x86: Work around SMI migration breakages
[qemu/kevin.git] / translate-all.c
blobd42d003e674d4d0f806e9dfe0d159c8adacfb8d4
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace-root.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #include "exec/exec-all.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <sys/proc.h>
41 #include <machine/profile.h>
42 #define _KERNEL
43 #include <sys/user.h>
44 #undef _KERNEL
45 #undef sigqueue
46 #include <libutil.h>
47 #endif
48 #endif
49 #else
50 #include "exec/address-spaces.h"
51 #endif
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
58 #include "qemu/main-loop.h"
59 #include "exec/log.h"
61 /* #define DEBUG_TB_INVALIDATE */
62 /* #define DEBUG_TB_FLUSH */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
66 #if !defined(CONFIG_USER_ONLY)
67 /* TB consistency checks only implemented for usermode emulation. */
68 #undef DEBUG_TB_CHECK
69 #endif
71 /* Access to the various translations structures need to be serialised via locks
72 * for consistency. This is automatic for SoftMMU based system
73 * emulation due to its single threaded nature. In user-mode emulation
74 * access to the memory related structures are protected with the
75 * mmap_lock.
77 #ifdef CONFIG_SOFTMMU
78 #define assert_memory_lock() tcg_debug_assert(have_tb_lock)
79 #else
80 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
81 #endif
83 #define SMC_BITMAP_USE_THRESHOLD 10
85 typedef struct PageDesc {
86 /* list of TBs intersecting this ram page */
87 TranslationBlock *first_tb;
88 #ifdef CONFIG_SOFTMMU
89 /* in order to optimize self modifying code, we count the number
90 of lookups we do to a given page to use a bitmap */
91 unsigned int code_write_count;
92 unsigned long *code_bitmap;
93 #else
94 unsigned long flags;
95 #endif
96 } PageDesc;
98 /* In system mode we want L1_MAP to be based on ram offsets,
99 while in user mode we want it to be based on virtual addresses. */
100 #if !defined(CONFIG_USER_ONLY)
101 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
102 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
103 #else
104 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
105 #endif
106 #else
107 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
108 #endif
110 /* Size of the L2 (and L3, etc) page tables. */
111 #define V_L2_BITS 10
112 #define V_L2_SIZE (1 << V_L2_BITS)
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
118 * L1 Mapping properties
120 static int v_l1_size;
121 static int v_l1_shift;
122 static int v_l2_levels;
124 /* The bottom level has pointers to PageDesc, and is indexed by
125 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
127 #define V_L1_MIN_BITS 4
128 #define V_L1_MAX_BITS (V_L2_BITS + 3)
129 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
131 static void *l1_map[V_L1_MAX_SIZE];
133 /* code generation context */
134 TCGContext tcg_ctx;
135 bool parallel_cpus;
137 /* translation block context */
138 __thread int have_tb_lock;
140 static void page_table_config_init(void)
142 uint32_t v_l1_bits;
144 assert(TARGET_PAGE_BITS);
145 /* The bits remaining after N lower levels of page tables. */
146 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
147 if (v_l1_bits < V_L1_MIN_BITS) {
148 v_l1_bits += V_L2_BITS;
151 v_l1_size = 1 << v_l1_bits;
152 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
153 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
155 assert(v_l1_bits <= V_L1_MAX_BITS);
156 assert(v_l1_shift % V_L2_BITS == 0);
157 assert(v_l2_levels >= 0);
160 #define assert_tb_locked() tcg_debug_assert(have_tb_lock)
161 #define assert_tb_unlocked() tcg_debug_assert(!have_tb_lock)
163 void tb_lock(void)
165 assert_tb_unlocked();
166 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
167 have_tb_lock++;
170 void tb_unlock(void)
172 assert_tb_locked();
173 have_tb_lock--;
174 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
177 void tb_lock_reset(void)
179 if (have_tb_lock) {
180 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
181 have_tb_lock = 0;
185 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
187 void cpu_gen_init(void)
189 tcg_context_init(&tcg_ctx);
192 /* Encode VAL as a signed leb128 sequence at P.
193 Return P incremented past the encoded value. */
194 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
196 int more, byte;
198 do {
199 byte = val & 0x7f;
200 val >>= 7;
201 more = !((val == 0 && (byte & 0x40) == 0)
202 || (val == -1 && (byte & 0x40) != 0));
203 if (more) {
204 byte |= 0x80;
206 *p++ = byte;
207 } while (more);
209 return p;
212 /* Decode a signed leb128 sequence at *PP; increment *PP past the
213 decoded value. Return the decoded value. */
214 static target_long decode_sleb128(uint8_t **pp)
216 uint8_t *p = *pp;
217 target_long val = 0;
218 int byte, shift = 0;
220 do {
221 byte = *p++;
222 val |= (target_ulong)(byte & 0x7f) << shift;
223 shift += 7;
224 } while (byte & 0x80);
225 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
226 val |= -(target_ulong)1 << shift;
229 *pp = p;
230 return val;
233 /* Encode the data collected about the instructions while compiling TB.
234 Place the data at BLOCK, and return the number of bytes consumed.
236 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
237 which come from the target's insn_start data, followed by a uintptr_t
238 which comes from the host pc of the end of the code implementing the insn.
240 Each line of the table is encoded as sleb128 deltas from the previous
241 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
242 That is, the first column is seeded with the guest pc, the last column
243 with the host pc, and the middle columns with zeros. */
245 static int encode_search(TranslationBlock *tb, uint8_t *block)
247 uint8_t *highwater = tcg_ctx.code_gen_highwater;
248 uint8_t *p = block;
249 int i, j, n;
251 tb->tc_search = block;
253 for (i = 0, n = tb->icount; i < n; ++i) {
254 target_ulong prev;
256 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
257 if (i == 0) {
258 prev = (j == 0 ? tb->pc : 0);
259 } else {
260 prev = tcg_ctx.gen_insn_data[i - 1][j];
262 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
264 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
265 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
267 /* Test for (pending) buffer overflow. The assumption is that any
268 one row beginning below the high water mark cannot overrun
269 the buffer completely. Thus we can test for overflow after
270 encoding a row without having to check during encoding. */
271 if (unlikely(p > highwater)) {
272 return -1;
276 return p - block;
279 /* The cpu state corresponding to 'searched_pc' is restored.
280 * Called with tb_lock held.
