2 * coroutine queues and locks
4 * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * The lock-free mutex implementation is based on OSv
25 * (core/lfmutex.cc, include/lockfree/mutex.hh).
26 * Copyright (C) 2013 Cloudius Systems, Ltd.
29 #include "qemu/osdep.h"
30 #include "qemu-common.h"
31 #include "qemu/coroutine.h"
32 #include "qemu/coroutine_int.h"
33 #include "qemu/processor.h"
34 #include "qemu/queue.h"
35 #include "block/aio.h"
38 void qemu_co_queue_init(CoQueue
*queue
)
40 QSIMPLEQ_INIT(&queue
->entries
);
43 void coroutine_fn
qemu_co_queue_wait(CoQueue
*queue
, CoMutex
*mutex
)
45 Coroutine
*self
= qemu_coroutine_self();
46 QSIMPLEQ_INSERT_TAIL(&queue
->entries
, self
, co_queue_next
);
49 qemu_co_mutex_unlock(mutex
);
52 /* There is no race condition here. Other threads will call
53 * aio_co_schedule on our AioContext, which can reenter this
54 * coroutine but only after this yield and after the main loop
55 * has gone through the next iteration.
57 qemu_coroutine_yield();
58 assert(qemu_in_coroutine());
60 /* TODO: OSv implements wait morphing here, where the wakeup
61 * primitive automatically places the woken coroutine on the
62 * mutex's queue. This avoids the thundering herd effect.
65 qemu_co_mutex_lock(mutex
);
70 * qemu_co_queue_run_restart:
72 * Enter each coroutine that was previously marked for restart by
73 * qemu_co_queue_next() or qemu_co_queue_restart_all(). This function is
74 * invoked by the core coroutine code when the current coroutine yields or
77 void qemu_co_queue_run_restart(Coroutine
*co
)
80 QSIMPLEQ_HEAD(, Coroutine
) tmp_queue_wakeup
=
81 QSIMPLEQ_HEAD_INITIALIZER(tmp_queue_wakeup
);
83 trace_qemu_co_queue_run_restart(co
);
85 /* Because "co" has yielded, any coroutine that we wakeup can resume it.
86 * If this happens and "co" terminates, co->co_queue_wakeup becomes
87 * invalid memory. Therefore, use a temporary queue and do not touch
88 * the "co" coroutine as soon as you enter another one.
90 * In its turn resumed "co" can pupulate "co_queue_wakeup" queue with
91 * new coroutines to be woken up. The caller, who has resumed "co",
92 * will be responsible for traversing the same queue, which may cause
93 * a different wakeup order but not any missing wakeups.
95 QSIMPLEQ_CONCAT(&tmp_queue_wakeup
, &co
->co_queue_wakeup
);
97 while ((next
= QSIMPLEQ_FIRST(&tmp_queue_wakeup
))) {
98 QSIMPLEQ_REMOVE_HEAD(&tmp_queue_wakeup
, co_queue_next
);
99 qemu_coroutine_enter(next
);
103 static bool qemu_co_queue_do_restart(CoQueue
*queue
, bool single
)
107 if (QSIMPLEQ_EMPTY(&queue
->entries
)) {
111 while ((next
= QSIMPLEQ_FIRST(&queue
->entries
)) != NULL
) {
112 QSIMPLEQ_REMOVE_HEAD(&queue
->entries
, co_queue_next
);
121 bool coroutine_fn
qemu_co_queue_next(CoQueue
*queue
)
123 assert(qemu_in_coroutine());
124 return qemu_co_queue_do_restart(queue
, true);
127 void coroutine_fn
qemu_co_queue_restart_all(CoQueue
*queue
)
129 assert(qemu_in_coroutine());
130 qemu_co_queue_do_restart(queue
, false);
133 bool qemu_co_enter_next(CoQueue
*queue
)
137 next
= QSIMPLEQ_FIRST(&queue
->entries
);
142 QSIMPLEQ_REMOVE_HEAD(&queue
->entries
, co_queue_next
);
143 qemu_coroutine_enter(next
);
147 bool qemu_co_queue_empty(CoQueue
*queue
)
149 return QSIMPLEQ_FIRST(&queue
->entries
) == NULL
;
152 /* The wait records are handled with a multiple-producer, single-consumer
153 * lock-free queue. There cannot be two concurrent pop_waiter() calls
154 * because pop_waiter() can only be called while mutex->handoff is zero.
155 * This can happen in three cases:
156 * - in qemu_co_mutex_unlock, before the hand-off protocol has started.
157 * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and
158 * not take part in the handoff.
