migration/rdma: Fix rdma_addrinfo res leaks
[qemu/kevin.git] / migration / rdma.c
blob651534e8255a13d7d95cff2c97d2873df0840eac
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
41 * Print and error on both the Monitor and the Log file.
43 #define ERROR(errp, fmt, ...) \
44 do { \
45 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
46 if (errp && (*(errp) == NULL)) { \
47 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
48 } \
49 } while (0)
51 #define RDMA_RESOLVE_TIMEOUT_MS 10000
53 /* Do not merge data if larger than this. */
54 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
55 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
57 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
60 * This is only for non-live state being migrated.
61 * Instead of RDMA_WRITE messages, we use RDMA_SEND
62 * messages for that state, which requires a different
63 * delivery design than main memory.
65 #define RDMA_SEND_INCREMENT 32768
68 * Maximum size infiniband SEND message
70 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
71 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
73 #define RDMA_CONTROL_VERSION_CURRENT 1
75 * Capabilities for negotiation.
77 #define RDMA_CAPABILITY_PIN_ALL 0x01
80 * Add the other flags above to this list of known capabilities
81 * as they are introduced.
83 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
85 #define CHECK_ERROR_STATE() \
86 do { \
87 if (rdma->error_state) { \
88 if (!rdma->error_reported) { \
89 error_report("RDMA is in an error state waiting migration" \
90 " to abort!"); \
91 rdma->error_reported = 1; \
92 } \
93 return rdma->error_state; \
94 } \
95 } while (0)
98 * A work request ID is 64-bits and we split up these bits
99 * into 3 parts:
101 * bits 0-15 : type of control message, 2^16
102 * bits 16-29: ram block index, 2^14
103 * bits 30-63: ram block chunk number, 2^34
105 * The last two bit ranges are only used for RDMA writes,
106 * in order to track their completion and potentially
107 * also track unregistration status of the message.
109 #define RDMA_WRID_TYPE_SHIFT 0UL
110 #define RDMA_WRID_BLOCK_SHIFT 16UL
111 #define RDMA_WRID_CHUNK_SHIFT 30UL
113 #define RDMA_WRID_TYPE_MASK \
114 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
116 #define RDMA_WRID_BLOCK_MASK \
117 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
119 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
122 * RDMA migration protocol:
123 * 1. RDMA Writes (data messages, i.e. RAM)
124 * 2. IB Send/Recv (control channel messages)
126 enum {
127 RDMA_WRID_NONE = 0,
128 RDMA_WRID_RDMA_WRITE = 1,
129 RDMA_WRID_SEND_CONTROL = 2000,
130 RDMA_WRID_RECV_CONTROL = 4000,
133 static const char *wrid_desc[] = {
134 [RDMA_WRID_NONE] = "NONE",
135 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
136 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
137 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
141 * Work request IDs for IB SEND messages only (not RDMA writes).
142 * This is used by the migration protocol to transmit
143 * control messages (such as device state and registration commands)
145 * We could use more WRs, but we have enough for now.
147 enum {
148 RDMA_WRID_READY = 0,
149 RDMA_WRID_DATA,
150 RDMA_WRID_CONTROL,
151 RDMA_WRID_MAX,
155 * SEND/RECV IB Control Messages.
157 enum {
158 RDMA_CONTROL_NONE = 0,
159 RDMA_CONTROL_ERROR,
160 RDMA_CONTROL_READY, /* ready to receive */
161 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
162 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
163 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
164 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
165 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
166 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
167 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
168 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
169 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
174 * Memory and MR structures used to represent an IB Send/Recv work request.
175 * This is *not* used for RDMA writes, only IB Send/Recv.
177 typedef struct {
178 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
179 struct ibv_mr *control_mr; /* registration metadata */
180 size_t control_len; /* length of the message */
181 uint8_t *control_curr; /* start of unconsumed bytes */
182 } RDMAWorkRequestData;
185 * Negotiate RDMA capabilities during connection-setup time.
187 typedef struct {
188 uint32_t version;
189 uint32_t flags;
190 } RDMACapabilities;
192 static void caps_to_network(RDMACapabilities *cap)
194 cap->version = htonl(cap->version);
195 cap->flags = htonl(cap->flags);
198 static void network_to_caps(RDMACapabilities *cap)
200 cap->version = ntohl(cap->version);
201 cap->flags = ntohl(cap->flags);
205 * Representation of a RAMBlock from an RDMA perspective.
206 * This is not transmitted, only local.
207 * This and subsequent structures cannot be linked lists
208 * because we're using a single IB message to transmit
209 * the information. It's small anyway, so a list is overkill.
211 typedef struct RDMALocalBlock {
212 char *block_name;
213 uint8_t *local_host_addr; /* local virtual address */
214 uint64_t remote_host_addr; /* remote virtual address */
215 uint64_t offset;
216 uint64_t length;
217 struct ibv_mr **pmr; /* MRs for chunk-level registration */
218 struct ibv_mr *mr; /* MR for non-chunk-level registration */
219 uint32_t *remote_keys; /* rkeys for chunk-level registration */
220 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
221 int index; /* which block are we */
222 unsigned int src_index; /* (Only used on dest) */
223 bool is_ram_block;
224 int nb_chunks;
225 unsigned long *transit_bitmap;
226 unsigned long *unregister_bitmap;
227 } RDMALocalBlock;
230 * Also represents a RAMblock, but only on the dest.
231 * This gets transmitted by the dest during connection-time
232 * to the source VM and then is used to populate the
233 * corresponding RDMALocalBlock with
234 * the information needed to perform the actual RDMA.
236 typedef struct QEMU_PACKED RDMADestBlock {
237 uint64_t remote_host_addr;
238 uint64_t offset;
239 uint64_t length;
240 uint32_t remote_rkey;
241 uint32_t padding;
242 } RDMADestBlock;
244 static const char *control_desc(unsigned int rdma_control)
246 static const char *strs[] = {
247 [RDMA_CONTROL_NONE] = "NONE",
248 [RDMA_CONTROL_ERROR] = "ERROR",
249 [RDMA_CONTROL_READY] = "READY",
250 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
251 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
252 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
253 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
254 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
255 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
256 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
257 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
258 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
261 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
262 return "??BAD CONTROL VALUE??";
265 return strs[rdma_control];
268 static uint64_t htonll(uint64_t v)
270 union { uint32_t lv[2]; uint64_t llv; } u;
271 u.lv[0] = htonl(v >> 32);
272 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
273 return u.llv;
276 static uint64_t ntohll(uint64_t v)
278 union { uint32_t lv[2]; uint64_t llv; } u;
279 u.llv = v;
280 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
283 static void dest_block_to_network(RDMADestBlock *db)
285 db->remote_host_addr = htonll(db->remote_host_addr);
286 db->offset = htonll(db->offset);
287 db->length = htonll(db->length);
288 db->remote_rkey = htonl(db->remote_rkey);
291 static void network_to_dest_block(RDMADestBlock *db)
293 db->remote_host_addr = ntohll(db->remote_host_addr);
294 db->offset = ntohll(db->offset);
295 db->length = ntohll(db->length);
296 db->remote_rkey = ntohl(db->remote_rkey);
300 * Virtual address of the above structures used for transmitting
301 * the RAMBlock descriptions at connection-time.
302 * This structure is *not* transmitted.
304 typedef struct RDMALocalBlocks {
305 int nb_blocks;
306 bool init; /* main memory init complete */
307 RDMALocalBlock *block;
308 } RDMALocalBlocks;
311 * Main data structure for RDMA state.
312 * While there is only one copy of this structure being allocated right now,
313 * this is the place where one would start if you wanted to consider
314 * having more than one RDMA connection open at the same time.
316 typedef struct RDMAContext {
317 char *host;
318 int port;
320 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
323 * This is used by *_exchange_send() to figure out whether or not
324 * the initial "READY" message has already been received or not.
325 * This is because other functions may potentially poll() and detect
326 * the READY message before send() does, in which case we need to
327 * know if it completed.
329 int control_ready_expected;
331 /* number of outstanding writes */
332 int nb_sent;
334 /* store info about current buffer so that we can
335 merge it with future sends */
336 uint64_t current_addr;
337 uint64_t current_length;
338 /* index of ram block the current buffer belongs to */
339 int current_index;
340 /* index of the chunk in the current ram block */
341 int current_chunk;
343 bool pin_all;
346 * infiniband-specific variables for opening the device
347 * and maintaining connection state and so forth.
349 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
350 * cm_id->verbs, cm_id->channel, and cm_id->qp.
352 struct rdma_cm_id *cm_id; /* connection manager ID */
353 struct rdma_cm_id *listen_id;
354 bool connected;
356 struct ibv_context *verbs;
357 struct rdma_event_channel *channel;
358 struct ibv_qp *qp; /* queue pair */
359 struct ibv_comp_channel *comp_channel; /* completion channel */
360 struct ibv_pd *pd; /* protection domain */
361 struct ibv_cq *cq; /* completion queue */
364 * If a previous write failed (perhaps because of a failed
365 * memory registration, then do not attempt any future work
366 * and remember the error state.
368 int error_state;
369 int error_reported;
370 int received_error;
373 * Description of ram blocks used throughout the code.
375 RDMALocalBlocks local_ram_blocks;
376 RDMADestBlock *dest_blocks;
378 /* Index of the next RAMBlock received during block registration */
379 unsigned int next_src_index;
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
386 int migration_started_on_destination;
388 int total_registrations;
389 int total_writes;
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
394 GHashTable *blockmap;
396 /* the RDMAContext for return path */
397 struct RDMAContext *return_path;
398 bool is_return_path;
399 } RDMAContext;
401 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
402 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
406 struct QIOChannelRDMA {
407 QIOChannel parent;
408 RDMAContext *rdmain;
409 RDMAContext *rdmaout;
410 QEMUFile *file;
411 bool blocking; /* XXX we don't actually honour this yet */
415 * Main structure for IB Send/Recv control messages.
416 * This gets prepended at the beginning of every Send/Recv.
418 typedef struct QEMU_PACKED {
419 uint32_t len; /* Total length of data portion */
420 uint32_t type; /* which control command to perform */
421 uint32_t repeat; /* number of commands in data portion of same type */
422 uint32_t padding;
423 } RDMAControlHeader;
425 static void control_to_network(RDMAControlHeader *control)
427 control->type = htonl(control->type);
428 control->len = htonl(control->len);
429 control->repeat = htonl(control->repeat);
432 static void network_to_control(RDMAControlHeader *control)
434 control->type = ntohl(control->type);
435 control->len = ntohl(control->len);
436 control->repeat = ntohl(control->repeat);
440 * Register a single Chunk.
441 * Information sent by the source VM to inform the dest
442 * to register an single chunk of memory before we can perform
443 * the actual RDMA operation.
445 typedef struct QEMU_PACKED {
446 union QEMU_PACKED {
447 uint64_t current_addr; /* offset into the ram_addr_t space */
448 uint64_t chunk; /* chunk to lookup if unregistering */
449 } key;
450 uint32_t current_index; /* which ramblock the chunk belongs to */
451 uint32_t padding;
452 uint64_t chunks; /* how many sequential chunks to register */
453 } RDMARegister;
455 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
457 RDMALocalBlock *local_block;
458 local_block = &rdma->local_ram_blocks.block[reg->current_index];
460 if (local_block->is_ram_block) {
462 * current_addr as passed in is an address in the local ram_addr_t
463 * space, we need to translate this for the destination
465 reg->key.current_addr -= local_block->offset;
466 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
468 reg->key.current_addr = htonll(reg->key.current_addr);
469 reg->current_index = htonl(reg->current_index);
470 reg->chunks = htonll(reg->chunks);
473 static void network_to_register(RDMARegister *reg)
475 reg->key.current_addr = ntohll(reg->key.current_addr);
476 reg->current_index = ntohl(reg->current_index);
477 reg->chunks = ntohll(reg->chunks);
480 typedef struct QEMU_PACKED {
481 uint32_t value; /* if zero, we will madvise() */
482 uint32_t block_idx; /* which ram block index */
483 uint64_t offset; /* Address in remote ram_addr_t space */
484 uint64_t length; /* length of the chunk */
485 } RDMACompress;
487 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
489 comp->value = htonl(comp->value);
491 * comp->offset as passed in is an address in the local ram_addr_t
492 * space, we need to translate this for the destination
494 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
495 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
496 comp->block_idx = htonl(comp->block_idx);
497 comp->offset = htonll(comp->offset);
498 comp->length = htonll(comp->length);
501 static void network_to_compress(RDMACompress *comp)
503 comp->value = ntohl(comp->value);
504 comp->block_idx = ntohl(comp->block_idx);
505 comp->offset = ntohll(comp->offset);
506 comp->length = ntohll(comp->length);
510 * The result of the dest's memory registration produces an "rkey"
511 * which the source VM must reference in order to perform
512 * the RDMA operation.