282 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
283 uintptr_t searched_pc)
285 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
286 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
287 CPUArchState *env = cpu->env_ptr;
288 uint8_t *p = tb->tc_search;
289 int i, j, num_insns = tb->icount;
290 #ifdef CONFIG_PROFILER
291 int64_t ti = profile_getclock();
292 #endif
294 searched_pc -= GETPC_ADJ;
296 if (searched_pc < host_pc) {
297 return -1;
300 /* Reconstruct the stored insn data while looking for the point at
301 which the end of the insn exceeds the searched_pc. */
302 for (i = 0; i < num_insns; ++i) {
303 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
304 data[j] += decode_sleb128(&p);
306 host_pc += decode_sleb128(&p);
307 if (host_pc > searched_pc) {
308 goto found;
311 return -1;
313 found:
314 if (tb->cflags & CF_USE_ICOUNT) {
315 assert(use_icount);
316 /* Reset the cycle counter to the start of the block. */
317 cpu->icount_decr.u16.low += num_insns;
318 /* Clear the IO flag. */
319 cpu->can_do_io = 0;
321 cpu->icount_decr.u16.low -= i;
322 restore_state_to_opc(env, tb, data);
324 #ifdef CONFIG_PROFILER
325 tcg_ctx.restore_time += profile_getclock() - ti;
326 tcg_ctx.restore_count++;
327 #endif
328 return 0;
331 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
333 TranslationBlock *tb;
334 bool r = false;
336 tb_lock();
337 tb = tb_find_pc(retaddr);
338 if (tb) {
339 cpu_restore_state_from_tb(cpu, tb, retaddr);
340 if (tb->cflags & CF_NOCACHE) {
341 /* one-shot translation, invalidate it immediately */
342 tb_phys_invalidate(tb, -1);
343 tb_free(tb);
345 r = true;
347 tb_unlock();
349 return r;
352 void page_size_init(void)
354 /* NOTE: we can always suppose that qemu_host_page_size >=
355 TARGET_PAGE_SIZE */
356 qemu_real_host_page_size = getpagesize();
357 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
358 if (qemu_host_page_size == 0) {
359 qemu_host_page_size = qemu_real_host_page_size;
361 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
362 qemu_host_page_size = TARGET_PAGE_SIZE;
364 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
367 static void page_init(void)
369 page_size_init();
370 page_table_config_init();
372 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
374 #ifdef HAVE_KINFO_GETVMMAP
375 struct kinfo_vmentry *freep;
376 int i, cnt;
378 freep = kinfo_getvmmap(getpid(), &cnt);
379 if (freep) {
380 mmap_lock();
381 for (i = 0; i < cnt; i++) {
382 unsigned long startaddr, endaddr;
384 startaddr = freep[i].kve_start;
385 endaddr = freep[i].kve_end;
386 if (h2g_valid(startaddr)) {
387 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
389 if (h2g_valid(endaddr)) {
390 endaddr = h2g(endaddr);
391 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
392 } else {
393 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
394 endaddr = ~0ul;
395 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
396 #endif
400 free(freep);
401 mmap_unlock();
403 #else
404 FILE *f;
406 last_brk = (unsigned long)sbrk(0);
408 f = fopen("/compat/linux/proc/self/maps", "r");
409 if (f) {
410 mmap_lock();
412 do {
413 unsigned long startaddr, endaddr;
414 int n;
416 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
418 if (n == 2 && h2g_valid(startaddr)) {
419 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
421 if (h2g_valid(endaddr)) {
422 endaddr = h2g(endaddr);
423 } else {
424 endaddr = ~0ul;
426 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
428 } while (!feof(f));
430 fclose(f);
431 mmap_unlock();
433 #endif
435 #endif
438 /* If alloc=1:
439 * Called with tb_lock held for system emulation.
440 * Called with mmap_lock held for user-mode emulation.
442 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
444 PageDesc *pd;
445 void **lp;
446 int i;
448 if (alloc) {
449 assert_memory_lock();
452 /* Level 1. Always allocated. */
453 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
455 /* Level 2..N-1. */
456 for (i = v_l2_levels; i > 0; i--) {
457 void **p = atomic_rcu_read(lp);
459 if (p == NULL) {
460 if (!alloc) {
461 return NULL;
463 p = g_new0(void *, V_L2_SIZE);
464 atomic_rcu_set(lp, p);
467 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
470 pd = atomic_rcu_read(lp);
471 if (pd == NULL) {
472 if (!alloc) {
473 return NULL;
475 pd = g_new0(PageDesc, V_L2_SIZE);
476 atomic_rcu_set(lp, pd);
479 return pd + (index & (V_L2_SIZE - 1));
482 static inline PageDesc *page_find(tb_page_addr_t index)
484 return page_find_alloc(index, 0);
487 #if defined(CONFIG_USER_ONLY)
488 /* Currently it is not recommended to allocate big chunks of data in
489 user mode. It will change when a dedicated libc will be used. */
490 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
491 region in which the guest needs to run. Revisit this. */
492 #define USE_STATIC_CODE_GEN_BUFFER
493 #endif
495 /* Minimum size of the code gen buffer. This number is randomly chosen,
496 but not so small that we can't have a fair number of TB's live. */
497 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
499 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
500 indicated, this is constrained by the range of direct branches on the
501 host cpu, as used by the TCG implementation of goto_tb. */
502 #if defined(__x86_64__)
503 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
504 #elif defined(__sparc__)
505 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
506 #elif defined(__powerpc64__)
507 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
508 #elif defined(__powerpc__)
509 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
510 #elif defined(__aarch64__)
511 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
512 #elif defined(__arm__)
513 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
514 #elif defined(__s390x__)
515 /* We have a +- 4GB range on the branches; leave some slop. */
516 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
517 #elif defined(__mips__)
518 /* We have a 256MB branch region, but leave room to make sure the
519 main executable is also within that region. */
520 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
521 #else
522 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
523 #endif
525 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
527 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
528 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
529 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
531 static inline size_t size_code_gen_buffer(size_t tb_size)
533 /* Size the buffer. */
534 if (tb_size == 0) {
535 #ifdef USE_STATIC_CODE_GEN_BUFFER
536 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
537 #else
538 /* ??? Needs adjustments. */
539 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
540 static buffer, we could size this on RESERVED_VA, on the text
541 segment size of the executable, or continue to use the default. */
542 tb_size = (unsigned long)(ram_size / 4);
543 #endif
545 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
546 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
548 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
549 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
551 return tb_size;
554 #ifdef __mips__
555 /* In order to use J and JAL within the code_gen_buffer, we require
556 that the buffer not cross a 256MB boundary. */
557 static inline bool cross_256mb(void *addr, size_t size)
559 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
562 /* We weren't able to allocate a buffer without crossing that boundary,
563 so make do with the larger portion of the buffer that doesn't cross.