159 * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from
160 * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail
161 * the cmpxchg (it will see either 0 or the next sequence value) and
162 * exit. The next hand-off cannot begin until qemu_co_mutex_lock has
164 * - in qemu_co_mutex_unlock, if it takes the hand-off token itself.
165 * In this case another iteration starts with mutex->handoff == 0;
166 * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and
167 * qemu_co_mutex_unlock will go back to case (1).
169 * The following functions manage this queue.
171 typedef struct CoWaitRecord
{
173 QSLIST_ENTRY(CoWaitRecord
) next
;
176 static void push_waiter(CoMutex
*mutex
, CoWaitRecord
*w
)
178 w
->co
= qemu_coroutine_self();
179 QSLIST_INSERT_HEAD_ATOMIC(&mutex
->from_push
, w
, next
);
182 static void move_waiters(CoMutex
*mutex
)
184 QSLIST_HEAD(, CoWaitRecord
) reversed
;
185 QSLIST_MOVE_ATOMIC(&reversed
, &mutex
->from_push
);
186 while (!QSLIST_EMPTY(&reversed
)) {
187 CoWaitRecord
*w
= QSLIST_FIRST(&reversed
);
188 QSLIST_REMOVE_HEAD(&reversed
, next
);
189 QSLIST_INSERT_HEAD(&mutex
->to_pop
, w
, next
);
193 static CoWaitRecord
*pop_waiter(CoMutex
*mutex
)
197 if (QSLIST_EMPTY(&mutex
->to_pop
)) {
199 if (QSLIST_EMPTY(&mutex
->to_pop
)) {
203 w
= QSLIST_FIRST(&mutex
->to_pop
);
204 QSLIST_REMOVE_HEAD(&mutex
->to_pop
, next
);
208 static bool has_waiters(CoMutex
*mutex
)
210 return QSLIST_EMPTY(&mutex
->to_pop
) || QSLIST_EMPTY(&mutex
->from_push
);
213 void qemu_co_mutex_init(CoMutex
*mutex
)
215 memset(mutex
, 0, sizeof(*mutex
));
218 static void coroutine_fn
qemu_co_mutex_wake(CoMutex
*mutex
, Coroutine
*co
)
220 /* Read co before co->ctx; pairs with smp_wmb() in
221 * qemu_coroutine_enter().
223 smp_read_barrier_depends();
224 mutex
->ctx
= co
->ctx
;
228 static void coroutine_fn
qemu_co_mutex_lock_slowpath(AioContext
*ctx
,
231 Coroutine
*self
= qemu_coroutine_self();
233 unsigned old_handoff
;
235 trace_qemu_co_mutex_lock_entry(mutex
, self
);
237 push_waiter(mutex
, &w
);
239 /* This is the "Responsibility Hand-Off" protocol; a lock() picks from
240 * a concurrent unlock() the responsibility of waking somebody up.
242 old_handoff
= atomic_mb_read(&mutex
->handoff
);
244 has_waiters(mutex
) &&
245 atomic_cmpxchg(&mutex
->handoff
, old_handoff
, 0) == old_handoff
) {
246 /* There can be no concurrent pops, because there can be only
247 * one active handoff at a time.
249 CoWaitRecord
*to_wake
= pop_waiter(mutex
);
250 Coroutine
*co
= to_wake
->co
;
252 /* We got the lock ourselves! */
253 assert(to_wake
== &w
);
258 qemu_co_mutex_wake(mutex
, co
);
261 qemu_coroutine_yield();
262 trace_qemu_co_mutex_lock_return(mutex
, self
);
265 void coroutine_fn
qemu_co_mutex_lock(CoMutex
*mutex
)
267 AioContext
*ctx
= qemu_get_current_aio_context();
268 Coroutine
*self
= qemu_coroutine_self();
271 /* Running a very small critical section on pthread_mutex_t and CoMutex
272 * shows that pthread_mutex_t is much faster because it doesn't actually
273 * go to sleep. What happens is that the critical section is shorter
274 * than the latency of entering the kernel and thus FUTEX_WAIT always
275 * fails. With CoMutex there is no such latency but you still want to
276 * avoid wait and wakeup. So introduce it artificially.