514 typedef struct QEMU_PACKED {
515 uint32_t rkey;
516 uint32_t padding;
517 uint64_t host_addr;
518 } RDMARegisterResult;
520 static void result_to_network(RDMARegisterResult *result)
522 result->rkey = htonl(result->rkey);
523 result->host_addr = htonll(result->host_addr);
526 static void network_to_result(RDMARegisterResult *result)
528 result->rkey = ntohl(result->rkey);
529 result->host_addr = ntohll(result->host_addr);
532 const char *print_wrid(int wrid);
533 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
534 uint8_t *data, RDMAControlHeader *resp,
535 int *resp_idx,
536 int (*callback)(RDMAContext *rdma));
538 static inline uint64_t ram_chunk_index(const uint8_t *start,
539 const uint8_t *host)
541 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
544 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
545 uint64_t i)
547 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
548 (i << RDMA_REG_CHUNK_SHIFT));
551 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
552 uint64_t i)
554 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
555 (1UL << RDMA_REG_CHUNK_SHIFT);
557 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
558 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
561 return result;
564 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
565 void *host_addr,
566 ram_addr_t block_offset, uint64_t length)
568 RDMALocalBlocks *local = &rdma->local_ram_blocks;
569 RDMALocalBlock *block;
570 RDMALocalBlock *old = local->block;
572 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
574 if (local->nb_blocks) {
575 int x;
577 if (rdma->blockmap) {
578 for (x = 0; x < local->nb_blocks; x++) {
579 g_hash_table_remove(rdma->blockmap,
580 (void *)(uintptr_t)old[x].offset);
581 g_hash_table_insert(rdma->blockmap,
582 (void *)(uintptr_t)old[x].offset,
583 &local->block[x]);
586 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
587 g_free(old);
590 block = &local->block[local->nb_blocks];
592 block->block_name = g_strdup(block_name);
593 block->local_host_addr = host_addr;
594 block->offset = block_offset;
595 block->length = length;
596 block->index = local->nb_blocks;
597 block->src_index = ~0U; /* Filled in by the receipt of the block list */
598 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
599 block->transit_bitmap = bitmap_new(block->nb_chunks);
600 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
601 block->unregister_bitmap = bitmap_new(block->nb_chunks);
602 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
603 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
605 block->is_ram_block = local->init ? false : true;
607 if (rdma->blockmap) {
608 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
611 trace_rdma_add_block(block_name, local->nb_blocks,
612 (uintptr_t) block->local_host_addr,
613 block->offset, block->length,
614 (uintptr_t) (block->local_host_addr + block->length),
615 BITS_TO_LONGS(block->nb_chunks) *
616 sizeof(unsigned long) * 8,
617 block->nb_chunks);
619 local->nb_blocks++;
621 return 0;
625 * Memory regions need to be registered with the device and queue pairs setup
626 * in advanced before the migration starts. This tells us where the RAM blocks
627 * are so that we can register them individually.
629 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
631 const char *block_name = qemu_ram_get_idstr(rb);
632 void *host_addr = qemu_ram_get_host_addr(rb);
633 ram_addr_t block_offset = qemu_ram_get_offset(rb);
634 ram_addr_t length = qemu_ram_get_used_length(rb);
635 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
639 * Identify the RAMBlocks and their quantity. They will be references to
640 * identify chunk boundaries inside each RAMBlock and also be referenced
641 * during dynamic page registration.
643 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
645 RDMALocalBlocks *local = &rdma->local_ram_blocks;
646 int ret;
648 assert(rdma->blockmap == NULL);
649 memset(local, 0, sizeof *local);
650 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
651 if (ret) {
652 return ret;
654 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
655 rdma->dest_blocks = g_new0(RDMADestBlock,
656 rdma->local_ram_blocks.nb_blocks);
657 local->init = true;
658 return 0;
662 * Note: If used outside of cleanup, the caller must ensure that the destination
663 * block structures are also updated
665 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
667 RDMALocalBlocks *local = &rdma->local_ram_blocks;
668 RDMALocalBlock *old = local->block;
669 int x;
671 if (rdma->blockmap) {
672 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
674 if (block->pmr) {
675 int j;
677 for (j = 0; j < block->nb_chunks; j++) {
678 if (!block->pmr[j]) {
679 continue;
681 ibv_dereg_mr(block->pmr[j]);
682 rdma->total_registrations--;
684 g_free(block->pmr);
685 block->pmr = NULL;
688 if (block->mr) {
689 ibv_dereg_mr(block->mr);
690 rdma->total_registrations--;
691 block->mr = NULL;
694 g_free(block->transit_bitmap);
695 block->transit_bitmap = NULL;
697 g_free(block->unregister_bitmap);
698 block->unregister_bitmap = NULL;
700 g_free(block->remote_keys);
701 block->remote_keys = NULL;
703 g_free(block->block_name);
704 block->block_name = NULL;
706 if (rdma->blockmap) {
707 for (x = 0; x < local->nb_blocks; x++) {
708 g_hash_table_remove(rdma->blockmap,
709 (void *)(uintptr_t)old[x].offset);
713 if (local->nb_blocks > 1) {
715 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
717 if (block->index) {
718 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
721 if (block->index < (local->nb_blocks - 1)) {
722 memcpy(local->block + block->index, old + (block->index + 1),
723 sizeof(RDMALocalBlock) *
724 (local->nb_blocks - (block->index + 1)));
725 for (x = block->index; x < local->nb_blocks - 1; x++) {
726 local->block[x].index--;
729 } else {
730 assert(block == local->block);
731 local->block = NULL;
734 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
735 block->offset, block->length,
736 (uintptr_t)(block->local_host_addr + block->length),
737 BITS_TO_LONGS(block->nb_chunks) *
738 sizeof(unsigned long) * 8, block->nb_chunks);
740 g_free(old);
742 local->nb_blocks--;
744 if (local->nb_blocks && rdma->blockmap) {
745 for (x = 0; x < local->nb_blocks; x++) {
746 g_hash_table_insert(rdma->blockmap,
747 (void *)(uintptr_t)local->block[x].offset,
748 &local->block[x]);
752 return 0;
756 * Put in the log file which RDMA device was opened and the details
757 * associated with that device.
759 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
761 struct ibv_port_attr port;
763 if (ibv_query_port(verbs, 1, &port)) {
764 error_report("Failed to query port information");
765 return;
768 printf("%s RDMA Device opened: kernel name %s "
769 "uverbs device name %s, "
770 "infiniband_verbs class device path %s, "
771 "infiniband class device path %s, "
772 "transport: (%d) %s\n",
773 who,
774 verbs->device->name,
775 verbs->device->dev_name,
776 verbs->device->dev_path,
777 verbs->device->ibdev_path,
778 port.link_layer,
779 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
780 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
781 ? "Ethernet" : "Unknown"));
785 * Put in the log file the RDMA gid addressing information,
786 * useful for folks who have trouble understanding the
787 * RDMA device hierarchy in the kernel.
789 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
791 char sgid[33];
792 char dgid[33];
793 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
794 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
795 trace_qemu_rdma_dump_gid(who, sgid, dgid);
799 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
800 * We will try the next addrinfo struct, and fail if there are
801 * no other valid addresses to bind against.
803 * If user is listening on '[::]', then we will not have a opened a device
804 * yet and have no way of verifying if the device is RoCE or not.
806 * In this case, the source VM will throw an error for ALL types of
807 * connections (both IPv4 and IPv6) if the destination machine does not have
808 * a regular infiniband network available for use.
810 * The only way to guarantee that an error is thrown for broken kernels is
811 * for the management software to choose a *specific* interface at bind time
812 * and validate what time of hardware it is.
814 * Unfortunately, this puts the user in a fix:
816 * If the source VM connects with an IPv4 address without knowing that the
817 * destination has bound to '[::]' the migration will unconditionally fail
818 * unless the management software is explicitly listening on the IPv4
819 * address while using a RoCE-based device.
821 * If the source VM connects with an IPv6 address, then we're OK because we can
822 * throw an error on the source (and similarly on the destination).
824 * But in mixed environments, this will be broken for a while until it is fixed
825 * inside linux.
827 * We do provide a *tiny* bit of help in this function: We can list all of the
828 * devices in the system and check to see if all the devices are RoCE or
829 * Infiniband.
831 * If we detect that we have a *pure* RoCE environment, then we can safely
832 * thrown an error even if the management software has specified '[::]' as the
833 * bind address.
835 * However, if there is are multiple hetergeneous devices, then we cannot make
836 * this assumption and the user just has to be sure they know what they are
837 * doing.
839 * Patches are being reviewed on linux-rdma.
841 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
843 /* This bug only exists in linux, to our knowledge. */
844 #ifdef CONFIG_LINUX
845 struct ibv_port_attr port_attr;
848 * Verbs are only NULL if management has bound to '[::]'.
850 * Let's iterate through all the devices and see if there any pure IB
851 * devices (non-ethernet).
853 * If not, then we can safely proceed with the migration.
854 * Otherwise, there are no guarantees until the bug is fixed in linux.
856 if (!verbs) {
857 int num_devices, x;
858 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
859 bool roce_found = false;
860 bool ib_found = false;
862 for (x = 0; x < num_devices; x++) {
863 verbs = ibv_open_device(dev_list[x]);
864 if (!verbs) {
865 if (errno == EPERM) {
866 continue;
867 } else {
868 return -EINVAL;
872 if (ibv_query_port(verbs, 1, &port_attr)) {
873 ibv_close_device(verbs);
874 ERROR(errp, "Could not query initial IB port");
875 return -EINVAL;
878 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
879 ib_found = true;
880 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
881 roce_found = true;
884 ibv_close_device(verbs);
888 if (roce_found) {
889 if (ib_found) {
890 fprintf(stderr, "WARN: migrations may fail:"
891 " IPv6 over RoCE / iWARP in linux"
892 " is broken. But since you appear to have a"
893 " mixed RoCE / IB environment, be sure to only"
894 " migrate over the IB fabric until the kernel "
895 " fixes the bug.\n");
896 } else {
897 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
898 " and your management software has specified '[::]'"
899 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
900 return -ENONET;
904 return 0;
908 * If we have a verbs context, that means that some other than '[::]' was
909 * used by the management software for binding. In which case we can
910 * actually warn the user about a potentially broken kernel.
913 /* IB ports start with 1, not 0 */
914 if (ibv_query_port(verbs, 1, &port_attr)) {
915 ERROR(errp, "Could not query initial IB port");
916 return -EINVAL;
919 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
920 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
921 "(but patches on linux-rdma in progress)");
922 return -ENONET;
925 #endif
927 return 0;
931 * Figure out which RDMA device corresponds to the requested IP hostname
932 * Also create the initial connection manager identifiers for opening
933 * the connection.
935 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
937 int ret;
938 struct rdma_addrinfo *res;
939 char port_str[16];
940 struct rdma_cm_event *cm_event;
941 char ip[40] = "unknown";
942 struct rdma_addrinfo *e;
944 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
945 ERROR(errp, "RDMA hostname has not been set");
946 return -EINVAL;
949 /* create CM channel */
950 rdma->channel = rdma_create_event_channel();
951 if (!rdma->channel) {
952 ERROR(errp, "could not create CM channel");
953 return -EINVAL;
956 /* create CM id */
957 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
958 if (ret) {
959 ERROR(errp, "could not create channel id");
960 goto err_resolve_create_id;
963 snprintf(port_str, 16, "%d", rdma->port);
964 port_str[15] = '\0';
966 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
967 if (ret < 0) {
968 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
969 goto err_resolve_get_addr;
972 for (e = res; e != NULL; e = e->ai_next) {
973 inet_ntop(e->ai_family,
974 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
975 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
977 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
978 RDMA_RESOLVE_TIMEOUT_MS);
979 if (!ret) {
980 if (e->ai_family == AF_INET6) {
981 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
982 if (ret) {
983 continue;
986 goto route;
990 rdma_freeaddrinfo(res);
991 ERROR(errp, "could not resolve address %s", rdma->host);
992 goto err_resolve_get_addr;
994 route:
995 rdma_freeaddrinfo(res);
996 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
998 ret = rdma_get_cm_event(rdma->channel, &cm_event);
999 if (ret) {
1000 ERROR(errp, "could not perform event_addr_resolved");
1001 goto err_resolve_get_addr;
1004 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1005 ERROR(errp, "result not equal to event_addr_resolved %s",
1006 rdma_event_str(cm_event->event));
1007 perror("rdma_resolve_addr");
1008 rdma_ack_cm_event(cm_event);
1009 ret = -EINVAL;
1010 goto err_resolve_get_addr;
1012 rdma_ack_cm_event(cm_event);
1014 /* resolve route */
1015 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1016 if (ret) {
1017 ERROR(errp, "could not resolve rdma route");
1018 goto err_resolve_get_addr;
1021 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1022 if (ret) {
1023 ERROR(errp, "could not perform event_route_resolved");
1024 goto err_resolve_get_addr;
1026 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1027 ERROR(errp, "result not equal to event_route_resolved: %s",
1028 rdma_event_str(cm_event->event));
1029 rdma_ack_cm_event(cm_event);
1030 ret = -EINVAL;
1031 goto err_resolve_get_addr;
1033 rdma_ack_cm_event(cm_event);
1034 rdma->verbs = rdma->cm_id->verbs;
1035 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1036 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1037 return 0;
1039 err_resolve_get_addr:
1040 rdma_destroy_id(rdma->cm_id);
1041 rdma->cm_id = NULL;
1042 err_resolve_create_id:
1043 rdma_destroy_event_channel(rdma->channel);
1044 rdma->channel = NULL;
1045 return ret;
1049 * Create protection domain and completion queues
1051 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1053 /* allocate pd */
1054 rdma->pd = ibv_alloc_pd(rdma->verbs);
1055 if (!rdma->pd) {
1056 error_report("failed to allocate protection domain");
1057 return -1;
1060 /* create completion channel */
1061 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1062 if (!rdma->comp_channel) {
1063 error_report("failed to allocate completion channel");
1064 goto err_alloc_pd_cq;
1068 * Completion queue can be filled by both read and write work requests,
1069 * so must reflect the sum of both possible queue sizes.