564 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
565 static inline void *split_cross_256mb(void *buf1, size_t size1)
567 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
568 size_t size2 = buf1 + size1 - buf2;
570 size1 = buf2 - buf1;
571 if (size1 < size2) {
572 size1 = size2;
573 buf1 = buf2;
576 tcg_ctx.code_gen_buffer_size = size1;
577 return buf1;
579 #endif
581 #ifdef USE_STATIC_CODE_GEN_BUFFER
582 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
583 __attribute__((aligned(CODE_GEN_ALIGN)));
585 # ifdef _WIN32
586 static inline void do_protect(void *addr, long size, int prot)
588 DWORD old_protect;
589 VirtualProtect(addr, size, prot, &old_protect);
592 static inline void map_exec(void *addr, long size)
594 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
597 static inline void map_none(void *addr, long size)
599 do_protect(addr, size, PAGE_NOACCESS);
601 # else
602 static inline void do_protect(void *addr, long size, int prot)
604 uintptr_t start, end;
606 start = (uintptr_t)addr;
607 start &= qemu_real_host_page_mask;
609 end = (uintptr_t)addr + size;
610 end = ROUND_UP(end, qemu_real_host_page_size);
612 mprotect((void *)start, end - start, prot);
615 static inline void map_exec(void *addr, long size)
617 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
620 static inline void map_none(void *addr, long size)
622 do_protect(addr, size, PROT_NONE);
624 # endif /* WIN32 */
626 static inline void *alloc_code_gen_buffer(void)
628 void *buf = static_code_gen_buffer;
629 size_t full_size, size;
631 /* The size of the buffer, rounded down to end on a page boundary. */
632 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
633 & qemu_real_host_page_mask) - (uintptr_t)buf;
635 /* Reserve a guard page. */
636 size = full_size - qemu_real_host_page_size;
638 /* Honor a command-line option limiting the size of the buffer. */
639 if (size > tcg_ctx.code_gen_buffer_size) {
640 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
641 & qemu_real_host_page_mask) - (uintptr_t)buf;
643 tcg_ctx.code_gen_buffer_size = size;
645 #ifdef __mips__
646 if (cross_256mb(buf, size)) {
647 buf = split_cross_256mb(buf, size);
648 size = tcg_ctx.code_gen_buffer_size;
650 #endif
652 map_exec(buf, size);
653 map_none(buf + size, qemu_real_host_page_size);
654 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
656 return buf;
658 #elif defined(_WIN32)
659 static inline void *alloc_code_gen_buffer(void)
661 size_t size = tcg_ctx.code_gen_buffer_size;
662 void *buf1, *buf2;
664 /* Perform the allocation in two steps, so that the guard page
665 is reserved but uncommitted. */
666 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
667 MEM_RESERVE, PAGE_NOACCESS);
668 if (buf1 != NULL) {
669 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
670 assert(buf1 == buf2);
673 return buf1;
675 #else
676 static inline void *alloc_code_gen_buffer(void)
678 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
679 uintptr_t start = 0;
680 size_t size = tcg_ctx.code_gen_buffer_size;
681 void *buf;
683 /* Constrain the position of the buffer based on the host cpu.
684 Note that these addresses are chosen in concert with the
685 addresses assigned in the relevant linker script file. */
686 # if defined(__PIE__) || defined(__PIC__)
687 /* Don't bother setting a preferred location if we're building
688 a position-independent executable. We're more likely to get
689 an address near the main executable if we let the kernel
690 choose the address. */
691 # elif defined(__x86_64__) && defined(MAP_32BIT)
692 /* Force the memory down into low memory with the executable.
693 Leave the choice of exact location with the kernel. */
694 flags |= MAP_32BIT;
695 /* Cannot expect to map more than 800MB in low memory. */
696 if (size > 800u * 1024 * 1024) {
697 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
699 # elif defined(__sparc__)
700 start = 0x40000000ul;
701 # elif defined(__s390x__)
702 start = 0x90000000ul;
703 # elif defined(__mips__)
704 # if _MIPS_SIM == _ABI64
705 start = 0x128000000ul;
706 # else
707 start = 0x08000000ul;
708 # endif
709 # endif
711 buf = mmap((void *)start, size + qemu_real_host_page_size,
712 PROT_NONE, flags, -1, 0);
713 if (buf == MAP_FAILED) {
714 return NULL;
717 #ifdef __mips__
718 if (cross_256mb(buf, size)) {
719 /* Try again, with the original still mapped, to avoid re-acquiring
720 that 256mb crossing. This time don't specify an address. */
721 size_t size2;
722 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
723 PROT_NONE, flags, -1, 0);
724 switch ((int)(buf2 != MAP_FAILED)) {
725 case 1:
726 if (!cross_256mb(buf2, size)) {
727 /* Success! Use the new buffer. */
728 munmap(buf, size + qemu_real_host_page_size);
729 break;
731 /* Failure. Work with what we had. */
732 munmap(buf2, size + qemu_real_host_page_size);
733 /* fallthru */
734 default:
735 /* Split the original buffer. Free the smaller half. */
736 buf2 = split_cross_256mb(buf, size);
737 size2 = tcg_ctx.code_gen_buffer_size;
738 if (buf == buf2) {
739 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
740 } else {
741 munmap(buf, size - size2);
743 size = size2;
744 break;
746 buf = buf2;
748 #endif
750 /* Make the final buffer accessible. The guard page at the end
751 will remain inaccessible with PROT_NONE. */
752 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
754 /* Request large pages for the buffer. */
755 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
757 return buf;
759 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
761 static inline void code_gen_alloc(size_t tb_size)
763 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
764 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
765 if (tcg_ctx.code_gen_buffer == NULL) {
766 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
767 exit(1);
770 /* Estimate a good size for the number of TBs we can support. We
771 still haven't deducted the prologue from the buffer size here,
772 but that's minimal and won't affect the estimate much. */
773 tcg_ctx.code_gen_max_blocks
774 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
775 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
777 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
780 static void tb_htable_init(void)
782 unsigned int mode = QHT_MODE_AUTO_RESIZE;
784 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
787 /* Must be called before using the QEMU cpus. 'tb_size' is the size
788 (in bytes) allocated to the translation buffer. Zero means default
789 size. */
790 void tcg_exec_init(unsigned long tb_size)
792 cpu_gen_init();
793 page_init();
794 tb_htable_init();
795 code_gen_alloc(tb_size);
796 #if defined(CONFIG_SOFTMMU)
797 /* There's no guest base to take into account, so go ahead and
798 initialize the prologue now. */
799 tcg_prologue_init(&tcg_ctx);
800 #endif
803 bool tcg_enabled(void)
805 return tcg_ctx.code_gen_buffer != NULL;
809 * Allocate a new translation block. Flush the translation buffer if
810 * too many translation blocks or too much generated code.
812 * Called with tb_lock held.
814 static TranslationBlock *tb_alloc(target_ulong pc)
816 TranslationBlock *tb;
818 assert_tb_locked();
820 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
821 return NULL;
823 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
824 tb->pc = pc;
825 tb->cflags = 0;
826 tb->invalid = false;
827 return tb;
830 /* Called with tb_lock held. */
831 void tb_free(TranslationBlock *tb)
833 assert_tb_locked();
835 /* In practice this is mostly used for single use temporary TB
836 Ignore the hard cases and just back up if this TB happens to
837 be the last one generated. */
838 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
839 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
840 tcg_ctx.code_gen_ptr = tb->tc_ptr;
841 tcg_ctx.tb_ctx.nb_tbs--;
845 static inline void invalidate_page_bitmap(PageDesc *p)
847 #ifdef CONFIG_SOFTMMU
848 g_free(p->code_bitmap);
849 p->code_bitmap = NULL;
850 p->code_write_count = 0;
851 #endif
854 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
855 static void page_flush_tb_1(int level, void **lp)
857 int i;
859 if (*lp == NULL) {
860 return;
862 if (level == 0) {
863 PageDesc *pd = *lp;
865 for (i = 0; i < V_L2_SIZE; ++i) {
866 pd[i].first_tb = NULL;
867 invalidate_page_bitmap(pd + i);
869 } else {
870 void **pp = *lp;
872 for (i = 0; i < V_L2_SIZE; ++i) {
873 page_flush_tb_1(level - 1, pp + i);
878 static void page_flush_tb(void)
880 int i, l1_sz = v_l1_size;
882 for (i = 0; i < l1_sz; i++) {
883 page_flush_tb_1(v_l2_levels, l1_map + i);
887 /* flush all the translation blocks */
888 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
890 tb_lock();
892 /* If it is already been done on request of another CPU,
893 * just retry.