280 waiters
= atomic_cmpxchg(&mutex
->locked
, 0, 1);
282 while (waiters
== 1 && ++i
< 1000) {
283 if (atomic_read(&mutex
->ctx
) == ctx
) {
286 if (atomic_read(&mutex
->locked
) == 0) {
287 goto retry_fast_path
;
291 waiters
= atomic_fetch_inc(&mutex
->locked
);
296 trace_qemu_co_mutex_lock_uncontended(mutex
, self
);
299 qemu_co_mutex_lock_slowpath(ctx
, mutex
);
301 mutex
->holder
= self
;
305 void coroutine_fn
qemu_co_mutex_unlock(CoMutex
*mutex
)
307 Coroutine
*self
= qemu_coroutine_self();
309 trace_qemu_co_mutex_unlock_entry(mutex
, self
);
311 assert(mutex
->locked
);
312 assert(mutex
->holder
== self
);
313 assert(qemu_in_coroutine());
316 mutex
->holder
= NULL
;
318 if (atomic_fetch_dec(&mutex
->locked
) == 1) {
319 /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */
324 CoWaitRecord
*to_wake
= pop_waiter(mutex
);
325 unsigned our_handoff
;
328 qemu_co_mutex_wake(mutex
, to_wake
->co
);
332 /* Some concurrent lock() is in progress (we know this because
333 * mutex->locked was >1) but it hasn't yet put itself on the wait
334 * queue. Pick a sequence number for the handoff protocol (not 0).
336 if (++mutex
->sequence
== 0) {
340 our_handoff
= mutex
->sequence
;
341 atomic_mb_set(&mutex
->handoff
, our_handoff
);
342 if (!has_waiters(mutex
)) {
343 /* The concurrent lock has not added itself yet, so it
344 * will be able to pick our handoff.
349 /* Try to do the handoff protocol ourselves; if somebody else has
350 * already taken it, however, we're done and they're responsible.
352 if (atomic_cmpxchg(&mutex
->handoff
, our_handoff
, 0) != our_handoff
) {
357 trace_qemu_co_mutex_unlock_return(mutex
, self
);
360 void qemu_co_rwlock_init(CoRwlock
*lock
)
362 memset(lock
, 0, sizeof(*lock
));
363 qemu_co_queue_init(&lock
->queue
);
364 qemu_co_mutex_init(&lock
->mutex
);
367 void qemu_co_rwlock_rdlock(CoRwlock
*lock
)
369 Coroutine
*self
= qemu_coroutine_self();
371 qemu_co_mutex_lock(&lock
->mutex
);
372 /* For fairness, wait if a writer is in line. */
373 while (lock
->pending_writer
) {
374 qemu_co_queue_wait(&lock
->queue
, &lock
->mutex
);
377 qemu_co_mutex_unlock(&lock
->mutex
);
379 /* The rest of the read-side critical section is run without the mutex. */
383 void qemu_co_rwlock_unlock(CoRwlock
*lock
)
385 Coroutine
*self
= qemu_coroutine_self();
387 assert(qemu_in_coroutine());
389 /* The critical section started in qemu_co_rwlock_wrlock. */
390 qemu_co_queue_restart_all(&lock
->queue
);
394 qemu_co_mutex_lock(&lock
->mutex
);
396 assert(lock
->reader
>= 0);
397 /* Wakeup only one waiting writer */
399 qemu_co_queue_next(&lock
->queue
);
402 qemu_co_mutex_unlock(&lock
->mutex
);
405 void qemu_co_rwlock_downgrade(CoRwlock
*lock
)
407 Coroutine
*self
= qemu_coroutine_self();
409 /* lock->mutex critical section started in qemu_co_rwlock_wrlock or
410 * qemu_co_rwlock_upgrade.
412 assert(lock
->reader
== 0);
414 qemu_co_mutex_unlock(&lock
->mutex
);
416 /* The rest of the read-side critical section is run without the mutex. */
420 void qemu_co_rwlock_wrlock(CoRwlock
*lock
)
422 qemu_co_mutex_lock(&lock
->mutex
);
423 lock
->pending_writer
++;
424 while (lock
->reader
) {
425 qemu_co_queue_wait(&lock
->queue
, &lock
->mutex
);
427 lock
->pending_writer
--;
429 /* The rest of the write-side critical section is run with
430 * the mutex taken, so that lock->reader remains zero.
431 * There is no need to update self->locks_held.
435 void qemu_co_rwlock_upgrade(CoRwlock
*lock
)
437 Coroutine
*self
= qemu_coroutine_self();
439 qemu_co_mutex_lock(&lock
->mutex
);
440 assert(lock
->reader
> 0);
442 lock
->pending_writer
++;
443 while (lock
->reader
) {
444 qemu_co_queue_wait(&lock
->queue
, &lock
->mutex
);
446 lock
->pending_writer
--;
448 /* The rest of the write-side critical section is run with
449 * the mutex taken, similar to qemu_co_rwlock_wrlock. Do
450 * not account for the lock twice in self->locks_held.