2 * ARM v8.5-MemTag Operations
4 * Copyright (c) 2020 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/page-protection.h"
26 #include "exec/ram_addr.h"
27 #include "exec/cpu_ldst.h"
28 #include "exec/helper-proto.h"
29 #include "hw/core/tcg-cpu-ops.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
34 static int choose_nonexcluded_tag(int tag
, int offset
, uint16_t exclude
)
36 if (exclude
== 0xffff) {
40 while (exclude
& (1 << tag
)) {
47 } while (exclude
& (1 << tag
));
48 } while (--offset
> 0);
54 * allocation_tag_mem_probe:
55 * @env: the cpu environment
56 * @ptr_mmu_idx: the addressing regime to use for the virtual address
57 * @ptr: the virtual address for which to look up tag memory
58 * @ptr_access: the access to use for the virtual address
59 * @ptr_size: the number of bytes in the normal memory access
60 * @tag_access: the access to use for the tag memory
61 * @probe: true to merely probe, never taking an exception
62 * @ra: the return address for exception handling
64 * Our tag memory is formatted as a sequence of little-endian nibbles.
65 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
66 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
67 * for the higher addr.
69 * Here, resolve the physical address from the virtual address, and return
70 * a pointer to the corresponding tag byte.
72 * If there is no tag storage corresponding to @ptr, return NULL.
74 * If the page is inaccessible for @ptr_access, or has a watchpoint, there are
76 * (1) probe = true, ra = 0 : pure probe -- we return NULL if the page is not
77 * accessible, and do not take watchpoint traps. The calling code must
78 * handle those cases in the right priority compared to MTE traps.
79 * (2) probe = false, ra = 0 : probe, no fault expected -- the caller guarantees
80 * that the page is going to be accessible. We will take watchpoint traps.
81 * (3) probe = false, ra != 0 : non-probe -- we will take both memory access
82 * traps and watchpoint traps.
83 * (probe = true, ra != 0 is invalid and will assert.)
85 static uint8_t *allocation_tag_mem_probe(CPUARMState
*env
, int ptr_mmu_idx
,
86 uint64_t ptr
, MMUAccessType ptr_access
,
87 int ptr_size
, MMUAccessType tag_access
,
88 bool probe
, uintptr_t ra
)
90 #ifdef CONFIG_USER_ONLY
91 uint64_t clean_ptr
= useronly_clean_ptr(ptr
);
92 int flags
= page_get_flags(clean_ptr
);
96 assert(!(probe
&& ra
));
98 if (!(flags
& (ptr_access
== MMU_DATA_STORE
? PAGE_WRITE_ORG
: PAGE_READ
))) {
99 cpu_loop_exit_sigsegv(env_cpu(env
), ptr
, ptr_access
,
100 !(flags
& PAGE_VALID
), ra
);
103 /* Require both MAP_ANON and PROT_MTE for the page. */
104 if (!(flags
& PAGE_ANON
) || !(flags
& PAGE_MTE
)) {
108 tags
= page_get_target_data(clean_ptr
);
110 index
= extract32(ptr
, LOG2_TAG_GRANULE
+ 1,
111 TARGET_PAGE_BITS
- LOG2_TAG_GRANULE
- 1);
114 CPUTLBEntryFull
*full
;
117 hwaddr ptr_paddr
, tag_paddr
, xlat
;
120 AddressSpace
*tag_as
;
124 * Probe the first byte of the virtual address. This raises an
125 * exception for inaccessible pages, and resolves the virtual address
126 * into the softmmu tlb.
128 * When RA == 0, this is either a pure probe or a no-fault-expected probe.
129 * Indicate to probe_access_flags no-fault, then either return NULL
130 * for the pure probe, or assert that we received a valid page for the
131 * no-fault-expected probe.