895 if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
896 goto done;
899 #if defined(DEBUG_TB_FLUSH)
900 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
901 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
902 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
903 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
904 tcg_ctx.tb_ctx.nb_tbs : 0);
905 #endif
906 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
907 > tcg_ctx.code_gen_buffer_size) {
908 cpu_abort(cpu, "Internal error: code buffer overflow\n");
911 CPU_FOREACH(cpu) {
912 int i;
914 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
915 atomic_set(&cpu->tb_jmp_cache[i], NULL);
919 tcg_ctx.tb_ctx.nb_tbs = 0;
920 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
921 page_flush_tb();
923 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
924 /* XXX: flush processor icache at this point if cache flush is
925 expensive */
926 atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
927 tcg_ctx.tb_ctx.tb_flush_count + 1);
929 done:
930 tb_unlock();
933 void tb_flush(CPUState *cpu)
935 if (tcg_enabled()) {
936 unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
937 async_safe_run_on_cpu(cpu, do_tb_flush,
938 RUN_ON_CPU_HOST_INT(tb_flush_count));
942 #ifdef DEBUG_TB_CHECK
944 static void
945 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
947 TranslationBlock *tb = p;
948 target_ulong addr = *(target_ulong *)userp;
950 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
951 printf("ERROR invalidate: address=" TARGET_FMT_lx
952 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
956 /* verify that all the pages have correct rights for code
958 * Called with tb_lock held.
960 static void tb_invalidate_check(target_ulong address)
962 address &= TARGET_PAGE_MASK;
963 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
966 static void
967 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
969 TranslationBlock *tb = p;
970 int flags1, flags2;
972 flags1 = page_get_flags(tb->pc);
973 flags2 = page_get_flags(tb->pc + tb->size - 1);
974 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
975 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
976 (long)tb->pc, tb->size, flags1, flags2);
980 /* verify that all the pages have correct rights for code */
981 static void tb_page_check(void)
983 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
986 #endif
988 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
990 TranslationBlock *tb1;
991 unsigned int n1;
993 for (;;) {
994 tb1 = *ptb;
995 n1 = (uintptr_t)tb1 & 3;
996 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
997 if (tb1 == tb) {
998 *ptb = tb1->page_next[n1];
999 break;
1001 ptb = &tb1->page_next[n1];
1005 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
1006 static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1008 TranslationBlock *tb1;
1009 uintptr_t *ptb, ntb;
1010 unsigned int n1;
1012 ptb = &tb->jmp_list_next[n];
1013 if (*ptb) {
1014 /* find tb(n) in circular list */
1015 for (;;) {
1016 ntb = *ptb;
1017 n1 = ntb & 3;
1018 tb1 = (TranslationBlock *)(ntb & ~3);
1019 if (n1 == n && tb1 == tb) {
1020 break;
1022 if (n1 == 2) {
1023 ptb = &tb1->jmp_list_first;
1024 } else {
1025 ptb = &tb1->jmp_list_next[n1];
1028 /* now we can suppress tb(n) from the list */
1029 *ptb = tb->jmp_list_next[n];
1031 tb->jmp_list_next[n] = (uintptr_t)NULL;
1035 /* reset the jump entry 'n' of a TB so that it is not chained to
1036 another TB */
1037 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1039 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
1040 tb_set_jmp_target(tb, n, addr);
1043 /* remove any jumps to the TB */
1044 static inline void tb_jmp_unlink(TranslationBlock *tb)
1046 TranslationBlock *tb1;
1047 uintptr_t *ptb, ntb;
1048 unsigned int n1;
1050 ptb = &tb->jmp_list_first;
1051 for (;;) {
1052 ntb = *ptb;
1053 n1 = ntb & 3;
1054 tb1 = (TranslationBlock *)(ntb & ~3);
1055 if (n1 == 2) {
1056 break;
1058 tb_reset_jump(tb1, n1);
1059 *ptb = tb1->jmp_list_next[n1];
1060 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1064 /* invalidate one TB
1066 * Called with tb_lock held.
1068 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1070 CPUState *cpu;
1071 PageDesc *p;
1072 uint32_t h;
1073 tb_page_addr_t phys_pc;
1075 assert_tb_locked();
1077 atomic_set(&tb->invalid, true);
1079 /* remove the TB from the hash list */
1080 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1081 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1082 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1084 /* remove the TB from the page list */
1085 if (tb->page_addr[0] != page_addr) {
1086 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1087 tb_page_remove(&p->first_tb, tb);
1088 invalidate_page_bitmap(p);
1090 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1091 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1092 tb_page_remove(&p->first_tb, tb);
1093 invalidate_page_bitmap(p);
1096 /* remove the TB from the hash list */
1097 h = tb_jmp_cache_hash_func(tb->pc);
1098 CPU_FOREACH(cpu) {
1099 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1100 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1104 /* suppress this TB from the two jump lists */
1105 tb_remove_from_jmp_list(tb, 0);
1106 tb_remove_from_jmp_list(tb, 1);
1108 /* suppress any remaining jumps to this TB */
1109 tb_jmp_unlink(tb);
1111 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1114 #ifdef CONFIG_SOFTMMU
1115 static void build_page_bitmap(PageDesc *p)
1117 int n, tb_start, tb_end;
1118 TranslationBlock *tb;
1120 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1122 tb = p->first_tb;
1123 while (tb != NULL) {
1124 n = (uintptr_t)tb & 3;
1125 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1131 tb_end = tb_start + tb->size;
1132 if (tb_end > TARGET_PAGE_SIZE) {
1133 tb_end = TARGET_PAGE_SIZE;
1135 } else {
1136 tb_start = 0;
1137 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1139 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1140 tb = tb->page_next[n];
1143 #endif
1145 /* add the tb in the target page and protect it if necessary
1147 * Called with mmap_lock held for user-mode emulation.
1149 static inline void tb_alloc_page(TranslationBlock *tb,
1150 unsigned int n, tb_page_addr_t page_addr)
1152 PageDesc *p;
1153 #ifndef CONFIG_USER_ONLY
1154 bool page_already_protected;
1155 #endif
1157 assert_memory_lock();
1159 tb->page_addr[n] = page_addr;
1160 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1161 tb->page_next[n] = p->first_tb;
1162 #ifndef CONFIG_USER_ONLY
1163 page_already_protected = p->first_tb != NULL;
1164 #endif
1165 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1166 invalidate_page_bitmap(p);
1168 #if defined(CONFIG_USER_ONLY)
1169 if (p->flags & PAGE_WRITE) {
1170 target_ulong addr;
1171 PageDesc *p2;
1172 int prot;
1174 /* force the host page as non writable (writes will have a
1175 page fault + mprotect overhead) */
1176 page_addr &= qemu_host_page_mask;
1177 prot = 0;
1178 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1179 addr += TARGET_PAGE_SIZE) {
1181 p2 = page_find(addr >> TARGET_PAGE_BITS);
1182 if (!p2) {
1183 continue;
1185 prot |= p2->flags;
1186 p2->flags &= ~PAGE_WRITE;
1188 mprotect(g2h(page_addr), qemu_host_page_size,
1189 (prot & PAGE_BITS) & ~PAGE_WRITE);
1190 #ifdef DEBUG_TB_INVALIDATE
1191 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1192 page_addr);
1193 #endif
1195 #else
1196 /* if some code is already present, then the pages are already
1197 protected. So we handle the case where only the first TB is
1198 allocated in a physical page */
1199 if (!page_already_protected) {
1200 tlb_protect_code(page_addr);
1202 #endif
1205 /* add a new TB and link it to the physical page tables. phys_page2 is
1206 * (-1) to indicate that only one page contains the TB.