1071 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1072 NULL, rdma->comp_channel, 0);
1073 if (!rdma->cq) {
1074 error_report("failed to allocate completion queue");
1075 goto err_alloc_pd_cq;
1078 return 0;
1080 err_alloc_pd_cq:
1081 if (rdma->pd) {
1082 ibv_dealloc_pd(rdma->pd);
1084 if (rdma->comp_channel) {
1085 ibv_destroy_comp_channel(rdma->comp_channel);
1087 rdma->pd = NULL;
1088 rdma->comp_channel = NULL;
1089 return -1;
1094 * Create queue pairs.
1096 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1098 struct ibv_qp_init_attr attr = { 0 };
1099 int ret;
1101 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1102 attr.cap.max_recv_wr = 3;
1103 attr.cap.max_send_sge = 1;
1104 attr.cap.max_recv_sge = 1;
1105 attr.send_cq = rdma->cq;
1106 attr.recv_cq = rdma->cq;
1107 attr.qp_type = IBV_QPT_RC;
1109 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1110 if (ret) {
1111 return -1;
1114 rdma->qp = rdma->cm_id->qp;
1115 return 0;
1118 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1120 int i;
1121 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1123 for (i = 0; i < local->nb_blocks; i++) {
1124 local->block[i].mr =
1125 ibv_reg_mr(rdma->pd,
1126 local->block[i].local_host_addr,
1127 local->block[i].length,
1128 IBV_ACCESS_LOCAL_WRITE |
1129 IBV_ACCESS_REMOTE_WRITE
1131 if (!local->block[i].mr) {
1132 perror("Failed to register local dest ram block!\n");
1133 break;
1135 rdma->total_registrations++;
1138 if (i >= local->nb_blocks) {
1139 return 0;
1142 for (i--; i >= 0; i--) {
1143 ibv_dereg_mr(local->block[i].mr);
1144 rdma->total_registrations--;
1147 return -1;
1152 * Find the ram block that corresponds to the page requested to be
1153 * transmitted by QEMU.
1155 * Once the block is found, also identify which 'chunk' within that
1156 * block that the page belongs to.
1158 * This search cannot fail or the migration will fail.
1160 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1161 uintptr_t block_offset,
1162 uint64_t offset,
1163 uint64_t length,
1164 uint64_t *block_index,
1165 uint64_t *chunk_index)
1167 uint64_t current_addr = block_offset + offset;
1168 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1169 (void *) block_offset);
1170 assert(block);
1171 assert(current_addr >= block->offset);
1172 assert((current_addr + length) <= (block->offset + block->length));
1174 *block_index = block->index;
1175 *chunk_index = ram_chunk_index(block->local_host_addr,
1176 block->local_host_addr + (current_addr - block->offset));
1178 return 0;
1182 * Register a chunk with IB. If the chunk was already registered
1183 * previously, then skip.
1185 * Also return the keys associated with the registration needed
1186 * to perform the actual RDMA operation.
1188 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1189 RDMALocalBlock *block, uintptr_t host_addr,
1190 uint32_t *lkey, uint32_t *rkey, int chunk,
1191 uint8_t *chunk_start, uint8_t *chunk_end)
1193 if (block->mr) {
1194 if (lkey) {
1195 *lkey = block->mr->lkey;
1197 if (rkey) {
1198 *rkey = block->mr->rkey;
1200 return 0;
1203 /* allocate memory to store chunk MRs */
1204 if (!block->pmr) {
1205 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1209 * If 'rkey', then we're the destination, so grant access to the source.
1211 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1213 if (!block->pmr[chunk]) {
1214 uint64_t len = chunk_end - chunk_start;
1216 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1218 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1219 chunk_start, len,
1220 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1221 IBV_ACCESS_REMOTE_WRITE) : 0));
1223 if (!block->pmr[chunk]) {
1224 perror("Failed to register chunk!");
1225 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1226 " start %" PRIuPTR " end %" PRIuPTR
1227 " host %" PRIuPTR
1228 " local %" PRIuPTR " registrations: %d\n",
1229 block->index, chunk, (uintptr_t)chunk_start,
1230 (uintptr_t)chunk_end, host_addr,
1231 (uintptr_t)block->local_host_addr,
1232 rdma->total_registrations);
1233 return -1;
1235 rdma->total_registrations++;
1238 if (lkey) {
1239 *lkey = block->pmr[chunk]->lkey;
1241 if (rkey) {
1242 *rkey = block->pmr[chunk]->rkey;
1244 return 0;
1248 * Register (at connection time) the memory used for control
1249 * channel messages.
1251 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1253 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1254 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1255 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1256 if (rdma->wr_data[idx].control_mr) {
1257 rdma->total_registrations++;
1258 return 0;
1260 error_report("qemu_rdma_reg_control failed");
1261 return -1;
1264 const char *print_wrid(int wrid)
1266 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1267 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1269 return wrid_desc[wrid];
1273 * RDMA requires memory registration (mlock/pinning), but this is not good for
1274 * overcommitment.
1276 * In preparation for the future where LRU information or workload-specific
1277 * writable writable working set memory access behavior is available to QEMU
1278 * it would be nice to have in place the ability to UN-register/UN-pin
1279 * particular memory regions from the RDMA hardware when it is determine that
1280 * those regions of memory will likely not be accessed again in the near future.
1282 * While we do not yet have such information right now, the following
1283 * compile-time option allows us to perform a non-optimized version of this
1284 * behavior.
1286 * By uncommenting this option, you will cause *all* RDMA transfers to be
1287 * unregistered immediately after the transfer completes on both sides of the
1288 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1290 * This will have a terrible impact on migration performance, so until future
1291 * workload information or LRU information is available, do not attempt to use
1292 * this feature except for basic testing.
1294 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1297 * Perform a non-optimized memory unregistration after every transfer
1298 * for demonstration purposes, only if pin-all is not requested.
1300 * Potential optimizations:
1301 * 1. Start a new thread to run this function continuously
1302 - for bit clearing
1303 - and for receipt of unregister messages
1304 * 2. Use an LRU.
1305 * 3. Use workload hints.
1307 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1309 while (rdma->unregistrations[rdma->unregister_current]) {
1310 int ret;
1311 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1312 uint64_t chunk =
1313 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1314 uint64_t index =
1315 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1316 RDMALocalBlock *block =
1317 &(rdma->local_ram_blocks.block[index]);
1318 RDMARegister reg = { .current_index = index };
1319 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1321 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1322 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1323 .repeat = 1,
1326 trace_qemu_rdma_unregister_waiting_proc(chunk,
1327 rdma->unregister_current);
1329 rdma->unregistrations[rdma->unregister_current] = 0;
1330 rdma->unregister_current++;
1332 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1333 rdma->unregister_current = 0;
1338 * Unregistration is speculative (because migration is single-threaded
1339 * and we cannot break the protocol's inifinband message ordering).
1340 * Thus, if the memory is currently being used for transmission,
1341 * then abort the attempt to unregister and try again
1342 * later the next time a completion is received for this memory.
1344 clear_bit(chunk, block->unregister_bitmap);
1346 if (test_bit(chunk, block->transit_bitmap)) {
1347 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1348 continue;
1351 trace_qemu_rdma_unregister_waiting_send(chunk);
1353 ret = ibv_dereg_mr(block->pmr[chunk]);
1354 block->pmr[chunk] = NULL;
1355 block->remote_keys[chunk] = 0;
1357 if (ret != 0) {
1358 perror("unregistration chunk failed");
1359 return -ret;
1361 rdma->total_registrations--;
1363 reg.key.chunk = chunk;
1364 register_to_network(rdma, &reg);
1365 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1366 &resp, NULL, NULL);
1367 if (ret < 0) {
1368 return ret;
1371 trace_qemu_rdma_unregister_waiting_complete(chunk);
1374 return 0;
1377 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1378 uint64_t chunk)
1380 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1382 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1383 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1385 return result;
1389 * Set bit for unregistration in the next iteration.
1390 * We cannot transmit right here, but will unpin later.
1392 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1393 uint64_t chunk, uint64_t wr_id)
1395 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1396 error_report("rdma migration: queue is full");
1397 } else {
1398 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1400 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1401 trace_qemu_rdma_signal_unregister_append(chunk,
1402 rdma->unregister_next);
1404 rdma->unregistrations[rdma->unregister_next++] =
1405 qemu_rdma_make_wrid(wr_id, index, chunk);
1407 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1408 rdma->unregister_next = 0;
1410 } else {
1411 trace_qemu_rdma_signal_unregister_already(chunk);
1417 * Consult the connection manager to see a work request
1418 * (of any kind) has completed.
1419 * Return the work request ID that completed.
1421 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1422 uint32_t *byte_len)
1424 int ret;
1425 struct ibv_wc wc;
1426 uint64_t wr_id;
1428 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1430 if (!ret) {
1431 *wr_id_out = RDMA_WRID_NONE;
1432 return 0;
1435 if (ret < 0) {
1436 error_report("ibv_poll_cq return %d", ret);
1437 return ret;
1440 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1442 if (wc.status != IBV_WC_SUCCESS) {
1443 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1444 wc.status, ibv_wc_status_str(wc.status));
1445 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1447 return -1;
1450 if (rdma->control_ready_expected &&
1451 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1452 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1453 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1454 rdma->control_ready_expected = 0;
1457 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1458 uint64_t chunk =
1459 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1460 uint64_t index =
1461 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1462 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1464 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1465 index, chunk, block->local_host_addr,
1466 (void *)(uintptr_t)block->remote_host_addr);
1468 clear_bit(chunk, block->transit_bitmap);
1470 if (rdma->nb_sent > 0) {
1471 rdma->nb_sent--;
1474 if (!rdma->pin_all) {
1476 * FYI: If one wanted to signal a specific chunk to be unregistered
1477 * using LRU or workload-specific information, this is the function
1478 * you would call to do so. That chunk would then get asynchronously
1479 * unregistered later.
1481 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1482 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1483 #endif
1485 } else {
1486 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1489 *wr_id_out = wc.wr_id;
1490 if (byte_len) {
1491 *byte_len = wc.byte_len;
1494 return 0;
1497 /* Wait for activity on the completion channel.
1498 * Returns 0 on success, none-0 on error.
1500 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1502 struct rdma_cm_event *cm_event;
1503 int ret = -1;
1506 * Coroutine doesn't start until migration_fd_process_incoming()
1507 * so don't yield unless we know we're running inside of a coroutine.
1509 if (rdma->migration_started_on_destination &&
1510 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1511 yield_until_fd_readable(rdma->comp_channel->fd);
1512 } else {
1513 /* This is the source side, we're in a separate thread
1514 * or destination prior to migration_fd_process_incoming()
1515 * after postcopy, the destination also in a separate thread.
1516 * we can't yield; so we have to poll the fd.
1517 * But we need to be able to handle 'cancel' or an error
1518 * without hanging forever.
1520 while (!rdma->error_state && !rdma->received_error) {
1521 GPollFD pfds[2];
1522 pfds[0].fd = rdma->comp_channel->fd;
1523 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1524 pfds[0].revents = 0;
1526 pfds[1].fd = rdma->channel->fd;
1527 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1528 pfds[1].revents = 0;
1530 /* 0.1s timeout, should be fine for a 'cancel' */
1531 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1532 case 2:
1533 case 1: /* fd active */
1534 if (pfds[0].revents) {
1535 return 0;
1538 if (pfds[1].revents) {
1539 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1540 if (!ret) {
1541 rdma_ack_cm_event(cm_event);
1544 error_report("receive cm event while wait comp channel,"
1545 "cm event is %d", cm_event->event);
1546 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1547 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1548 return -EPIPE;
1551 break;
1553 case 0: /* Timeout, go around again */
1554 break;
1556 default: /* Error of some type -
1557 * I don't trust errno from qemu_poll_ns
1559 error_report("%s: poll failed", __func__);
1560 return -EPIPE;
1563 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1564 /* Bail out and let the cancellation happen */
1565 return -EPIPE;
1570 if (rdma->received_error) {
1571 return -EPIPE;
1573 return rdma->error_state;
1577 * Block until the next work request has completed.