133 flags
= probe_access_full(env
, ptr
, 0, ptr_access
, ptr_mmu_idx
,
134 ra
== 0, &host
, &full
, ra
);
135 if (probe
&& (flags
& TLB_INVALID_MASK
)) {
138 assert(!(flags
& TLB_INVALID_MASK
));
140 /* If the virtual page MemAttr != Tagged, access unchecked. */
141 if (full
->extra
.arm
.pte_attrs
!= 0xf0) {
146 * If not backed by host ram, there is no tag storage: access unchecked.
147 * This is probably a guest os bug though, so log it.
149 if (unlikely(flags
& TLB_MMIO
)) {
150 qemu_log_mask(LOG_GUEST_ERROR
,
151 "Page @ 0x%" PRIx64
" indicates Tagged Normal memory "
152 "but is not backed by host ram\n", ptr
);
157 * Remember these values across the second lookup below,
158 * which may invalidate this pointer via tlb resize.
160 ptr_paddr
= full
->phys_addr
| (ptr
& ~TARGET_PAGE_MASK
);
165 * The Normal memory access can extend to the next page. E.g. a single
166 * 8-byte access to the last byte of a page will check only the last
167 * tag on the first page.
168 * Any page access exception has priority over tag check exception.
170 in_page
= -(ptr
| TARGET_PAGE_MASK
);
171 if (unlikely(ptr_size
> in_page
)) {
172 flags
|= probe_access_full(env
, ptr
+ in_page
, 0, ptr_access
,
173 ptr_mmu_idx
, ra
== 0, &host
, &full
, ra
);
174 assert(!(flags
& TLB_INVALID_MASK
));
177 /* Any debug exception has priority over a tag check exception. */
178 if (!probe
&& unlikely(flags
& TLB_WATCHPOINT
)) {
179 int wp
= ptr_access
== MMU_DATA_LOAD
? BP_MEM_READ
: BP_MEM_WRITE
;
181 cpu_check_watchpoint(env_cpu(env
), ptr
, ptr_size
, attrs
, wp
, ra
);
184 /* Convert to the physical address in tag space. */
185 tag_paddr
= ptr_paddr
>> (LOG2_TAG_GRANULE
+ 1);
187 /* Look up the address in tag space. */
188 tag_asi
= attrs
.secure
? ARMASIdx_TagS
: ARMASIdx_TagNS
;
189 tag_as
= cpu_get_address_space(env_cpu(env
), tag_asi
);
190 mr
= address_space_translate(tag_as
, tag_paddr
, &xlat
, NULL
,
191 tag_access
== MMU_DATA_STORE
, attrs
);
194 * Note that @mr will never be NULL. If there is nothing in the address
195 * space at @tag_paddr, the translation will return the unallocated memory
196 * region. For our purposes, the result must be ram.
198 if (unlikely(!memory_region_is_ram(mr
))) {
199 /* ??? Failure is a board configuration error. */
200 qemu_log_mask(LOG_UNIMP
,
201 "Tag Memory @ 0x%" HWADDR_PRIx
" not found for "
202 "Normal Memory @ 0x%" HWADDR_PRIx
"\n",
203 tag_paddr
, ptr_paddr
);
208 * Ensure the tag memory is dirty on write, for migration.
209 * Tag memory can never contain code or display memory (vga).
211 if (tag_access
== MMU_DATA_STORE
) {
212 ram_addr_t tag_ra
= memory_region_get_ram_addr(mr
) + xlat
;
213 cpu_physical_memory_set_dirty_flag(tag_ra
, DIRTY_MEMORY_MIGRATION
);
216 return memory_region_get_ram_ptr(mr
) + xlat
;
220 static uint8_t *allocation_tag_mem(CPUARMState
*env
, int ptr_mmu_idx
,
221 uint64_t ptr
, MMUAccessType ptr_access
,
222 int ptr_size
, MMUAccessType tag_access
,
225 return allocation_tag_mem_probe(env
, ptr_mmu_idx
, ptr
, ptr_access
,
226 ptr_size
, tag_access
, false, ra
);
229 uint64_t HELPER(irg
)(CPUARMState
*env
, uint64_t rn
, uint64_t rm
)
231 uint16_t exclude
= extract32(rm
| env
->cp15
.gcr_el1
, 0, 16);
232 int rrnd
= extract32(env
->cp15
.gcr_el1
, 16, 1);
233 int start
= extract32(env
->cp15
.rgsr_el1
, 0, 4);
234 int seed
= extract32(env
->cp15
.rgsr_el1
, 8, 16);
238 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
239 * deterministic algorithm. Except that with RRND==1 the kernel is
240 * not required to have set RGSR_EL1.SEED != 0, which is required for
241 * the deterministic algorithm to function. So we force a non-zero
242 * SEED for that case.