1208 * Called with mmap_lock held for user-mode emulation.
1210 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1211 tb_page_addr_t phys_page2)
1213 uint32_t h;
1215 assert_memory_lock();
1217 /* add in the page list */
1218 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1219 if (phys_page2 != -1) {
1220 tb_alloc_page(tb, 1, phys_page2);
1221 } else {
1222 tb->page_addr[1] = -1;
1225 /* add in the hash table */
1226 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1227 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1229 #ifdef DEBUG_TB_CHECK
1230 tb_page_check();
1231 #endif
1234 /* Called with mmap_lock held for user mode emulation. */
1235 TranslationBlock *tb_gen_code(CPUState *cpu,
1236 target_ulong pc, target_ulong cs_base,
1237 uint32_t flags, int cflags)
1239 CPUArchState *env = cpu->env_ptr;
1240 TranslationBlock *tb;
1241 tb_page_addr_t phys_pc, phys_page2;
1242 target_ulong virt_page2;
1243 tcg_insn_unit *gen_code_buf;
1244 int gen_code_size, search_size;
1245 #ifdef CONFIG_PROFILER
1246 int64_t ti;
1247 #endif
1248 assert_memory_lock();
1250 phys_pc = get_page_addr_code(env, pc);
1251 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1252 cflags |= CF_USE_ICOUNT;
1255 tb = tb_alloc(pc);
1256 if (unlikely(!tb)) {
1257 buffer_overflow:
1258 /* flush must be done */
1259 tb_flush(cpu);
1260 mmap_unlock();
1261 /* Make the execution loop process the flush as soon as possible. */
1262 cpu->exception_index = EXCP_INTERRUPT;
1263 cpu_loop_exit(cpu);
1266 gen_code_buf = tcg_ctx.code_gen_ptr;
1267 tb->tc_ptr = gen_code_buf;
1268 tb->cs_base = cs_base;
1269 tb->flags = flags;
1270 tb->cflags = cflags;
1272 #ifdef CONFIG_PROFILER
1273 tcg_ctx.tb_count1++; /* includes aborted translations because of
1274 exceptions */
1275 ti = profile_getclock();
1276 #endif
1278 tcg_func_start(&tcg_ctx);
1280 tcg_ctx.cpu = ENV_GET_CPU(env);
1281 gen_intermediate_code(env, tb);
1282 tcg_ctx.cpu = NULL;
1284 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1286 /* generate machine code */
1287 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1288 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1289 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1290 #ifdef USE_DIRECT_JUMP
1291 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1292 tcg_ctx.tb_jmp_target_addr = NULL;
1293 #else
1294 tcg_ctx.tb_jmp_insn_offset = NULL;
1295 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1296 #endif
1298 #ifdef CONFIG_PROFILER
1299 tcg_ctx.tb_count++;
1300 tcg_ctx.interm_time += profile_getclock() - ti;
1301 tcg_ctx.code_time -= profile_getclock();
1302 #endif
1304 /* ??? Overflow could be handled better here. In particular, we
1305 don't need to re-do gen_intermediate_code, nor should we re-do
1306 the tcg optimization currently hidden inside tcg_gen_code. All
1307 that should be required is to flush the TBs, allocate a new TB,
1308 re-initialize it per above, and re-do the actual code generation. */
1309 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1310 if (unlikely(gen_code_size < 0)) {
1311 goto buffer_overflow;
1313 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1314 if (unlikely(search_size < 0)) {
1315 goto buffer_overflow;
1318 #ifdef CONFIG_PROFILER
1319 tcg_ctx.code_time += profile_getclock();
1320 tcg_ctx.code_in_len += tb->size;
1321 tcg_ctx.code_out_len += gen_code_size;
1322 tcg_ctx.search_out_len += search_size;
1323 #endif
1325 #ifdef DEBUG_DISAS
1326 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1327 qemu_log_in_addr_range(tb->pc)) {
1328 qemu_log_lock();
1329 qemu_log("OUT: [size=%d]\n", gen_code_size);
1330 log_disas(tb->tc_ptr, gen_code_size);
1331 qemu_log("\n");
1332 qemu_log_flush();
1333 qemu_log_unlock();
1335 #endif
1337 tcg_ctx.code_gen_ptr = (void *)
1338 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1339 CODE_GEN_ALIGN);
1341 /* init jump list */
1342 assert(((uintptr_t)tb & 3) == 0);
1343 tb->jmp_list_first = (uintptr_t)tb | 2;
1344 tb->jmp_list_next[0] = (uintptr_t)NULL;
1345 tb->jmp_list_next[1] = (uintptr_t)NULL;
1347 /* init original jump addresses wich has been set during tcg_gen_code() */
1348 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1349 tb_reset_jump(tb, 0);
1351 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1352 tb_reset_jump(tb, 1);
1355 /* check next page if needed */
1356 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1357 phys_page2 = -1;
1358 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1359 phys_page2 = get_page_addr_code(env, virt_page2);
1361 /* As long as consistency of the TB stuff is provided by tb_lock in user
1362 * mode and is implicit in single-threaded softmmu emulation, no explicit
1363 * memory barrier is required before tb_link_page() makes the TB visible
1364 * through the physical hash table and physical page list.
1366 tb_link_page(tb, phys_pc, phys_page2);
1367 return tb;
1371 * Invalidate all TBs which intersect with the target physical address range
1372 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1373 * 'is_cpu_write_access' should be true if called from a real cpu write
1374 * access: the virtual CPU will exit the current TB if code is modified inside
1375 * this TB.
1377 * Called with mmap_lock held for user-mode emulation, grabs tb_lock
1378 * Called with tb_lock held for system-mode emulation
1380 static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
1382 while (start < end) {
1383 tb_invalidate_phys_page_range(start, end, 0);
1384 start &= TARGET_PAGE_MASK;
1385 start += TARGET_PAGE_SIZE;
1389 #ifdef CONFIG_SOFTMMU
1390 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1392 assert_tb_locked();
1393 tb_invalidate_phys_range_1(start, end);
1395 #else
1396 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1398 assert_memory_lock();
1399 tb_lock();
1400 tb_invalidate_phys_range_1(start, end);
1401 tb_unlock();
1403 #endif
1405 * Invalidate all TBs which intersect with the target physical address range
1406 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1407 * 'is_cpu_write_access' should be true if called from a real cpu write
1408 * access: the virtual CPU will exit the current TB if code is modified inside
1409 * this TB.