1579 * First poll to see if a work request has already completed,
1580 * otherwise block.
1582 * If we encounter completed work requests for IDs other than
1583 * the one we're interested in, then that's generally an error.
1585 * The only exception is actual RDMA Write completions. These
1586 * completions only need to be recorded, but do not actually
1587 * need further processing.
1589 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1590 uint32_t *byte_len)
1592 int num_cq_events = 0, ret = 0;
1593 struct ibv_cq *cq;
1594 void *cq_ctx;
1595 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1597 if (ibv_req_notify_cq(rdma->cq, 0)) {
1598 return -1;
1600 /* poll cq first */
1601 while (wr_id != wrid_requested) {
1602 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1603 if (ret < 0) {
1604 return ret;
1607 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1609 if (wr_id == RDMA_WRID_NONE) {
1610 break;
1612 if (wr_id != wrid_requested) {
1613 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1614 wrid_requested, print_wrid(wr_id), wr_id);
1618 if (wr_id == wrid_requested) {
1619 return 0;
1622 while (1) {
1623 ret = qemu_rdma_wait_comp_channel(rdma);
1624 if (ret) {
1625 goto err_block_for_wrid;
1628 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1629 if (ret) {
1630 perror("ibv_get_cq_event");
1631 goto err_block_for_wrid;
1634 num_cq_events++;
1636 ret = -ibv_req_notify_cq(cq, 0);
1637 if (ret) {
1638 goto err_block_for_wrid;
1641 while (wr_id != wrid_requested) {
1642 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1643 if (ret < 0) {
1644 goto err_block_for_wrid;
1647 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1649 if (wr_id == RDMA_WRID_NONE) {
1650 break;
1652 if (wr_id != wrid_requested) {
1653 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1654 wrid_requested, print_wrid(wr_id), wr_id);
1658 if (wr_id == wrid_requested) {
1659 goto success_block_for_wrid;
1663 success_block_for_wrid:
1664 if (num_cq_events) {
1665 ibv_ack_cq_events(cq, num_cq_events);
1667 return 0;
1669 err_block_for_wrid:
1670 if (num_cq_events) {
1671 ibv_ack_cq_events(cq, num_cq_events);
1674 rdma->error_state = ret;
1675 return ret;
1679 * Post a SEND message work request for the control channel
1680 * containing some data and block until the post completes.
1682 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1683 RDMAControlHeader *head)
1685 int ret = 0;
1686 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1687 struct ibv_send_wr *bad_wr;
1688 struct ibv_sge sge = {
1689 .addr = (uintptr_t)(wr->control),
1690 .length = head->len + sizeof(RDMAControlHeader),
1691 .lkey = wr->control_mr->lkey,
1693 struct ibv_send_wr send_wr = {
1694 .wr_id = RDMA_WRID_SEND_CONTROL,
1695 .opcode = IBV_WR_SEND,
1696 .send_flags = IBV_SEND_SIGNALED,
1697 .sg_list = &sge,
1698 .num_sge = 1,
1701 trace_qemu_rdma_post_send_control(control_desc(head->type));
1704 * We don't actually need to do a memcpy() in here if we used
1705 * the "sge" properly, but since we're only sending control messages
1706 * (not RAM in a performance-critical path), then its OK for now.
1708 * The copy makes the RDMAControlHeader simpler to manipulate
1709 * for the time being.
1711 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1712 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1713 control_to_network((void *) wr->control);
1715 if (buf) {
1716 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1720 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1722 if (ret > 0) {
1723 error_report("Failed to use post IB SEND for control");
1724 return -ret;
1727 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1728 if (ret < 0) {
1729 error_report("rdma migration: send polling control error");
1732 return ret;
1736 * Post a RECV work request in anticipation of some future receipt
1737 * of data on the control channel.
1739 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1741 struct ibv_recv_wr *bad_wr;
1742 struct ibv_sge sge = {
1743 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1744 .length = RDMA_CONTROL_MAX_BUFFER,
1745 .lkey = rdma->wr_data[idx].control_mr->lkey,
1748 struct ibv_recv_wr recv_wr = {
1749 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1750 .sg_list = &sge,
1751 .num_sge = 1,
1755 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1756 return -1;
1759 return 0;
1763 * Block and wait for a RECV control channel message to arrive.
1765 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1766 RDMAControlHeader *head, int expecting, int idx)
1768 uint32_t byte_len;
1769 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1770 &byte_len);
1772 if (ret < 0) {
1773 error_report("rdma migration: recv polling control error!");
1774 return ret;
1777 network_to_control((void *) rdma->wr_data[idx].control);
1778 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1780 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1782 if (expecting == RDMA_CONTROL_NONE) {
1783 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1784 head->type);
1785 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1786 error_report("Was expecting a %s (%d) control message"
1787 ", but got: %s (%d), length: %d",
1788 control_desc(expecting), expecting,
1789 control_desc(head->type), head->type, head->len);
1790 if (head->type == RDMA_CONTROL_ERROR) {
1791 rdma->received_error = true;
1793 return -EIO;
1795 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1796 error_report("too long length: %d", head->len);
1797 return -EINVAL;
1799 if (sizeof(*head) + head->len != byte_len) {
1800 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1801 return -EINVAL;
1804 return 0;
1808 * When a RECV work request has completed, the work request's
1809 * buffer is pointed at the header.
1811 * This will advance the pointer to the data portion
1812 * of the control message of the work request's buffer that
1813 * was populated after the work request finished.
1815 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1816 RDMAControlHeader *head)
1818 rdma->wr_data[idx].control_len = head->len;
1819 rdma->wr_data[idx].control_curr =
1820 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1824 * This is an 'atomic' high-level operation to deliver a single, unified
1825 * control-channel message.
1827 * Additionally, if the user is expecting some kind of reply to this message,
1828 * they can request a 'resp' response message be filled in by posting an
1829 * additional work request on behalf of the user and waiting for an additional
1830 * completion.
1832 * The extra (optional) response is used during registration to us from having
1833 * to perform an *additional* exchange of message just to provide a response by
1834 * instead piggy-backing on the acknowledgement.
1836 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1837 uint8_t *data, RDMAControlHeader *resp,
1838 int *resp_idx,
1839 int (*callback)(RDMAContext *rdma))
1841 int ret = 0;
1844 * Wait until the dest is ready before attempting to deliver the message
1845 * by waiting for a READY message.
1847 if (rdma->control_ready_expected) {
1848 RDMAControlHeader resp;
1849 ret = qemu_rdma_exchange_get_response(rdma,
1850 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1851 if (ret < 0) {
1852 return ret;
1857 * If the user is expecting a response, post a WR in anticipation of it.
1859 if (resp) {
1860 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1861 if (ret) {
1862 error_report("rdma migration: error posting"
1863 " extra control recv for anticipated result!");
1864 return ret;
1869 * Post a WR to replace the one we just consumed for the READY message.
1871 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1872 if (ret) {
1873 error_report("rdma migration: error posting first control recv!");
1874 return ret;
1878 * Deliver the control message that was requested.
1880 ret = qemu_rdma_post_send_control(rdma, data, head);
1882 if (ret < 0) {
1883 error_report("Failed to send control buffer!");
1884 return ret;
1888 * If we're expecting a response, block and wait for it.
1890 if (resp) {
1891 if (callback) {
1892 trace_qemu_rdma_exchange_send_issue_callback();
1893 ret = callback(rdma);
1894 if (ret < 0) {
1895 return ret;
1899 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1900 ret = qemu_rdma_exchange_get_response(rdma, resp,
1901 resp->type, RDMA_WRID_DATA);
1903 if (ret < 0) {
1904 return ret;
1907 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1908 if (resp_idx) {
1909 *resp_idx = RDMA_WRID_DATA;
1911 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1914 rdma->control_ready_expected = 1;
1916 return 0;
1920 * This is an 'atomic' high-level operation to receive a single, unified
1921 * control-channel message.
1923 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1924 int expecting)
1926 RDMAControlHeader ready = {
1927 .len = 0,
1928 .type = RDMA_CONTROL_READY,
1929 .repeat = 1,
1931 int ret;
1934 * Inform the source that we're ready to receive a message.
1936 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1938 if (ret < 0) {
1939 error_report("Failed to send control buffer!");
1940 return ret;
1944 * Block and wait for the message.
1946 ret = qemu_rdma_exchange_get_response(rdma, head,
1947 expecting, RDMA_WRID_READY);
1949 if (ret < 0) {
1950 return ret;
1953 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1956 * Post a new RECV work request to replace the one we just consumed.
1958 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1959 if (ret) {
1960 error_report("rdma migration: error posting second control recv!");
1961 return ret;
1964 return 0;
1968 * Write an actual chunk of memory using RDMA.
1970 * If we're using dynamic registration on the dest-side, we have to
1971 * send a registration command first.
1973 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1974 int current_index, uint64_t current_addr,
1975 uint64_t length)
1977 struct ibv_sge sge;
1978 struct ibv_send_wr send_wr = { 0 };
1979 struct ibv_send_wr *bad_wr;
1980 int reg_result_idx, ret, count = 0;
1981 uint64_t chunk, chunks;
1982 uint8_t *chunk_start, *chunk_end;
1983 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1984 RDMARegister reg;
1985 RDMARegisterResult *reg_result;
1986 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1987 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1988 .type = RDMA_CONTROL_REGISTER_REQUEST,
1989 .repeat = 1,
1992 retry:
1993 sge.addr = (uintptr_t)(block->local_host_addr +
1994 (current_addr - block->offset));
1995 sge.length = length;
1997 chunk = ram_chunk_index(block->local_host_addr,
1998 (uint8_t *)(uintptr_t)sge.addr);
1999 chunk_start = ram_chunk_start(block, chunk);
2001 if (block->is_ram_block) {
2002 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2004 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2005 chunks--;
2007 } else {
2008 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2010 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2011 chunks--;
2015 trace_qemu_rdma_write_one_top(chunks + 1,
2016 (chunks + 1) *
2017 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2019 chunk_end = ram_chunk_end(block, chunk + chunks);
2021 if (!rdma->pin_all) {
2022 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2023 qemu_rdma_unregister_waiting(rdma);
2024 #endif
2027 while (test_bit(chunk, block->transit_bitmap)) {
2028 (void)count;
2029 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2030 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2032 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2034 if (ret < 0) {
2035 error_report("Failed to Wait for previous write to complete "
2036 "block %d chunk %" PRIu64
2037 " current %" PRIu64 " len %" PRIu64 " %d",
2038 current_index, chunk, sge.addr, length, rdma->nb_sent);
2039 return ret;
2043 if (!rdma->pin_all || !block->is_ram_block) {
2044 if (!block->remote_keys[chunk]) {
2046 * This chunk has not yet been registered, so first check to see
2047 * if the entire chunk is zero. If so, tell the other size to
2048 * memset() + madvise() the entire chunk without RDMA.
2051 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2052 RDMACompress comp = {
2053 .offset = current_addr,
2054 .value = 0,
2055 .block_idx = current_index,
2056 .length = length,
2059 head.len = sizeof(comp);
2060 head.type = RDMA_CONTROL_COMPRESS;
2062 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2063 current_index, current_addr);
2065 compress_to_network(rdma, &comp);
2066 ret = qemu_rdma_exchange_send(rdma, &head,
2067 (uint8_t *) &comp, NULL, NULL, NULL);
2069 if (ret < 0) {
2070 return -EIO;
2073 acct_update_position(f, sge.length, true);
2075 return 1;
2079 * Otherwise, tell other side to register.
2081 reg.current_index = current_index;
2082 if (block->is_ram_block) {
2083 reg.key.current_addr = current_addr;
2084 } else {
2085 reg.key.chunk = chunk;
2087 reg.chunks = chunks;
2089 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2090 current_addr);
2092 register_to_network(rdma, &reg);
2093 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2094 &resp, &reg_result_idx, NULL);
2095 if (ret < 0) {
2096 return ret;
2099 /* try to overlap this single registration with the one we sent. */
2100 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2101 &sge.lkey, NULL, chunk,
2102 chunk_start, chunk_end)) {
2103 error_report("cannot get lkey");
2104 return -EINVAL;
2107 reg_result = (RDMARegisterResult *)
2108 rdma->wr_data[reg_result_idx].control_curr;
2110 network_to_result(reg_result);
2112 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2113 reg_result->rkey, chunk);
2115 block->remote_keys[chunk] = reg_result->rkey;
2116 block->remote_host_addr = reg_result->host_addr;
2117 } else {
2118 /* already registered before */
2119 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2120 &sge.lkey, NULL, chunk,
2121 chunk_start, chunk_end)) {
2122 error_report("cannot get lkey!");
2123 return -EINVAL;
2127 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2128 } else {
2129 send_wr.wr.rdma.rkey = block->remote_rkey;
2131 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2132 &sge.lkey, NULL, chunk,
2133 chunk_start, chunk_end)) {
2134 error_report("cannot get lkey!");
2135 return -EINVAL;
2140 * Encode the ram block index and chunk within this wrid.