244 if (unlikely(seed
== 0) && rrnd
) {
249 if (qemu_guest_getrandom(&two
, sizeof(two
), &err
) < 0) {
251 * Failed, for unknown reasons in the crypto subsystem.
252 * Best we can do is log the reason and use a constant seed.
254 qemu_log_mask(LOG_UNIMP
, "IRG: Crypto failure: %s\n",
255 error_get_pretty(err
));
264 for (i
= offset
= 0; i
< 4; ++i
) {
265 /* NextRandomTagBit */
266 int top
= (extract32(seed
, 5, 1) ^ extract32(seed
, 3, 1) ^
267 extract32(seed
, 2, 1) ^ extract32(seed
, 0, 1));
268 seed
= (top
<< 15) | (seed
>> 1);
271 rtag
= choose_nonexcluded_tag(start
, offset
, exclude
);
272 env
->cp15
.rgsr_el1
= rtag
| (seed
<< 8);
274 return address_with_allocation_tag(rn
, rtag
);
277 uint64_t HELPER(addsubg
)(CPUARMState
*env
, uint64_t ptr
,
278 int32_t offset
, uint32_t tag_offset
)
280 int start_tag
= allocation_tag_from_addr(ptr
);
281 uint16_t exclude
= extract32(env
->cp15
.gcr_el1
, 0, 16);
282 int rtag
= choose_nonexcluded_tag(start_tag
, tag_offset
, exclude
);
284 return address_with_allocation_tag(ptr
+ offset
, rtag
);
287 static int load_tag1(uint64_t ptr
, uint8_t *mem
)
289 int ofs
= extract32(ptr
, LOG2_TAG_GRANULE
, 1) * 4;
290 return extract32(*mem
, ofs
, 4);
293 uint64_t HELPER(ldg
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
295 int mmu_idx
= arm_env_mmu_index(env
);
299 /* Trap if accessing an invalid page. */
300 mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_LOAD
, 1,
301 MMU_DATA_LOAD
, GETPC());
303 /* Load if page supports tags. */
305 rtag
= load_tag1(ptr
, mem
);
308 return address_with_allocation_tag(xt
, rtag
);
311 static void check_tag_aligned(CPUARMState
*env
, uint64_t ptr
, uintptr_t ra
)
313 if (unlikely(!QEMU_IS_ALIGNED(ptr
, TAG_GRANULE
))) {
314 arm_cpu_do_unaligned_access(env_cpu(env
), ptr
, MMU_DATA_STORE
,
315 arm_env_mmu_index(env
), ra
);
316 g_assert_not_reached();
320 /* For use in a non-parallel context, store to the given nibble. */
321 static void store_tag1(uint64_t ptr
, uint8_t *mem
, int tag
)
323 int ofs
= extract32(ptr
, LOG2_TAG_GRANULE
, 1) * 4;
324 *mem
= deposit32(*mem
, ofs
, 4, tag
);
327 /* For use in a parallel context, atomically store to the given nibble. */
328 static void store_tag1_parallel(uint64_t ptr
, uint8_t *mem
, int tag
)
330 int ofs
= extract32(ptr
, LOG2_TAG_GRANULE
, 1) * 4;
331 uint8_t old
= qatomic_read(mem
);
334 uint8_t new = deposit32(old
, ofs
, 4, tag
);
335 uint8_t cmp
= qatomic_cmpxchg(mem
, old
, new);
336 if (likely(cmp
== old
)) {
343 typedef void stg_store1(uint64_t, uint8_t *, int);
345 static inline void do_stg(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
,
346 uintptr_t ra
, stg_store1 store1
)
348 int mmu_idx
= arm_env_mmu_index(env
);
351 check_tag_aligned(env
, ptr
, ra
);
353 /* Trap if accessing an invalid page. */
354 mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
, TAG_GRANULE
,
357 /* Store if page supports tags. */
359 store1(ptr
, mem
, allocation_tag_from_addr(xt
));