1411 * Called with tb_lock/mmap_lock held for user-mode emulation
1412 * Called with tb_lock held for system-mode emulation
1414 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1415 int is_cpu_write_access)
1417 TranslationBlock *tb, *tb_next;
1418 #if defined(TARGET_HAS_PRECISE_SMC)
1419 CPUState *cpu = current_cpu;
1420 CPUArchState *env = NULL;
1421 #endif
1422 tb_page_addr_t tb_start, tb_end;
1423 PageDesc *p;
1424 int n;
1425 #ifdef TARGET_HAS_PRECISE_SMC
1426 int current_tb_not_found = is_cpu_write_access;
1427 TranslationBlock *current_tb = NULL;
1428 int current_tb_modified = 0;
1429 target_ulong current_pc = 0;
1430 target_ulong current_cs_base = 0;
1431 uint32_t current_flags = 0;
1432 #endif /* TARGET_HAS_PRECISE_SMC */
1434 assert_memory_lock();
1435 assert_tb_locked();
1437 p = page_find(start >> TARGET_PAGE_BITS);
1438 if (!p) {
1439 return;
1441 #if defined(TARGET_HAS_PRECISE_SMC)
1442 if (cpu != NULL) {
1443 env = cpu->env_ptr;
1445 #endif
1447 /* we remove all the TBs in the range [start, end[ */
1448 /* XXX: see if in some cases it could be faster to invalidate all
1449 the code */
1450 tb = p->first_tb;
1451 while (tb != NULL) {
1452 n = (uintptr_t)tb & 3;
1453 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1454 tb_next = tb->page_next[n];
1455 /* NOTE: this is subtle as a TB may span two physical pages */
1456 if (n == 0) {
1457 /* NOTE: tb_end may be after the end of the page, but
1458 it is not a problem */
1459 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1460 tb_end = tb_start + tb->size;
1461 } else {
1462 tb_start = tb->page_addr[1];
1463 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1465 if (!(tb_end <= start || tb_start >= end)) {
1466 #ifdef TARGET_HAS_PRECISE_SMC
1467 if (current_tb_not_found) {
1468 current_tb_not_found = 0;
1469 current_tb = NULL;
1470 if (cpu->mem_io_pc) {
1471 /* now we have a real cpu fault */
1472 current_tb = tb_find_pc(cpu->mem_io_pc);
1475 if (current_tb == tb &&
1476 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1477 /* If we are modifying the current TB, we must stop
1478 its execution. We could be more precise by checking
1479 that the modification is after the current PC, but it
1480 would require a specialized function to partially
1481 restore the CPU state */
1483 current_tb_modified = 1;
1484 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1485 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1486 &current_flags);
1488 #endif /* TARGET_HAS_PRECISE_SMC */
1489 tb_phys_invalidate(tb, -1);
1491 tb = tb_next;
1493 #if !defined(CONFIG_USER_ONLY)
1494 /* if no code remaining, no need to continue to use slow writes */
1495 if (!p->first_tb) {
1496 invalidate_page_bitmap(p);
1497 tlb_unprotect_code(start);
1499 #endif
1500 #ifdef TARGET_HAS_PRECISE_SMC
1501 if (current_tb_modified) {
1502 /* we generate a block containing just the instruction
1503 modifying the memory. It will ensure that it cannot modify
1504 itself */
1505 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1506 cpu_loop_exit_noexc(cpu);
1508 #endif
1511 #ifdef CONFIG_SOFTMMU
1512 /* len must be <= 8 and start must be a multiple of len.
1513 * Called via softmmu_template.h when code areas are written to with
1514 * iothread mutex not held.
1516 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1518 PageDesc *p;
1520 #if 0
1521 if (1) {
1522 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1523 cpu_single_env->mem_io_vaddr, len,
1524 cpu_single_env->eip,
1525 cpu_single_env->eip +
1526 (intptr_t)cpu_single_env->segs[R_CS].base);
1528 #endif
1529 assert_memory_lock();
1531 p = page_find(start >> TARGET_PAGE_BITS);
1532 if (!p) {
1533 return;
1535 if (!p->code_bitmap &&
1536 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1537 /* build code bitmap. FIXME: writes should be protected by
1538 * tb_lock, reads by tb_lock or RCU.
1540 build_page_bitmap(p);
1542 if (p->code_bitmap) {
1543 unsigned int nr;
1544 unsigned long b;
1546 nr = start & ~TARGET_PAGE_MASK;
1547 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1548 if (b & ((1 << len) - 1)) {
1549 goto do_invalidate;
1551 } else {
1552 do_invalidate:
1553 tb_invalidate_phys_page_range(start, start + len, 1);
1556 #else
1557 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1558 * host PC of the faulting store instruction that caused this invalidate.
1559 * Returns true if the caller needs to abort execution of the current
1560 * TB (because it was modified by this store and the guest CPU has
1561 * precise-SMC semantics).
1563 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1565 TranslationBlock *tb;
1566 PageDesc *p;
1567 int n;
1568 #ifdef TARGET_HAS_PRECISE_SMC
1569 TranslationBlock *current_tb = NULL;
1570 CPUState *cpu = current_cpu;
1571 CPUArchState *env = NULL;
1572 int current_tb_modified = 0;
1573 target_ulong current_pc = 0;
1574 target_ulong current_cs_base = 0;
1575 uint32_t current_flags = 0;
1576 #endif
1578 assert_memory_lock();
1580 addr &= TARGET_PAGE_MASK;
1581 p = page_find(addr >> TARGET_PAGE_BITS);
1582 if (!p) {
1583 return false;
1586 tb_lock();
1587 tb = p->first_tb;
1588 #ifdef TARGET_HAS_PRECISE_SMC
1589 if (tb && pc != 0) {
1590 current_tb = tb_find_pc(pc);
1592 if (cpu != NULL) {
1593 env = cpu->env_ptr;
1595 #endif
1596 while (tb != NULL) {
1597 n = (uintptr_t)tb & 3;
1598 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1599 #ifdef TARGET_HAS_PRECISE_SMC
1600 if (current_tb == tb &&
1601 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1602 /* If we are modifying the current TB, we must stop
1603 its execution. We could be more precise by checking
1604 that the modification is after the current PC, but it
1605 would require a specialized function to partially
1606 restore the CPU state */
1608 current_tb_modified = 1;
1609 cpu_restore_state_from_tb(cpu, current_tb, pc);
1610 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1611 &current_flags);
1613 #endif /* TARGET_HAS_PRECISE_SMC */
1614 tb_phys_invalidate(tb, addr);
1615 tb = tb->page_next[n];
1617 p->first_tb = NULL;
1618 #ifdef TARGET_HAS_PRECISE_SMC
1619 if (current_tb_modified) {
1620 /* we generate a block containing just the instruction
1621 modifying the memory. It will ensure that it cannot modify
1622 itself */
1623 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1624 /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
1625 * back into the cpu_exec loop. */
1626 return true;
1628 #endif
1629 tb_unlock();
1631 return false;
1633 #endif
1635 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1636 tb[1].tc_ptr. Return NULL if not found */
1637 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1639 int m_min, m_max, m;
1640 uintptr_t v;
1641 TranslationBlock *tb;
1643 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1644 return NULL;
1646 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1647 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1648 return NULL;
1650 /* binary search (cf Knuth) */
1651 m_min = 0;
1652 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1653 while (m_min <= m_max) {
1654 m = (m_min + m_max) >> 1;
1655 tb = &tcg_ctx.tb_ctx.tbs[m];
1656 v = (uintptr_t)tb->tc_ptr;
1657 if (v == tc_ptr) {
1658 return tb;
1659 } else if (tc_ptr < v) {
1660 m_max = m - 1;
1661 } else {
1662 m_min = m + 1;
1665 return &tcg_ctx.tb_ctx.tbs[m_max];
1668 #if !defined(CONFIG_USER_ONLY)
1669 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1671 ram_addr_t ram_addr;
1672 MemoryRegion *mr;
1673 hwaddr l = 1;
1675 rcu_read_lock();
1676 mr = address_space_translate(as, addr, &addr, &l, false);
1677 if (!(memory_region_is_ram(mr)
1678 || memory_region_is_romd(mr))) {
1679 rcu_read_unlock();
1680 return;
1682 ram_addr = memory_region_get_ram_addr(mr) + addr;
1683 tb_lock();
1684 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1685 tb_unlock();
1686 rcu_read_unlock();
1688 #endif /* !defined(CONFIG_USER_ONLY) */
1690 /* Called with tb_lock held. */
1691 void tb_check_watchpoint(CPUState *cpu)
1693 TranslationBlock *tb;
1695 tb = tb_find_pc(cpu->mem_io_pc);
1696 if (tb) {
1697 /* We can use retranslation to find the PC. */
1698 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1699 tb_phys_invalidate(tb, -1);
1700 } else {
1701 /* The exception probably happened in a helper. The CPU state should
1702 have been saved before calling it. Fetch the PC from there. */
1703 CPUArchState *env = cpu->env_ptr;
1704 target_ulong pc, cs_base;
1705 tb_page_addr_t addr;
1706 uint32_t flags;
1708 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1709 addr = get_page_addr_code(env, pc);
1710 tb_invalidate_phys_range(addr, addr + 1);
1714 #ifndef CONFIG_USER_ONLY
1715 /* in deterministic execution mode, instructions doing device I/Os
1716 * must be at the end of the TB.