2141 * We will use this information at the time of completion
2142 * to figure out which bitmap to check against and then which
2143 * chunk in the bitmap to look for.
2145 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2146 current_index, chunk);
2148 send_wr.opcode = IBV_WR_RDMA_WRITE;
2149 send_wr.send_flags = IBV_SEND_SIGNALED;
2150 send_wr.sg_list = &sge;
2151 send_wr.num_sge = 1;
2152 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2153 (current_addr - block->offset);
2155 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2156 sge.length);
2159 * ibv_post_send() does not return negative error numbers,
2160 * per the specification they are positive - no idea why.
2162 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2164 if (ret == ENOMEM) {
2165 trace_qemu_rdma_write_one_queue_full();
2166 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2167 if (ret < 0) {
2168 error_report("rdma migration: failed to make "
2169 "room in full send queue! %d", ret);
2170 return ret;
2173 goto retry;
2175 } else if (ret > 0) {
2176 perror("rdma migration: post rdma write failed");
2177 return -ret;
2180 set_bit(chunk, block->transit_bitmap);
2181 acct_update_position(f, sge.length, false);
2182 rdma->total_writes++;
2184 return 0;
2188 * Push out any unwritten RDMA operations.
2190 * We support sending out multiple chunks at the same time.
2191 * Not all of them need to get signaled in the completion queue.
2193 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2195 int ret;
2197 if (!rdma->current_length) {
2198 return 0;
2201 ret = qemu_rdma_write_one(f, rdma,
2202 rdma->current_index, rdma->current_addr, rdma->current_length);
2204 if (ret < 0) {
2205 return ret;
2208 if (ret == 0) {
2209 rdma->nb_sent++;
2210 trace_qemu_rdma_write_flush(rdma->nb_sent);
2213 rdma->current_length = 0;
2214 rdma->current_addr = 0;
2216 return 0;
2219 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2220 uint64_t offset, uint64_t len)
2222 RDMALocalBlock *block;
2223 uint8_t *host_addr;
2224 uint8_t *chunk_end;
2226 if (rdma->current_index < 0) {
2227 return 0;
2230 if (rdma->current_chunk < 0) {
2231 return 0;
2234 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2235 host_addr = block->local_host_addr + (offset - block->offset);
2236 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2238 if (rdma->current_length == 0) {
2239 return 0;
2243 * Only merge into chunk sequentially.
2245 if (offset != (rdma->current_addr + rdma->current_length)) {
2246 return 0;
2249 if (offset < block->offset) {
2250 return 0;
2253 if ((offset + len) > (block->offset + block->length)) {
2254 return 0;
2257 if ((host_addr + len) > chunk_end) {
2258 return 0;
2261 return 1;
2265 * We're not actually writing here, but doing three things:
2267 * 1. Identify the chunk the buffer belongs to.
2268 * 2. If the chunk is full or the buffer doesn't belong to the current
2269 * chunk, then start a new chunk and flush() the old chunk.
2270 * 3. To keep the hardware busy, we also group chunks into batches
2271 * and only require that a batch gets acknowledged in the completion
2272 * queue instead of each individual chunk.
2274 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2275 uint64_t block_offset, uint64_t offset,
2276 uint64_t len)
2278 uint64_t current_addr = block_offset + offset;
2279 uint64_t index = rdma->current_index;
2280 uint64_t chunk = rdma->current_chunk;
2281 int ret;
2283 /* If we cannot merge it, we flush the current buffer first. */
2284 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2285 ret = qemu_rdma_write_flush(f, rdma);
2286 if (ret) {
2287 return ret;
2289 rdma->current_length = 0;
2290 rdma->current_addr = current_addr;
2292 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2293 offset, len, &index, &chunk);
2294 if (ret) {
2295 error_report("ram block search failed");
2296 return ret;
2298 rdma->current_index = index;
2299 rdma->current_chunk = chunk;
2302 /* merge it */
2303 rdma->current_length += len;
2305 /* flush it if buffer is too large */
2306 if (rdma->current_length >= RDMA_MERGE_MAX) {
2307 return qemu_rdma_write_flush(f, rdma);
2310 return 0;
2313 static void qemu_rdma_cleanup(RDMAContext *rdma)
2315 int idx;
2317 if (rdma->cm_id && rdma->connected) {
2318 if ((rdma->error_state ||
2319 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2320 !rdma->received_error) {
2321 RDMAControlHeader head = { .len = 0,
2322 .type = RDMA_CONTROL_ERROR,
2323 .repeat = 1,
2325 error_report("Early error. Sending error.");
2326 qemu_rdma_post_send_control(rdma, NULL, &head);
2329 rdma_disconnect(rdma->cm_id);
2330 trace_qemu_rdma_cleanup_disconnect();
2331 rdma->connected = false;
2334 if (rdma->channel) {
2335 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2337 g_free(rdma->dest_blocks);
2338 rdma->dest_blocks = NULL;
2340 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2341 if (rdma->wr_data[idx].control_mr) {
2342 rdma->total_registrations--;
2343 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2345 rdma->wr_data[idx].control_mr = NULL;
2348 if (rdma->local_ram_blocks.block) {
2349 while (rdma->local_ram_blocks.nb_blocks) {
2350 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2354 if (rdma->qp) {
2355 rdma_destroy_qp(rdma->cm_id);
2356 rdma->qp = NULL;
2358 if (rdma->cq) {
2359 ibv_destroy_cq(rdma->cq);
2360 rdma->cq = NULL;
2362 if (rdma->comp_channel) {
2363 ibv_destroy_comp_channel(rdma->comp_channel);
2364 rdma->comp_channel = NULL;
2366 if (rdma->pd) {
2367 ibv_dealloc_pd(rdma->pd);
2368 rdma->pd = NULL;
2370 if (rdma->cm_id) {
2371 rdma_destroy_id(rdma->cm_id);
2372 rdma->cm_id = NULL;
2375 /* the destination side, listen_id and channel is shared */
2376 if (rdma->listen_id) {
2377 if (!rdma->is_return_path) {
2378 rdma_destroy_id(rdma->listen_id);
2380 rdma->listen_id = NULL;
2382 if (rdma->channel) {
2383 if (!rdma->is_return_path) {
2384 rdma_destroy_event_channel(rdma->channel);
2386 rdma->channel = NULL;
2390 if (rdma->channel) {
2391 rdma_destroy_event_channel(rdma->channel);
2392 rdma->channel = NULL;
2394 g_free(rdma->host);
2395 rdma->host = NULL;
2399 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2401 int ret, idx;
2402 Error *local_err = NULL, **temp = &local_err;
2405 * Will be validated against destination's actual capabilities
2406 * after the connect() completes.
2408 rdma->pin_all = pin_all;
2410 ret = qemu_rdma_resolve_host(rdma, temp);
2411 if (ret) {
2412 goto err_rdma_source_init;
2415 ret = qemu_rdma_alloc_pd_cq(rdma);
2416 if (ret) {
2417 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2418 " limits may be too low. Please check $ ulimit -a # and "
2419 "search for 'ulimit -l' in the output");
2420 goto err_rdma_source_init;
2423 ret = qemu_rdma_alloc_qp(rdma);
2424 if (ret) {
2425 ERROR(temp, "rdma migration: error allocating qp!");
2426 goto err_rdma_source_init;
2429 ret = qemu_rdma_init_ram_blocks(rdma);
2430 if (ret) {
2431 ERROR(temp, "rdma migration: error initializing ram blocks!");
2432 goto err_rdma_source_init;
2435 /* Build the hash that maps from offset to RAMBlock */
2436 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2437 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2438 g_hash_table_insert(rdma->blockmap,
2439 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2440 &rdma->local_ram_blocks.block[idx]);
2443 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2444 ret = qemu_rdma_reg_control(rdma, idx);
2445 if (ret) {
2446 ERROR(temp, "rdma migration: error registering %d control!",
2447 idx);
2448 goto err_rdma_source_init;
2452 return 0;
2454 err_rdma_source_init:
2455 error_propagate(errp, local_err);
2456 qemu_rdma_cleanup(rdma);
2457 return -1;
2460 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2462 RDMACapabilities cap = {
2463 .version = RDMA_CONTROL_VERSION_CURRENT,
2464 .flags = 0,
2466 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2467 .retry_count = 5,
2468 .private_data = &cap,
2469 .private_data_len = sizeof(cap),
2471 struct rdma_cm_event *cm_event;
2472 int ret;
2475 * Only negotiate the capability with destination if the user
2476 * on the source first requested the capability.
2478 if (rdma->pin_all) {
2479 trace_qemu_rdma_connect_pin_all_requested();
2480 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2483 caps_to_network(&cap);
2485 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2486 if (ret) {
2487 ERROR(errp, "posting second control recv");
2488 goto err_rdma_source_connect;
2491 ret = rdma_connect(rdma->cm_id, &conn_param);
2492 if (ret) {
2493 perror("rdma_connect");
2494 ERROR(errp, "connecting to destination!");
2495 goto err_rdma_source_connect;
2498 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2499 if (ret) {
2500 perror("rdma_get_cm_event after rdma_connect");
2501 ERROR(errp, "connecting to destination!");
2502 goto err_rdma_source_connect;
2505 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2506 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2507 ERROR(errp, "connecting to destination!");
2508 rdma_ack_cm_event(cm_event);
2509 goto err_rdma_source_connect;
2511 rdma->connected = true;
2513 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2514 network_to_caps(&cap);
2517 * Verify that the *requested* capabilities are supported by the destination
2518 * and disable them otherwise.
2520 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2521 ERROR(errp, "Server cannot support pinning all memory. "
2522 "Will register memory dynamically.");
2523 rdma->pin_all = false;
2526 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2528 rdma_ack_cm_event(cm_event);
2530 rdma->control_ready_expected = 1;
2531 rdma->nb_sent = 0;
2532 return 0;
2534 err_rdma_source_connect:
2535 qemu_rdma_cleanup(rdma);
2536 return -1;
2539 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2541 int ret, idx;
2542 struct rdma_cm_id *listen_id;
2543 char ip[40] = "unknown";
2544 struct rdma_addrinfo *res, *e;
2545 char port_str[16];
2547 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2548 rdma->wr_data[idx].control_len = 0;
2549 rdma->wr_data[idx].control_curr = NULL;
2552 if (!rdma->host || !rdma->host[0]) {
2553 ERROR(errp, "RDMA host is not set!");
2554 rdma->error_state = -EINVAL;
2555 return -1;
2557 /* create CM channel */
2558 rdma->channel = rdma_create_event_channel();
2559 if (!rdma->channel) {
2560 ERROR(errp, "could not create rdma event channel");
2561 rdma->error_state = -EINVAL;
2562 return -1;
2565 /* create CM id */
2566 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2567 if (ret) {
2568 ERROR(errp, "could not create cm_id!");
2569 goto err_dest_init_create_listen_id;
2572 snprintf(port_str, 16, "%d", rdma->port);
2573 port_str[15] = '\0';
2575 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2576 if (ret < 0) {
2577 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2578 goto err_dest_init_bind_addr;
2581 for (e = res; e != NULL; e = e->ai_next) {
2582 inet_ntop(e->ai_family,
2583 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2584 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2585 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2586 if (ret) {
2587 continue;
2589 if (e->ai_family == AF_INET6) {
2590 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2591 if (ret) {
2592 continue;
2595 break;
2598 rdma_freeaddrinfo(res);
2599 if (!e) {
2600 ERROR(errp, "Error: could not rdma_bind_addr!");
2601 goto err_dest_init_bind_addr;
2604 rdma->listen_id = listen_id;
2605 qemu_rdma_dump_gid("dest_init", listen_id);
2606 return 0;
2608 err_dest_init_bind_addr:
2609 rdma_destroy_id(listen_id);
2610 err_dest_init_create_listen_id:
2611 rdma_destroy_event_channel(rdma->channel);
2612 rdma->channel = NULL;
2613 rdma->error_state = ret;
2614 return ret;
2618 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2619 RDMAContext *rdma)
2621 int idx;
2623 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2624 rdma_return_path->wr_data[idx].control_len = 0;
2625 rdma_return_path->wr_data[idx].control_curr = NULL;
2628 /*the CM channel and CM id is shared*/
2629 rdma_return_path->channel = rdma->channel;
2630 rdma_return_path->listen_id = rdma->listen_id;
2632 rdma->return_path = rdma_return_path;
2633 rdma_return_path->return_path = rdma;
2634 rdma_return_path->is_return_path = true;
2637 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2639 RDMAContext *rdma = NULL;
2640 InetSocketAddress *addr;
2642 if (host_port) {
2643 rdma = g_new0(RDMAContext, 1);
2644 rdma->current_index = -1;
2645 rdma->current_chunk = -1;
2647 addr = g_new(InetSocketAddress, 1);
2648 if (!inet_parse(addr, host_port, NULL)) {
2649 rdma->port = atoi(addr->port);
2650 rdma->host = g_strdup(addr->host);
2651 } else {
2652 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2653 g_free(rdma);
2654 rdma = NULL;
2657 qapi_free_InetSocketAddress(addr);
2660 return rdma;
2664 * QEMUFile interface to the control channel.