363 void HELPER(stg
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
365 do_stg(env
, ptr
, xt
, GETPC(), store_tag1
);
368 void HELPER(stg_parallel
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
370 do_stg(env
, ptr
, xt
, GETPC(), store_tag1_parallel
);
373 void HELPER(stg_stub
)(CPUARMState
*env
, uint64_t ptr
)
375 int mmu_idx
= arm_env_mmu_index(env
);
376 uintptr_t ra
= GETPC();
378 check_tag_aligned(env
, ptr
, ra
);
379 probe_write(env
, ptr
, TAG_GRANULE
, mmu_idx
, ra
);
382 static inline void do_st2g(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
,
383 uintptr_t ra
, stg_store1 store1
)
385 int mmu_idx
= arm_env_mmu_index(env
);
386 int tag
= allocation_tag_from_addr(xt
);
387 uint8_t *mem1
, *mem2
;
389 check_tag_aligned(env
, ptr
, ra
);
392 * Trap if accessing an invalid page(s).
393 * This takes priority over !allocation_tag_access_enabled.
395 if (ptr
& TAG_GRANULE
) {
396 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
397 mem1
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
,
398 TAG_GRANULE
, MMU_DATA_STORE
, ra
);
399 mem2
= allocation_tag_mem(env
, mmu_idx
, ptr
+ TAG_GRANULE
,
400 MMU_DATA_STORE
, TAG_GRANULE
,
403 /* Store if page(s) support tags. */
405 store1(TAG_GRANULE
, mem1
, tag
);
408 store1(0, mem2
, tag
);
411 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
412 mem1
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
,
413 2 * TAG_GRANULE
, MMU_DATA_STORE
, ra
);
416 qatomic_set(mem1
, tag
);
421 void HELPER(st2g
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
423 do_st2g(env
, ptr
, xt
, GETPC(), store_tag1
);
426 void HELPER(st2g_parallel
)(CPUARMState
*env
, uint64_t ptr
, uint64_t xt
)
428 do_st2g(env
, ptr
, xt
, GETPC(), store_tag1_parallel
);
431 void HELPER(st2g_stub
)(CPUARMState
*env
, uint64_t ptr
)
433 int mmu_idx
= arm_env_mmu_index(env
);
434 uintptr_t ra
= GETPC();
435 int in_page
= -(ptr
| TARGET_PAGE_MASK
);
437 check_tag_aligned(env
, ptr
, ra
);
439 if (likely(in_page
>= 2 * TAG_GRANULE
)) {
440 probe_write(env
, ptr
, 2 * TAG_GRANULE
, mmu_idx
, ra
);
442 probe_write(env
, ptr
, TAG_GRANULE
, mmu_idx
, ra
);
443 probe_write(env
, ptr
+ TAG_GRANULE
, TAG_GRANULE
, mmu_idx
, ra
);
447 uint64_t HELPER(ldgm
)(CPUARMState
*env
, uint64_t ptr
)
449 int mmu_idx
= arm_env_mmu_index(env
);
450 uintptr_t ra
= GETPC();
451 int gm_bs
= env_archcpu(env
)->gm_blocksize
;
452 int gm_bs_bytes
= 4 << gm_bs
;
457 ptr
= QEMU_ALIGN_DOWN(ptr
, gm_bs_bytes
);
459 /* Trap if accessing an invalid page. */
460 tag_mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_LOAD
,
461 gm_bs_bytes
, MMU_DATA_LOAD
, ra
);
463 /* The tag is squashed to zero if the page does not support tags. */
469 * The ordering of elements within the word corresponds to
470 * a little-endian operation. Computation of shift comes from
472 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>
473 * data<index*4+3:index*4> = tag
475 * Because of the alignment of ptr above, BS=6 has shift=0.