1718 * Called by softmmu_template.h, with iothread mutex not held.
1720 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1722 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1723 CPUArchState *env = cpu->env_ptr;
1724 #endif
1725 TranslationBlock *tb;
1726 uint32_t n, cflags;
1727 target_ulong pc, cs_base;
1728 uint32_t flags;
1730 tb_lock();
1731 tb = tb_find_pc(retaddr);
1732 if (!tb) {
1733 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1734 (void *)retaddr);
1736 n = cpu->icount_decr.u16.low + tb->icount;
1737 cpu_restore_state_from_tb(cpu, tb, retaddr);
1738 /* Calculate how many instructions had been executed before the fault
1739 occurred. */
1740 n = n - cpu->icount_decr.u16.low;
1741 /* Generate a new TB ending on the I/O insn. */
1742 n++;
1743 /* On MIPS and SH, delay slot instructions can only be restarted if
1744 they were already the first instruction in the TB. If this is not
1745 the first instruction in a TB then re-execute the preceding
1746 branch. */
1747 #if defined(TARGET_MIPS)
1748 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1749 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1750 cpu->icount_decr.u16.low++;
1751 env->hflags &= ~MIPS_HFLAG_BMASK;
1753 #elif defined(TARGET_SH4)
1754 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1755 && n > 1) {
1756 env->pc -= 2;
1757 cpu->icount_decr.u16.low++;
1758 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1760 #endif
1761 /* This should never happen. */
1762 if (n > CF_COUNT_MASK) {
1763 cpu_abort(cpu, "TB too big during recompile");
1766 cflags = n | CF_LAST_IO;
1767 pc = tb->pc;
1768 cs_base = tb->cs_base;
1769 flags = tb->flags;
1770 tb_phys_invalidate(tb, -1);
1771 if (tb->cflags & CF_NOCACHE) {
1772 if (tb->orig_tb) {
1773 /* Invalidate original TB if this TB was generated in
1774 * cpu_exec_nocache() */
1775 tb_phys_invalidate(tb->orig_tb, -1);
1777 tb_free(tb);
1779 /* FIXME: In theory this could raise an exception. In practice
1780 we have already translated the block once so it's probably ok. */
1781 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1783 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1784 * the first in the TB) then we end up generating a whole new TB and
1785 * repeating the fault, which is horribly inefficient.
1786 * Better would be to execute just this insn uncached, or generate a
1787 * second new TB.
1789 * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
1790 * tb_lock gets reset.
1792 cpu_loop_exit_noexc(cpu);
1795 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1797 unsigned int i;
1799 /* Discard jump cache entries for any tb which might potentially
1800 overlap the flushed page. */
1801 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1802 memset(&cpu->tb_jmp_cache[i], 0,
1803 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1805 i = tb_jmp_cache_hash_page(addr);
1806 memset(&cpu->tb_jmp_cache[i], 0,
1807 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1810 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1811 struct qht_stats hst)
1813 uint32_t hgram_opts;
1814 size_t hgram_bins;
1815 char *hgram;
1817 if (!hst.head_buckets) {
1818 return;
1820 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1821 hst.used_head_buckets, hst.head_buckets,
1822 (double)hst.used_head_buckets / hst.head_buckets * 100);
1824 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1825 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1826 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1827 hgram_opts |= QDIST_PR_NODECIMAL;
1829 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1830 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1831 qdist_avg(&hst.occupancy) * 100, hgram);
1832 g_free(hgram);
1834 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1835 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1836 if (hgram_bins > 10) {
1837 hgram_bins = 10;
1838 } else {
1839 hgram_bins = 0;
1840 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1842 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1843 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1844 qdist_avg(&hst.chain), hgram);
1845 g_free(hgram);
1848 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1850 int i, target_code_size, max_target_code_size;
1851 int direct_jmp_count, direct_jmp2_count, cross_page;
1852 TranslationBlock *tb;
1853 struct qht_stats hst;
1855 tb_lock();
1857 target_code_size = 0;
1858 max_target_code_size = 0;
1859 cross_page = 0;
1860 direct_jmp_count = 0;
1861 direct_jmp2_count = 0;
1862 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1863 tb = &tcg_ctx.tb_ctx.tbs[i];
1864 target_code_size += tb->size;
1865 if (tb->size > max_target_code_size) {
1866 max_target_code_size = tb->size;
1868 if (tb->page_addr[1] != -1) {
1869 cross_page++;
1871 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1872 direct_jmp_count++;
1873 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1874 direct_jmp2_count++;
1878 /* XXX: avoid using doubles ? */
1879 cpu_fprintf(f, "Translation buffer state:\n");
1880 cpu_fprintf(f, "gen code size %td/%zd\n",
1881 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1882 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1883 cpu_fprintf(f, "TB count %d/%d\n",
1884 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1885 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1886 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1887 tcg_ctx.tb_ctx.nb_tbs : 0,
1888 max_target_code_size);
1889 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1890 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1891 tcg_ctx.code_gen_buffer) /
1892 tcg_ctx.tb_ctx.nb_tbs : 0,
1893 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1894 tcg_ctx.code_gen_buffer) /
1895 target_code_size : 0);
1896 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1897 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1898 tcg_ctx.tb_ctx.nb_tbs : 0);
1899 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1900 direct_jmp_count,
1901 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1902 tcg_ctx.tb_ctx.nb_tbs : 0,
1903 direct_jmp2_count,
1904 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1905 tcg_ctx.tb_ctx.nb_tbs : 0);
1907 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1908 print_qht_statistics(f, cpu_fprintf, hst);
1909 qht_statistics_destroy(&hst);
1911 cpu_fprintf(f, "\nStatistics:\n");
1912 cpu_fprintf(f, "TB flush count %u\n",
1913 atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1914 cpu_fprintf(f, "TB invalidate count %d\n",
1915 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1916 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1917 tcg_dump_info(f, cpu_fprintf);
1919 tb_unlock();
1922 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1924 tcg_dump_op_count(f, cpu_fprintf);
1927 #else /* CONFIG_USER_ONLY */
1929 void cpu_interrupt(CPUState *cpu, int mask)
1931 g_assert(qemu_mutex_iothread_locked());
1932 cpu->interrupt_request |= mask;
1933 cpu->icount_decr.u16.high = -1;
1937 * Walks guest process memory "regions" one by one
1938 * and calls callback function 'fn' for each region.