2665 * SEND messages for control only.
2666 * VM's ram is handled with regular RDMA messages.
2668 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2669 const struct iovec *iov,
2670 size_t niov,
2671 int *fds,
2672 size_t nfds,
2673 Error **errp)
2675 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2676 QEMUFile *f = rioc->file;
2677 RDMAContext *rdma;
2678 int ret;
2679 ssize_t done = 0;
2680 size_t i;
2681 size_t len = 0;
2683 RCU_READ_LOCK_GUARD();
2684 rdma = qatomic_rcu_read(&rioc->rdmaout);
2686 if (!rdma) {
2687 return -EIO;
2690 CHECK_ERROR_STATE();
2693 * Push out any writes that
2694 * we're queued up for VM's ram.
2696 ret = qemu_rdma_write_flush(f, rdma);
2697 if (ret < 0) {
2698 rdma->error_state = ret;
2699 return ret;
2702 for (i = 0; i < niov; i++) {
2703 size_t remaining = iov[i].iov_len;
2704 uint8_t * data = (void *)iov[i].iov_base;
2705 while (remaining) {
2706 RDMAControlHeader head;
2708 len = MIN(remaining, RDMA_SEND_INCREMENT);
2709 remaining -= len;
2711 head.len = len;
2712 head.type = RDMA_CONTROL_QEMU_FILE;
2714 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2716 if (ret < 0) {
2717 rdma->error_state = ret;
2718 return ret;
2721 data += len;
2722 done += len;
2726 return done;
2729 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2730 size_t size, int idx)
2732 size_t len = 0;
2734 if (rdma->wr_data[idx].control_len) {
2735 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2737 len = MIN(size, rdma->wr_data[idx].control_len);
2738 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2739 rdma->wr_data[idx].control_curr += len;
2740 rdma->wr_data[idx].control_len -= len;
2743 return len;
2747 * QEMUFile interface to the control channel.
2748 * RDMA links don't use bytestreams, so we have to
2749 * return bytes to QEMUFile opportunistically.
2751 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2752 const struct iovec *iov,
2753 size_t niov,
2754 int **fds,
2755 size_t *nfds,
2756 Error **errp)
2758 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2759 RDMAContext *rdma;
2760 RDMAControlHeader head;
2761 int ret = 0;
2762 ssize_t i;
2763 size_t done = 0;
2765 RCU_READ_LOCK_GUARD();
2766 rdma = qatomic_rcu_read(&rioc->rdmain);
2768 if (!rdma) {
2769 return -EIO;
2772 CHECK_ERROR_STATE();
2774 for (i = 0; i < niov; i++) {
2775 size_t want = iov[i].iov_len;
2776 uint8_t *data = (void *)iov[i].iov_base;
2779 * First, we hold on to the last SEND message we
2780 * were given and dish out the bytes until we run
2781 * out of bytes.
2783 ret = qemu_rdma_fill(rdma, data, want, 0);
2784 done += ret;
2785 want -= ret;
2786 /* Got what we needed, so go to next iovec */
2787 if (want == 0) {
2788 continue;
2791 /* If we got any data so far, then don't wait
2792 * for more, just return what we have */
2793 if (done > 0) {
2794 break;
2798 /* We've got nothing at all, so lets wait for
2799 * more to arrive
2801 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2803 if (ret < 0) {
2804 rdma->error_state = ret;
2805 return ret;
2809 * SEND was received with new bytes, now try again.
2811 ret = qemu_rdma_fill(rdma, data, want, 0);
2812 done += ret;
2813 want -= ret;
2815 /* Still didn't get enough, so lets just return */
2816 if (want) {
2817 if (done == 0) {
2818 return QIO_CHANNEL_ERR_BLOCK;
2819 } else {
2820 break;
2824 return done;
2828 * Block until all the outstanding chunks have been delivered by the hardware.
2830 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2832 int ret;
2834 if (qemu_rdma_write_flush(f, rdma) < 0) {
2835 return -EIO;
2838 while (rdma->nb_sent) {
2839 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2840 if (ret < 0) {
2841 error_report("rdma migration: complete polling error!");
2842 return -EIO;
2846 qemu_rdma_unregister_waiting(rdma);
2848 return 0;
2852 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2853 bool blocking,
2854 Error **errp)
2856 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2857 /* XXX we should make readv/writev actually honour this :-) */
2858 rioc->blocking = blocking;
2859 return 0;
2863 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2864 struct QIOChannelRDMASource {
2865 GSource parent;
2866 QIOChannelRDMA *rioc;
2867 GIOCondition condition;
2870 static gboolean
2871 qio_channel_rdma_source_prepare(GSource *source,
2872 gint *timeout)
2874 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2875 RDMAContext *rdma;
2876 GIOCondition cond = 0;
2877 *timeout = -1;
2879 RCU_READ_LOCK_GUARD();
2880 if (rsource->condition == G_IO_IN) {
2881 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2882 } else {
2883 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2886 if (!rdma) {
2887 error_report("RDMAContext is NULL when prepare Gsource");
2888 return FALSE;
2891 if (rdma->wr_data[0].control_len) {
2892 cond |= G_IO_IN;
2894 cond |= G_IO_OUT;
2896 return cond & rsource->condition;
2899 static gboolean
2900 qio_channel_rdma_source_check(GSource *source)
2902 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2903 RDMAContext *rdma;
2904 GIOCondition cond = 0;
2906 RCU_READ_LOCK_GUARD();
2907 if (rsource->condition == G_IO_IN) {
2908 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2909 } else {
2910 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2913 if (!rdma) {
2914 error_report("RDMAContext is NULL when check Gsource");
2915 return FALSE;
2918 if (rdma->wr_data[0].control_len) {
2919 cond |= G_IO_IN;
2921 cond |= G_IO_OUT;
2923 return cond & rsource->condition;
2926 static gboolean
2927 qio_channel_rdma_source_dispatch(GSource *source,
2928 GSourceFunc callback,
2929 gpointer user_data)
2931 QIOChannelFunc func = (QIOChannelFunc)callback;
2932 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2933 RDMAContext *rdma;
2934 GIOCondition cond = 0;
2936 RCU_READ_LOCK_GUARD();
2937 if (rsource->condition == G_IO_IN) {
2938 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2939 } else {
2940 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2943 if (!rdma) {
2944 error_report("RDMAContext is NULL when dispatch Gsource");
2945 return FALSE;
2948 if (rdma->wr_data[0].control_len) {
2949 cond |= G_IO_IN;
2951 cond |= G_IO_OUT;
2953 return (*func)(QIO_CHANNEL(rsource->rioc),
2954 (cond & rsource->condition),
2955 user_data);
2958 static void
2959 qio_channel_rdma_source_finalize(GSource *source)
2961 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2963 object_unref(OBJECT(ssource->rioc));
2966 GSourceFuncs qio_channel_rdma_source_funcs = {
2967 qio_channel_rdma_source_prepare,
2968 qio_channel_rdma_source_check,
2969 qio_channel_rdma_source_dispatch,
2970 qio_channel_rdma_source_finalize
2973 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2974 GIOCondition condition)
2976 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2977 QIOChannelRDMASource *ssource;
2978 GSource *source;
2980 source = g_source_new(&qio_channel_rdma_source_funcs,
2981 sizeof(QIOChannelRDMASource));
2982 ssource = (QIOChannelRDMASource *)source;
2984 ssource->rioc = rioc;
2985 object_ref(OBJECT(rioc));
2987 ssource->condition = condition;
2989 return source;
2992 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
2993 AioContext *ctx,
2994 IOHandler *io_read,
2995 IOHandler *io_write,
2996 void *opaque)
2998 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2999 if (io_read) {
3000 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3001 false, io_read, io_write, NULL, opaque);
3002 } else {
3003 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3004 false, io_read, io_write, NULL, opaque);
3008 struct rdma_close_rcu {
3009 struct rcu_head rcu;
3010 RDMAContext *rdmain;
3011 RDMAContext *rdmaout;
3014 /* callback from qio_channel_rdma_close via call_rcu */
3015 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3017 if (rcu->rdmain) {
3018 qemu_rdma_cleanup(rcu->rdmain);
3021 if (rcu->rdmaout) {
3022 qemu_rdma_cleanup(rcu->rdmaout);
3025 g_free(rcu->rdmain);
3026 g_free(rcu->rdmaout);
3027 g_free(rcu);
3030 static int qio_channel_rdma_close(QIOChannel *ioc,
3031 Error **errp)
3033 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3034 RDMAContext *rdmain, *rdmaout;
3035 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3037 trace_qemu_rdma_close();
3039 rdmain = rioc->rdmain;
3040 if (rdmain) {
3041 qatomic_rcu_set(&rioc->rdmain, NULL);
3044 rdmaout = rioc->rdmaout;
3045 if (rdmaout) {
3046 qatomic_rcu_set(&rioc->rdmaout, NULL);
3049 rcu->rdmain = rdmain;
3050 rcu->rdmaout = rdmaout;
3051 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3053 return 0;
3056 static int
3057 qio_channel_rdma_shutdown(QIOChannel *ioc,
3058 QIOChannelShutdown how,
3059 Error **errp)
3061 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3062 RDMAContext *rdmain, *rdmaout;
3064 RCU_READ_LOCK_GUARD();
3066 rdmain = qatomic_rcu_read(&rioc->rdmain);
3067 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3069 switch (how) {
3070 case QIO_CHANNEL_SHUTDOWN_READ:
3071 if (rdmain) {
3072 rdmain->error_state = -1;
3074 break;
3075 case QIO_CHANNEL_SHUTDOWN_WRITE:
3076 if (rdmaout) {
3077 rdmaout->error_state = -1;
3079 break;
3080 case QIO_CHANNEL_SHUTDOWN_BOTH:
3081 default:
3082 if (rdmain) {
3083 rdmain->error_state = -1;
3085 if (rdmaout) {
3086 rdmaout->error_state = -1;
3088 break;
3091 return 0;
3095 * Parameters:
3096 * @offset == 0 :
3097 * This means that 'block_offset' is a full virtual address that does not
3098 * belong to a RAMBlock of the virtual machine and instead
3099 * represents a private malloc'd memory area that the caller wishes to
3100 * transfer.
3102 * @offset != 0 :
3103 * Offset is an offset to be added to block_offset and used
3104 * to also lookup the corresponding RAMBlock.
3106 * @size > 0 :
3107 * Initiate an transfer this size.
3109 * @size == 0 :
3110 * A 'hint' or 'advice' that means that we wish to speculatively
3111 * and asynchronously unregister this memory. In this case, there is no
3112 * guarantee that the unregister will actually happen, for example,
3113 * if the memory is being actively transmitted. Additionally, the memory
3114 * may be re-registered at any future time if a write within the same
3115 * chunk was requested again, even if you attempted to unregister it
3116 * here.
3118 * @size < 0 : TODO, not yet supported
3119 * Unregister the memory NOW. This means that the caller does not
3120 * expect there to be any future RDMA transfers and we just want to clean
3121 * things up. This is used in case the upper layer owns the memory and
3122 * cannot wait for qemu_fclose() to occur.
3124 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3125 * sent. Usually, this will not be more than a few bytes of
3126 * the protocol because most transfers are sent asynchronously.
3128 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3129 ram_addr_t block_offset, ram_addr_t offset,
3130 size_t size, uint64_t *bytes_sent)
3132 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3133 RDMAContext *rdma;
3134 int ret;
3136 RCU_READ_LOCK_GUARD();
3137 rdma = qatomic_rcu_read(&rioc->rdmaout);
3139 if (!rdma) {
3140 return -EIO;
3143 CHECK_ERROR_STATE();
3145 if (migration_in_postcopy()) {
3146 return RAM_SAVE_CONTROL_NOT_SUPP;
3149 qemu_fflush(f);
3151 if (size > 0) {
3153 * Add this page to the current 'chunk'. If the chunk
3154 * is full, or the page doesn't belong to the current chunk,
3155 * an actual RDMA write will occur and a new chunk will be formed.