476 * All memory operations are aligned. Defer support for BS=2,
477 * requiring insertion or extraction of a nibble, until we
478 * support a cpu that requires it.
482 /* 32 bytes -> 2 tags -> 8 result bits */
483 ret
= *(uint8_t *)tag_mem
;
486 /* 64 bytes -> 4 tags -> 16 result bits */
487 ret
= cpu_to_le16(*(uint16_t *)tag_mem
);
490 /* 128 bytes -> 8 tags -> 32 result bits */
491 ret
= cpu_to_le32(*(uint32_t *)tag_mem
);
494 /* 256 bytes -> 16 tags -> 64 result bits */
495 return cpu_to_le64(*(uint64_t *)tag_mem
);
498 * CPU configured with unsupported/invalid gm blocksize.
499 * This is detected early in arm_cpu_realizefn.
501 g_assert_not_reached();
503 shift
= extract64(ptr
, LOG2_TAG_GRANULE
, 4) * 4;
507 void HELPER(stgm
)(CPUARMState
*env
, uint64_t ptr
, uint64_t val
)
509 int mmu_idx
= arm_env_mmu_index(env
);
510 uintptr_t ra
= GETPC();
511 int gm_bs
= env_archcpu(env
)->gm_blocksize
;
512 int gm_bs_bytes
= 4 << gm_bs
;
516 ptr
= QEMU_ALIGN_DOWN(ptr
, gm_bs_bytes
);
518 /* Trap if accessing an invalid page. */
519 tag_mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
,
520 gm_bs_bytes
, MMU_DATA_LOAD
, ra
);
523 * Tag store only happens if the page support tags,
524 * and if the OS has enabled access to the tags.
530 /* See LDGM for comments on BS and on shift. */
531 shift
= extract64(ptr
, LOG2_TAG_GRANULE
, 4) * 4;
535 /* 32 bytes -> 2 tags -> 8 result bits */
536 *(uint8_t *)tag_mem
= val
;
539 /* 64 bytes -> 4 tags -> 16 result bits */
540 *(uint16_t *)tag_mem
= cpu_to_le16(val
);
543 /* 128 bytes -> 8 tags -> 32 result bits */
544 *(uint32_t *)tag_mem
= cpu_to_le32(val
);
547 /* 256 bytes -> 16 tags -> 64 result bits */
548 *(uint64_t *)tag_mem
= cpu_to_le64(val
);
551 /* cpu configured with unsupported gm blocksize. */
552 g_assert_not_reached();
556 void HELPER(stzgm_tags
)(CPUARMState
*env
, uint64_t ptr
, uint64_t val
)
558 uintptr_t ra
= GETPC();
559 int mmu_idx
= arm_env_mmu_index(env
);
560 int log2_dcz_bytes
, log2_tag_bytes
;
561 intptr_t dcz_bytes
, tag_bytes
;
565 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
566 * i.e. 32 bytes, which is an unreasonably small dcz anyway,
567 * to make sure that we can access one complete tag byte here.