1940 struct walk_memory_regions_data {
1941 walk_memory_regions_fn fn;
1942 void *priv;
1943 target_ulong start;
1944 int prot;
1947 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1948 target_ulong end, int new_prot)
1950 if (data->start != -1u) {
1951 int rc = data->fn(data->priv, data->start, end, data->prot);
1952 if (rc != 0) {
1953 return rc;
1957 data->start = (new_prot ? end : -1u);
1958 data->prot = new_prot;
1960 return 0;
1963 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1964 target_ulong base, int level, void **lp)
1966 target_ulong pa;
1967 int i, rc;
1969 if (*lp == NULL) {
1970 return walk_memory_regions_end(data, base, 0);
1973 if (level == 0) {
1974 PageDesc *pd = *lp;
1976 for (i = 0; i < V_L2_SIZE; ++i) {
1977 int prot = pd[i].flags;
1979 pa = base | (i << TARGET_PAGE_BITS);
1980 if (prot != data->prot) {
1981 rc = walk_memory_regions_end(data, pa, prot);
1982 if (rc != 0) {
1983 return rc;
1987 } else {
1988 void **pp = *lp;
1990 for (i = 0; i < V_L2_SIZE; ++i) {
1991 pa = base | ((target_ulong)i <<
1992 (TARGET_PAGE_BITS + V_L2_BITS * level));
1993 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1994 if (rc != 0) {
1995 return rc;
2000 return 0;
2003 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2005 struct walk_memory_regions_data data;
2006 uintptr_t i, l1_sz = v_l1_size;
2008 data.fn = fn;
2009 data.priv = priv;
2010 data.start = -1u;
2011 data.prot = 0;
2013 for (i = 0; i < l1_sz; i++) {
2014 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2015 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2016 if (rc != 0) {
2017 return rc;
2021 return walk_memory_regions_end(&data, 0, 0);
2024 static int dump_region(void *priv, target_ulong start,
2025 target_ulong end, unsigned long prot)
2027 FILE *f = (FILE *)priv;
2029 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2030 " "TARGET_FMT_lx" %c%c%c\n",
2031 start, end, end - start,
2032 ((prot & PAGE_READ) ? 'r' : '-'),
2033 ((prot & PAGE_WRITE) ? 'w' : '-'),
2034 ((prot & PAGE_EXEC) ? 'x' : '-'));
2036 return 0;
2039 /* dump memory mappings */
2040 void page_dump(FILE *f)
2042 const int length = sizeof(target_ulong) * 2;
2043 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2044 length, "start", length, "end", length, "size", "prot");
2045 walk_memory_regions(f, dump_region);
2048 int page_get_flags(target_ulong address)
2050 PageDesc *p;
2052 p = page_find(address >> TARGET_PAGE_BITS);
2053 if (!p) {
2054 return 0;
2056 return p->flags;
2059 /* Modify the flags of a page and invalidate the code if necessary.
2060 The flag PAGE_WRITE_ORG is positioned automatically depending
2061 on PAGE_WRITE. The mmap_lock should already be held. */
2062 void page_set_flags(target_ulong start, target_ulong end, int flags)
2064 target_ulong addr, len;
2066 /* This function should never be called with addresses outside the
2067 guest address space. If this assert fires, it probably indicates
2068 a missing call to h2g_valid. */
2069 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2070 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2071 #endif
2072 assert(start < end);
2073 assert_memory_lock();
2075 start = start & TARGET_PAGE_MASK;
2076 end = TARGET_PAGE_ALIGN(end);
2078 if (flags & PAGE_WRITE) {
2079 flags |= PAGE_WRITE_ORG;
2082 for (addr = start, len = end - start;
2083 len != 0;
2084 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2085 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2087 /* If the write protection bit is set, then we invalidate
2088 the code inside. */
2089 if (!(p->flags & PAGE_WRITE) &&
2090 (flags & PAGE_WRITE) &&
2091 p->first_tb) {
2092 tb_invalidate_phys_page(addr, 0);
2094 p->flags = flags;
2098 int page_check_range(target_ulong start, target_ulong len, int flags)
2100 PageDesc *p;
2101 target_ulong end;
2102 target_ulong addr;
2104 /* This function should never be called with addresses outside the
2105 guest address space. If this assert fires, it probably indicates
2106 a missing call to h2g_valid. */
2107 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2108 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2109 #endif
2111 if (len == 0) {
2112 return 0;
2114 if (start + len - 1 < start) {
2115 /* We've wrapped around. */
2116 return -1;
2119 /* must do before we loose bits in the next step */
2120 end = TARGET_PAGE_ALIGN(start + len);
2121 start = start & TARGET_PAGE_MASK;
2123 for (addr = start, len = end - start;
2124 len != 0;
2125 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2126 p = page_find(addr >> TARGET_PAGE_BITS);
2127 if (!p) {
2128 return -1;
2130 if (!(p->flags & PAGE_VALID)) {
2131 return -1;
2134 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2135 return -1;
2137 if (flags & PAGE_WRITE) {
2138 if (!(p->flags & PAGE_WRITE_ORG)) {
2139 return -1;
2141 /* unprotect the page if it was put read-only because it
2142 contains translated code */
2143 if (!(p->flags & PAGE_WRITE)) {
2144 if (!page_unprotect(addr, 0)) {
2145 return -1;
2150 return 0;
2153 /* called from signal handler: invalidate the code and unprotect the
2154 * page. Return 0 if the fault was not handled, 1 if it was handled,
2155 * and 2 if it was handled but the caller must cause the TB to be
2156 * immediately exited. (We can only return 2 if the 'pc' argument is
2157 * non-zero.)
2159 int page_unprotect(target_ulong address, uintptr_t pc)
2161 unsigned int prot;
2162 bool current_tb_invalidated;
2163 PageDesc *p;
2164 target_ulong host_start, host_end, addr;
2166 /* Technically this isn't safe inside a signal handler. However we
2167 know this only ever happens in a synchronous SEGV handler, so in
2168 practice it seems to be ok. */
2169 mmap_lock();
2171 p = page_find(address >> TARGET_PAGE_BITS);
2172 if (!p) {
2173 mmap_unlock();
2174 return 0;
2177 /* if the page was really writable, then we change its
2178 protection back to writable */
2179 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2180 host_start = address & qemu_host_page_mask;
2181 host_end = host_start + qemu_host_page_size;
2183 prot = 0;
2184 current_tb_invalidated = false;
2185 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2186 p = page_find(addr >> TARGET_PAGE_BITS);
2187 p->flags |= PAGE_WRITE;
2188 prot |= p->flags;
2190 /* and since the content will be modified, we must invalidate
2191 the corresponding translated code. */
2192 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2193 #ifdef DEBUG_TB_CHECK
2194 tb_invalidate_check(addr);
2195 #endif
2197 mprotect((void *)g2h(host_start), qemu_host_page_size,
2198 prot & PAGE_BITS);
2200 mmap_unlock();
2201 /* If current TB was invalidated return to main loop */
2202 return current_tb_invalidated ? 2 : 1;
2204 mmap_unlock();
2205 return 0;
2207 #endif /* CONFIG_USER_ONLY */