3157 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3158 if (ret < 0) {
3159 error_report("rdma migration: write error! %d", ret);
3160 goto err;
3164 * We always return 1 bytes because the RDMA
3165 * protocol is completely asynchronous. We do not yet know
3166 * whether an identified chunk is zero or not because we're
3167 * waiting for other pages to potentially be merged with
3168 * the current chunk. So, we have to call qemu_update_position()
3169 * later on when the actual write occurs.
3171 if (bytes_sent) {
3172 *bytes_sent = 1;
3174 } else {
3175 uint64_t index, chunk;
3177 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3178 if (size < 0) {
3179 ret = qemu_rdma_drain_cq(f, rdma);
3180 if (ret < 0) {
3181 fprintf(stderr, "rdma: failed to synchronously drain"
3182 " completion queue before unregistration.\n");
3183 goto err;
3188 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3189 offset, size, &index, &chunk);
3191 if (ret) {
3192 error_report("ram block search failed");
3193 goto err;
3196 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3199 * TODO: Synchronous, guaranteed unregistration (should not occur during
3200 * fast-path). Otherwise, unregisters will process on the next call to
3201 * qemu_rdma_drain_cq()
3202 if (size < 0) {
3203 qemu_rdma_unregister_waiting(rdma);
3209 * Drain the Completion Queue if possible, but do not block,
3210 * just poll.
3212 * If nothing to poll, the end of the iteration will do this
3213 * again to make sure we don't overflow the request queue.
3215 while (1) {
3216 uint64_t wr_id, wr_id_in;
3217 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3218 if (ret < 0) {
3219 error_report("rdma migration: polling error! %d", ret);
3220 goto err;
3223 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3225 if (wr_id == RDMA_WRID_NONE) {
3226 break;
3230 return RAM_SAVE_CONTROL_DELAYED;
3231 err:
3232 rdma->error_state = ret;
3233 return ret;
3236 static void rdma_accept_incoming_migration(void *opaque);
3238 static void rdma_cm_poll_handler(void *opaque)
3240 RDMAContext *rdma = opaque;
3241 int ret;
3242 struct rdma_cm_event *cm_event;
3243 MigrationIncomingState *mis = migration_incoming_get_current();
3245 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3246 if (ret) {
3247 error_report("get_cm_event failed %d", errno);
3248 return;
3250 rdma_ack_cm_event(cm_event);
3252 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3253 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3254 if (!rdma->error_state &&
3255 migration_incoming_get_current()->state !=
3256 MIGRATION_STATUS_COMPLETED) {
3257 error_report("receive cm event, cm event is %d", cm_event->event);
3258 rdma->error_state = -EPIPE;
3259 if (rdma->return_path) {
3260 rdma->return_path->error_state = -EPIPE;
3264 if (mis->migration_incoming_co) {
3265 qemu_coroutine_enter(mis->migration_incoming_co);
3267 return;
3271 static int qemu_rdma_accept(RDMAContext *rdma)
3273 RDMACapabilities cap;
3274 struct rdma_conn_param conn_param = {
3275 .responder_resources = 2,
3276 .private_data = &cap,
3277 .private_data_len = sizeof(cap),
3279 struct rdma_cm_event *cm_event;
3280 struct ibv_context *verbs;
3281 int ret = -EINVAL;
3282 int idx;
3284 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3285 if (ret) {
3286 goto err_rdma_dest_wait;
3289 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3290 rdma_ack_cm_event(cm_event);
3291 goto err_rdma_dest_wait;
3294 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3296 network_to_caps(&cap);
3298 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3299 error_report("Unknown source RDMA version: %d, bailing...",
3300 cap.version);
3301 rdma_ack_cm_event(cm_event);
3302 goto err_rdma_dest_wait;
3306 * Respond with only the capabilities this version of QEMU knows about.
3308 cap.flags &= known_capabilities;
3311 * Enable the ones that we do know about.
3312 * Add other checks here as new ones are introduced.
3314 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3315 rdma->pin_all = true;
3318 rdma->cm_id = cm_event->id;
3319 verbs = cm_event->id->verbs;
3321 rdma_ack_cm_event(cm_event);
3323 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3325 caps_to_network(&cap);
3327 trace_qemu_rdma_accept_pin_verbsc(verbs);
3329 if (!rdma->verbs) {
3330 rdma->verbs = verbs;
3331 } else if (rdma->verbs != verbs) {
3332 error_report("ibv context not matching %p, %p!", rdma->verbs,
3333 verbs);
3334 goto err_rdma_dest_wait;
3337 qemu_rdma_dump_id("dest_init", verbs);
3339 ret = qemu_rdma_alloc_pd_cq(rdma);
3340 if (ret) {
3341 error_report("rdma migration: error allocating pd and cq!");
3342 goto err_rdma_dest_wait;
3345 ret = qemu_rdma_alloc_qp(rdma);
3346 if (ret) {
3347 error_report("rdma migration: error allocating qp!");
3348 goto err_rdma_dest_wait;
3351 ret = qemu_rdma_init_ram_blocks(rdma);
3352 if (ret) {
3353 error_report("rdma migration: error initializing ram blocks!");
3354 goto err_rdma_dest_wait;
3357 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3358 ret = qemu_rdma_reg_control(rdma, idx);
3359 if (ret) {
3360 error_report("rdma: error registering %d control", idx);
3361 goto err_rdma_dest_wait;
3365 /* Accept the second connection request for return path */
3366 if (migrate_postcopy() && !rdma->is_return_path) {
3367 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3368 NULL,
3369 (void *)(intptr_t)rdma->return_path);
3370 } else {
3371 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3372 NULL, rdma);
3375 ret = rdma_accept(rdma->cm_id, &conn_param);
3376 if (ret) {
3377 error_report("rdma_accept returns %d", ret);
3378 goto err_rdma_dest_wait;
3381 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3382 if (ret) {
3383 error_report("rdma_accept get_cm_event failed %d", ret);
3384 goto err_rdma_dest_wait;
3387 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3388 error_report("rdma_accept not event established");
3389 rdma_ack_cm_event(cm_event);
3390 goto err_rdma_dest_wait;
3393 rdma_ack_cm_event(cm_event);
3394 rdma->connected = true;
3396 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3397 if (ret) {
3398 error_report("rdma migration: error posting second control recv");
3399 goto err_rdma_dest_wait;
3402 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3404 return 0;
3406 err_rdma_dest_wait:
3407 rdma->error_state = ret;
3408 qemu_rdma_cleanup(rdma);
3409 return ret;
3412 static int dest_ram_sort_func(const void *a, const void *b)
3414 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3415 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3417 return (a_index < b_index) ? -1 : (a_index != b_index);
3421 * During each iteration of the migration, we listen for instructions
3422 * by the source VM to perform dynamic page registrations before they
3423 * can perform RDMA operations.
3425 * We respond with the 'rkey'.
3427 * Keep doing this until the source tells us to stop.
3429 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3431 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3432 .type = RDMA_CONTROL_REGISTER_RESULT,
3433 .repeat = 0,
3435 RDMAControlHeader unreg_resp = { .len = 0,
3436 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3437 .repeat = 0,
3439 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3440 .repeat = 1 };
3441 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3442 RDMAContext *rdma;
3443 RDMALocalBlocks *local;
3444 RDMAControlHeader head;
3445 RDMARegister *reg, *registers;
3446 RDMACompress *comp;
3447 RDMARegisterResult *reg_result;
3448 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3449 RDMALocalBlock *block;
3450 void *host_addr;
3451 int ret = 0;
3452 int idx = 0;
3453 int count = 0;
3454 int i = 0;
3456 RCU_READ_LOCK_GUARD();
3457 rdma = qatomic_rcu_read(&rioc->rdmain);
3459 if (!rdma) {
3460 return -EIO;
3463 CHECK_ERROR_STATE();
3465 local = &rdma->local_ram_blocks;
3466 do {
3467 trace_qemu_rdma_registration_handle_wait();
3469 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3471 if (ret < 0) {
3472 break;
3475 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3476 error_report("rdma: Too many requests in this message (%d)."
3477 "Bailing.", head.repeat);
3478 ret = -EIO;
3479 break;
3482 switch (head.type) {
3483 case RDMA_CONTROL_COMPRESS:
3484 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3485 network_to_compress(comp);
3487 trace_qemu_rdma_registration_handle_compress(comp->length,
3488 comp->block_idx,
3489 comp->offset);
3490 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3491 error_report("rdma: 'compress' bad block index %u (vs %d)",
3492 (unsigned int)comp->block_idx,
3493 rdma->local_ram_blocks.nb_blocks);
3494 ret = -EIO;
3495 goto out;
3497 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3499 host_addr = block->local_host_addr +
3500 (comp->offset - block->offset);
3502 ram_handle_compressed(host_addr, comp->value, comp->length);
3503 break;
3505 case RDMA_CONTROL_REGISTER_FINISHED:
3506 trace_qemu_rdma_registration_handle_finished();
3507 goto out;
3509 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3510 trace_qemu_rdma_registration_handle_ram_blocks();
3512 /* Sort our local RAM Block list so it's the same as the source,
3513 * we can do this since we've filled in a src_index in the list
3514 * as we received the RAMBlock list earlier.
3516 qsort(rdma->local_ram_blocks.block,
3517 rdma->local_ram_blocks.nb_blocks,
3518 sizeof(RDMALocalBlock), dest_ram_sort_func);
3519 for (i = 0; i < local->nb_blocks; i++) {
3520 local->block[i].index = i;
3523 if (rdma->pin_all) {
3524 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3525 if (ret) {
3526 error_report("rdma migration: error dest "
3527 "registering ram blocks");
3528 goto out;
3533 * Dest uses this to prepare to transmit the RAMBlock descriptions
3534 * to the source VM after connection setup.
3535 * Both sides use the "remote" structure to communicate and update
3536 * their "local" descriptions with what was sent.
3538 for (i = 0; i < local->nb_blocks; i++) {
3539 rdma->dest_blocks[i].remote_host_addr =
3540 (uintptr_t)(local->block[i].local_host_addr);
3542 if (rdma->pin_all) {
3543 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3546 rdma->dest_blocks[i].offset = local->block[i].offset;
3547 rdma->dest_blocks[i].length = local->block[i].length;
3549 dest_block_to_network(&rdma->dest_blocks[i]);
3550 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3551 local->block[i].block_name,
3552 local->block[i].offset,
3553 local->block[i].length,
3554 local->block[i].local_host_addr,
3555 local->block[i].src_index);
3558 blocks.len = rdma->local_ram_blocks.nb_blocks
3559 * sizeof(RDMADestBlock);
3562 ret = qemu_rdma_post_send_control(rdma,
3563 (uint8_t *) rdma->dest_blocks, &blocks);
3565 if (ret < 0) {
3566 error_report("rdma migration: error sending remote info");
3567 goto out;
3570 break;
3571 case RDMA_CONTROL_REGISTER_REQUEST:
3572 trace_qemu_rdma_registration_handle_register(head.repeat);
3574 reg_resp.repeat = head.repeat;
3575 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3577 for (count = 0; count < head.repeat; count++) {
3578 uint64_t chunk;
3579 uint8_t *chunk_start, *chunk_end;
3581 reg = &registers[count];
3582 network_to_register(reg);
3584 reg_result = &results[count];
3586 trace_qemu_rdma_registration_handle_register_loop(count,
3587 reg->current_index, reg->key.current_addr, reg->chunks);
3589 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3590 error_report("rdma: 'register' bad block index %u (vs %d)",
3591 (unsigned int)reg->current_index,
3592 rdma->local_ram_blocks.nb_blocks);
3593 ret = -ENOENT;
3594 goto out;
3596 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3597 if (block->is_ram_block) {
3598 if (block->offset > reg->key.current_addr) {
3599 error_report("rdma: bad register address for block %s"
3600 " offset: %" PRIx64 " current_addr: %" PRIx64,
3601 block->block_name, block->offset,
3602 reg->key.current_addr);
3603 ret = -ERANGE;
3604 goto out;
3606 host_addr = (block->local_host_addr +
3607 (reg->key.current_addr - block->offset));
3608 chunk = ram_chunk_index(block->local_host_addr,
3609 (uint8_t *) host_addr);
3610 } else {
3611 chunk = reg->key.chunk;
3612 host_addr = block->local_host_addr +
3613 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3614 /* Check for particularly bad chunk value */
3615 if (host_addr < (void *)block->local_host_addr) {
3616 error_report("rdma: bad chunk for block %s"
3617 " chunk: %" PRIx64,
3618 block->block_name, reg->key.chunk);
3619 ret = -ERANGE;
3620 goto out;
3623 chunk_start = ram_chunk_start(block, chunk);
3624 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3625 /* avoid "-Waddress-of-packed-member" warning */
3626 uint32_t tmp_rkey = 0;
3627 if (qemu_rdma_register_and_get_keys(rdma, block,
3628 (uintptr_t)host_addr, NULL, &tmp_rkey,
3629 chunk, chunk_start, chunk_end)) {
3630 error_report("cannot get rkey");
3631 ret = -EINVAL;
3632 goto out;
3634 reg_result->rkey = tmp_rkey;
3636 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3638 trace_qemu_rdma_registration_handle_register_rkey(
3639 reg_result->rkey);
3641 result_to_network(reg_result);
3644 ret = qemu_rdma_post_send_control(rdma,
3645 (uint8_t *) results, &reg_resp);
3647 if (ret < 0) {
3648 error_report("Failed to send control buffer");
3649 goto out;
3651 break;
3652 case RDMA_CONTROL_UNREGISTER_REQUEST:
3653 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3654 unreg_resp.repeat = head.repeat;
3655 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3657 for (count = 0; count < head.repeat; count++) {
3658 reg = &registers[count];
3659 network_to_register(reg);
3661 trace_qemu_rdma_registration_handle_unregister_loop(count,
3662 reg->current_index, reg->key.chunk);
3664 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3666 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3667 block->pmr[reg->key.chunk] = NULL;
3669 if (ret != 0) {
3670 perror("rdma unregistration chunk failed");
3671 ret = -ret;
3672 goto out;
3675 rdma->total_registrations--;
3677 trace_qemu_rdma_registration_handle_unregister_success(
3678 reg->key.chunk);
3681 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3683 if (ret < 0) {
3684 error_report("Failed to send control buffer");
3685 goto out;
3687 break;
3688 case RDMA_CONTROL_REGISTER_RESULT:
3689 error_report("Invalid RESULT message at dest.");
3690 ret = -EIO;
3691 goto out;
3692 default:
3693 error_report("Unknown control message %s", control_desc(head.type));
3694 ret = -EIO;
3695 goto out;
3697 } while (1);
3698 out:
3699 if (ret < 0) {
3700 rdma->error_state = ret;
3702 return ret;
3705 /* Destination:
3706 * Called via a ram_control_load_hook during the initial RAM load section which
3707 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3708 * on the source.
