 14) {
2412 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2413 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2414 } else {
2415 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2416 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2418 } else {
2419 value = cs->ich_lr_el2[regno];
2420 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2423 return value;
2426 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2427 uint64_t value)
2429 GICv3CPUState *cs = icc_cs_from_env(env);
2430 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2432 /* This write function handles all of:
2433 * 64-bit writes to the whole LR
2434 * 32-bit writes to the low half of the LR
2435 * 32-bit writes to the high half of the LR
2437 if (ri->state == ARM_CP_STATE_AA32) {
2438 if (ri->crm >= 14) {
2439 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2440 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2441 } else {
2442 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2443 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2445 } else {
2446 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2449 /* Enforce RES0 bits in priority field */
2450 if (cs->vpribits < 8) {
2451 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2452 8 - cs->vpribits, 0);
2455 cs->ich_lr_el2[regno] = value;
2456 gicv3_cpuif_virt_update(cs);
2459 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2461 GICv3CPUState *cs = icc_cs_from_env(env);
2462 uint64_t value;
2464 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2465 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2466 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2467 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2468 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2470 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2471 return value;
2474 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2476 GICv3CPUState *cs = icc_cs_from_env(env);
2477 uint64_t value = maintenance_interrupt_state(cs);
2479 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2480 return value;
2483 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2485 GICv3CPUState *cs = icc_cs_from_env(env);
2486 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2488 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2489 return value;
2492 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2494 GICv3CPUState *cs = icc_cs_from_env(env);
2495 uint64_t value = 0;
2496 int i;
2498 for (i = 0; i < cs->num_list_regs; i++) {
2499 uint64_t lr = cs->ich_lr_el2[i];
2501 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2502 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2503 value |= (1 << i);
2507 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2508 return value;
2511 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2512 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2513 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2514 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2515 .access = PL2_RW,
2516 .readfn = ich_ap_read,
2517 .writefn = ich_ap_write,
2519 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2520 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2521 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2522 .access = PL2_RW,
2523 .readfn = ich_ap_read,
2524 .writefn = ich_ap_write,
2526 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2527 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2528 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2529 .access = PL2_RW,
2530 .readfn = ich_hcr_read,
2531 .writefn = ich_hcr_write,
2533 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2534 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2535 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2536 .access = PL2_R,
2537 .readfn = ich_vtr_read,
2539 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2540 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2541 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2542 .access = PL2_R,
2543 .readfn = ich_misr_read,
2545 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2546 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2547 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2548 .access = PL2_R,
2549 .readfn = ich_eisr_read,
2551 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2552 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2553 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2554 .access = PL2_R,
2555 .readfn = ich_elrsr_read,
2557 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2558 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2559 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2560 .access = PL2_RW,
2561 .readfn = ich_vmcr_read,
2562 .writefn = ich_vmcr_write,
2564 REGINFO_SENTINEL
2567 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2568 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2569 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2570 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2571 .access = PL2_RW,
2572 .readfn = ich_ap_read,
2573 .writefn = ich_ap_write,
2575 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2576 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2577 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2578 .access = PL2_RW,
2579 .readfn = ich_ap_read,
2580 .writefn = ich_ap_write,
2582 REGINFO_SENTINEL
2585 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2586 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2587 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2588 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2589 .access = PL2_RW,
2590 .readfn = ich_ap_read,
2591 .writefn = ich_ap_write,
2593 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2594 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2595 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2596 .access = PL2_RW,
2597 .readfn = ich_ap_read,
2598 .writefn = ich_ap_write,
2600 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2601 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2602 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2603 .access = PL2_RW,
2604 .readfn = ich_ap_read,
2605 .writefn = ich_ap_write,
2607 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2608 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2609 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2610 .access = PL2_RW,
2611 .readfn = ich_ap_read,
2612 .writefn = ich_ap_write,
2614 REGINFO_SENTINEL
2617 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2619 GICv3CPUState *cs = opaque;
2621 gicv3_cpuif_update(cs);
2624 void gicv3_init_cpuif(GICv3State *s)
2626 /* Called from the GICv3 realize function; register our system
2627 * registers with the CPU
2629 int i;
2631 for (i = 0; i < s->num_cpu; i++) {
2632 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2633 GICv3CPUState *cs = &s->cpu[i];
2635 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2636 * in define_arm_cp_regs_with_opaque(), because when we're called back
2637 * it might be with code translated by CPU 0 but run by CPU 1, in
2638 * which case we'd get the wrong value.
2639 * So instead we define the regs with no ri->opaque info, and
2640 * get back to the GICv3CPUState from the CPUARMState.
2642 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2643 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2644 && cpu->gic_num_lrs) {
2645 int j;
2647 cs->num_list_regs = cpu->gic_num_lrs;
2648 cs->vpribits = cpu->gic_vpribits;
2649 cs->vprebits = cpu->gic_vprebits;
2651 /* Check against architectural constraints: getting these
2652 * wrong would be a bug in the CPU code defining these,
2653 * and the implementation relies on them holding.
2655 g_assert(cs->vprebits <= cs->vpribits);
2656 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2657 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2659 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2661 for (j = 0; j < cs->num_list_regs; j++) {
2662 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2663 * are split into two cp15 regs, LR (the low part, with the
2664 * same encoding as the AArch64 LR) and LRC (the high part).
2666 ARMCPRegInfo lr_regset[] = {
2667 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2668 .opc0 = 3, .opc1 = 4, .crn = 12,
2669 .crm = 12 + (j >> 3), .opc2 = j & 7,
2670 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2671 .access = PL2_RW,
2672 .readfn = ich_lr_read,
2673 .writefn = ich_lr_write,
2675 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2676 .cp = 15, .opc1 = 4, .crn = 12,
2677 .crm = 14 + (j >> 3), .opc2 = j & 7,
2678 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2679 .access = PL2_RW,
2680 .readfn = ich_lr_read,
2681 .writefn = ich_lr_write,
2683 REGINFO_SENTINEL
2685 define_arm_cp_regs(cpu, lr_regset);
2687 if (cs->vprebits >= 6) {
2688 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2690 if (cs->vprebits == 7) {
2691 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2694 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);