3709 * We've already built our local RAMBlock list, but not yet sent the list to
3710 * the source.
3712 static int
3713 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3715 RDMAContext *rdma;
3716 int curr;
3717 int found = -1;
3719 RCU_READ_LOCK_GUARD();
3720 rdma = qatomic_rcu_read(&rioc->rdmain);
3722 if (!rdma) {
3723 return -EIO;
3726 /* Find the matching RAMBlock in our local list */
3727 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3728 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3729 found = curr;
3730 break;
3734 if (found == -1) {
3735 error_report("RAMBlock '%s' not found on destination", name);
3736 return -ENOENT;
3739 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3740 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3741 rdma->next_src_index++;
3743 return 0;
3746 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3748 switch (flags) {
3749 case RAM_CONTROL_BLOCK_REG:
3750 return rdma_block_notification_handle(opaque, data);
3752 case RAM_CONTROL_HOOK:
3753 return qemu_rdma_registration_handle(f, opaque);
3755 default:
3756 /* Shouldn't be called with any other values */
3757 abort();
3761 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3762 uint64_t flags, void *data)
3764 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3765 RDMAContext *rdma;
3767 RCU_READ_LOCK_GUARD();
3768 rdma = qatomic_rcu_read(&rioc->rdmaout);
3769 if (!rdma) {
3770 return -EIO;
3773 CHECK_ERROR_STATE();
3775 if (migration_in_postcopy()) {
3776 return 0;
3779 trace_qemu_rdma_registration_start(flags);
3780 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3781 qemu_fflush(f);
3783 return 0;
3787 * Inform dest that dynamic registrations are done for now.
3788 * First, flush writes, if any.
3790 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3791 uint64_t flags, void *data)
3793 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3794 RDMAContext *rdma;
3795 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3796 int ret = 0;
3798 RCU_READ_LOCK_GUARD();
3799 rdma = qatomic_rcu_read(&rioc->rdmaout);
3800 if (!rdma) {
3801 return -EIO;
3804 CHECK_ERROR_STATE();
3806 if (migration_in_postcopy()) {
3807 return 0;
3810 qemu_fflush(f);
3811 ret = qemu_rdma_drain_cq(f, rdma);
3813 if (ret < 0) {
3814 goto err;
3817 if (flags == RAM_CONTROL_SETUP) {
3818 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3819 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3820 int reg_result_idx, i, nb_dest_blocks;
3822 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3823 trace_qemu_rdma_registration_stop_ram();
3826 * Make sure that we parallelize the pinning on both sides.
3827 * For very large guests, doing this serially takes a really
3828 * long time, so we have to 'interleave' the pinning locally
3829 * with the control messages by performing the pinning on this
3830 * side before we receive the control response from the other
3831 * side that the pinning has completed.
3833 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3834 &reg_result_idx, rdma->pin_all ?
3835 qemu_rdma_reg_whole_ram_blocks : NULL);
3836 if (ret < 0) {
3837 fprintf(stderr, "receiving remote info!");
3838 return ret;
3841 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3844 * The protocol uses two different sets of rkeys (mutually exclusive):
3845 * 1. One key to represent the virtual address of the entire ram block.
3846 * (dynamic chunk registration disabled - pin everything with one rkey.)
3847 * 2. One to represent individual chunks within a ram block.
3848 * (dynamic chunk registration enabled - pin individual chunks.)
3850 * Once the capability is successfully negotiated, the destination transmits
3851 * the keys to use (or sends them later) including the virtual addresses
3852 * and then propagates the remote ram block descriptions to his local copy.
3855 if (local->nb_blocks != nb_dest_blocks) {
3856 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3857 "Your QEMU command line parameters are probably "
3858 "not identical on both the source and destination.",
3859 local->nb_blocks, nb_dest_blocks);
3860 rdma->error_state = -EINVAL;
3861 return -EINVAL;
3864 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3865 memcpy(rdma->dest_blocks,
3866 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3867 for (i = 0; i < nb_dest_blocks; i++) {
3868 network_to_dest_block(&rdma->dest_blocks[i]);
3870 /* We require that the blocks are in the same order */
3871 if (rdma->dest_blocks[i].length != local->block[i].length) {
3872 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3873 "vs %" PRIu64, local->block[i].block_name, i,
3874 local->block[i].length,
3875 rdma->dest_blocks[i].length);
3876 rdma->error_state = -EINVAL;
3877 return -EINVAL;
3879 local->block[i].remote_host_addr =
3880 rdma->dest_blocks[i].remote_host_addr;
3881 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3885 trace_qemu_rdma_registration_stop(flags);
3887 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3888 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3890 if (ret < 0) {
3891 goto err;
3894 return 0;
3895 err:
3896 rdma->error_state = ret;
3897 return ret;
3900 static const QEMUFileHooks rdma_read_hooks = {
3901 .hook_ram_load = rdma_load_hook,
3904 static const QEMUFileHooks rdma_write_hooks = {
3905 .before_ram_iterate = qemu_rdma_registration_start,
3906 .after_ram_iterate = qemu_rdma_registration_stop,
3907 .save_page = qemu_rdma_save_page,
3911 static void qio_channel_rdma_finalize(Object *obj)
3913 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3914 if (rioc->rdmain) {
3915 qemu_rdma_cleanup(rioc->rdmain);
3916 g_free(rioc->rdmain);
3917 rioc->rdmain = NULL;
3919 if (rioc->rdmaout) {
3920 qemu_rdma_cleanup(rioc->rdmaout);
3921 g_free(rioc->rdmaout);
3922 rioc->rdmaout = NULL;
3926 static void qio_channel_rdma_class_init(ObjectClass *klass,
3927 void *class_data G_GNUC_UNUSED)
3929 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3931 ioc_klass->io_writev = qio_channel_rdma_writev;
3932 ioc_klass->io_readv = qio_channel_rdma_readv;
3933 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3934 ioc_klass->io_close = qio_channel_rdma_close;
3935 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3936 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3937 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3940 static const TypeInfo qio_channel_rdma_info = {
3941 .parent = TYPE_QIO_CHANNEL,
3942 .name = TYPE_QIO_CHANNEL_RDMA,
3943 .instance_size = sizeof(QIOChannelRDMA),
3944 .instance_finalize = qio_channel_rdma_finalize,
3945 .class_init = qio_channel_rdma_class_init,
3948 static void qio_channel_rdma_register_types(void)
3950 type_register_static(&qio_channel_rdma_info);
3953 type_init(qio_channel_rdma_register_types);
3955 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3957 QIOChannelRDMA *rioc;
3959 if (qemu_file_mode_is_not_valid(mode)) {
3960 return NULL;
3963 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3965 if (mode[0] == 'w') {
3966 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3967 rioc->rdmaout = rdma;
3968 rioc->rdmain = rdma->return_path;
3969 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3970 } else {
3971 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3972 rioc->rdmain = rdma;
3973 rioc->rdmaout = rdma->return_path;
3974 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3977 return rioc->file;
3980 static void rdma_accept_incoming_migration(void *opaque)
3982 RDMAContext *rdma = opaque;
3983 int ret;
3984 QEMUFile *f;
3985 Error *local_err = NULL;
3987 trace_qemu_rdma_accept_incoming_migration();
3988 ret = qemu_rdma_accept(rdma);
3990 if (ret) {
3991 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
3992 return;
3995 trace_qemu_rdma_accept_incoming_migration_accepted();
3997 if (rdma->is_return_path) {
3998 return;
4001 f = qemu_fopen_rdma(rdma, "rb");
4002 if (f == NULL) {
4003 fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4004 qemu_rdma_cleanup(rdma);
4005 return;
4008 rdma->migration_started_on_destination = 1;
4009 migration_fd_process_incoming(f, &local_err);
4010 if (local_err) {
4011 error_reportf_err(local_err, "RDMA ERROR:");
4015 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4017 int ret;
4018 RDMAContext *rdma, *rdma_return_path = NULL;
4019 Error *local_err = NULL;
4021 trace_rdma_start_incoming_migration();
4023 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4024 if (ram_block_discard_is_required()) {
4025 error_setg(errp, "RDMA: cannot disable RAM discard");
4026 return;
4029 rdma = qemu_rdma_data_init(host_port, &local_err);
4030 if (rdma == NULL) {
4031 goto err;
4034 ret = qemu_rdma_dest_init(rdma, &local_err);
4036 if (ret) {
4037 goto err;
4040 trace_rdma_start_incoming_migration_after_dest_init();
4042 ret = rdma_listen(rdma->listen_id, 5);
4044 if (ret) {
4045 ERROR(errp, "listening on socket!");
4046 goto cleanup_rdma;
4049 trace_rdma_start_incoming_migration_after_rdma_listen();
4051 /* initialize the RDMAContext for return path */
4052 if (migrate_postcopy()) {
4053 rdma_return_path = qemu_rdma_data_init(host_port, &local_err);
4055 if (rdma_return_path == NULL) {
4056 goto cleanup_rdma;
4059 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
4062 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4063 NULL, (void *)(intptr_t)rdma);
4064 return;
4066 cleanup_rdma:
4067 qemu_rdma_cleanup(rdma);
4068 err:
4069 error_propagate(errp, local_err);
4070 if (rdma) {
4071 g_free(rdma->host);
4073 g_free(rdma);
4074 g_free(rdma_return_path);
4077 void rdma_start_outgoing_migration(void *opaque,
4078 const char *host_port, Error **errp)
4080 MigrationState *s = opaque;
4081 RDMAContext *rdma_return_path = NULL;
4082 RDMAContext *rdma;
4083 int ret = 0;
4085 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4086 if (ram_block_discard_is_required()) {
4087 error_setg(errp, "RDMA: cannot disable RAM discard");
4088 return;
4091 rdma = qemu_rdma_data_init(host_port, errp);
4092 if (rdma == NULL) {
4093 goto err;
4096 ret = qemu_rdma_source_init(rdma,
4097 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4099 if (ret) {
4100 goto err;
4103 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4104 ret = qemu_rdma_connect(rdma, errp);
4106 if (ret) {
4107 goto err;
4110 /* RDMA postcopy need a separate queue pair for return path */
4111 if (migrate_postcopy()) {
4112 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4114 if (rdma_return_path == NULL) {
4115 goto return_path_err;
4118 ret = qemu_rdma_source_init(rdma_return_path,
4119 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4121 if (ret) {
4122 goto return_path_err;
4125 ret = qemu_rdma_connect(rdma_return_path, errp);
4127 if (ret) {
4128 goto return_path_err;
4131 rdma->return_path = rdma_return_path;
4132 rdma_return_path->return_path = rdma;
4133 rdma_return_path->is_return_path = true;
4136 trace_rdma_start_outgoing_migration_after_rdma_connect();
4138 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4139 migrate_fd_connect(s, NULL);
4140 return;
4141 return_path_err:
4142 qemu_rdma_cleanup(rdma);
4143 err:
4144 g_free(rdma);
4145 g_free(rdma_return_path);