569 log2_dcz_bytes
= env_archcpu(env
)->dcz_blocksize
+ 2;
570 log2_tag_bytes
= log2_dcz_bytes
- (LOG2_TAG_GRANULE
+ 1);
571 dcz_bytes
= (intptr_t)1 << log2_dcz_bytes
;
572 tag_bytes
= (intptr_t)1 << log2_tag_bytes
;
575 mem
= allocation_tag_mem(env
, mmu_idx
, ptr
, MMU_DATA_STORE
, dcz_bytes
,
578 int tag_pair
= (val
& 0xf) * 0x11;
579 memset(mem
, tag_pair
, tag_bytes
);
583 static void mte_sync_check_fail(CPUARMState
*env
, uint32_t desc
,
584 uint64_t dirty_ptr
, uintptr_t ra
)
588 env
->exception
.vaddress
= dirty_ptr
;
590 is_write
= FIELD_EX32(desc
, MTEDESC
, WRITE
);
591 syn
= syn_data_abort_no_iss(arm_current_el(env
) != 0, 0, 0, 0, 0, is_write
,
593 raise_exception_ra(env
, EXCP_DATA_ABORT
, syn
, exception_target_el(env
), ra
);
594 g_assert_not_reached();
597 static void mte_async_check_fail(CPUARMState
*env
, uint64_t dirty_ptr
,
598 uintptr_t ra
, ARMMMUIdx arm_mmu_idx
, int el
)
602 if (regime_has_2_ranges(arm_mmu_idx
)) {
603 select
= extract64(dirty_ptr
, 55, 1);
607 env
->cp15
.tfsr_el
[el
] |= 1 << select
;
608 #ifdef CONFIG_USER_ONLY
610 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
611 * which then sends a SIGSEGV when the thread is next scheduled.
612 * This cpu will return to the main loop at the end of the TB,
613 * which is rather sooner than "normal". But the alternative
614 * is waiting until the next syscall.
616 qemu_cpu_kick(env_cpu(env
));
620 /* Record a tag check failure. */
621 void mte_check_fail(CPUARMState
*env
, uint32_t desc
,
622 uint64_t dirty_ptr
, uintptr_t ra
)
624 int mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
625 ARMMMUIdx arm_mmu_idx
= core_to_aa64_mmu_idx(mmu_idx
);
629 reg_el
= regime_el(env
, arm_mmu_idx
);
630 sctlr
= env
->cp15
.sctlr_el
[reg_el
];
632 switch (arm_mmu_idx
) {
633 case ARMMMUIdx_E10_0
:
634 case ARMMMUIdx_E20_0
:
636 tcf
= extract64(sctlr
, 38, 2);
640 tcf
= extract64(sctlr
, 40, 2);
645 /* Tag check fail causes a synchronous exception. */
646 mte_sync_check_fail(env
, desc
, dirty_ptr
, ra
);
651 * Tag check fail does not affect the PE.
652 * We eliminate this case by not setting MTE_ACTIVE
653 * in tb_flags, so that we never make this runtime call.
655 g_assert_not_reached();
658 /* Tag check fail causes asynchronous flag set. */
659 mte_async_check_fail(env
, dirty_ptr
, ra
, arm_mmu_idx
, el
);
664 * Tag check fail causes asynchronous flag set for stores, or
665 * a synchronous exception for loads.
667 if (FIELD_EX32(desc
, MTEDESC
, WRITE
)) {
668 mte_async_check_fail(env
, dirty_ptr
, ra
, arm_mmu_idx
, el
);
670 mte_sync_check_fail(env
, desc
, dirty_ptr
, ra
);
678 * @tag: tag memory to test
679 * @odd: true to begin testing at tags at odd nibble
680 * @cmp: the tag to compare against
681 * @count: number of tags to test
683 * Return the number of successful tests.
684 * Thus a return value < @count indicates a failure.
686 * A note about sizes: count is expected to be small.
688 * The most common use will be LDP/STP of two integer registers,
689 * which means 16 bytes of memory touching at most 2 tags, but
690 * often the access is aligned and thus just 1 tag.
692 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
693 * touching at most 5 tags. SVE LDR/STR (vector) with the default
694 * vector length is also 64 bytes; the maximum architectural length
695 * is 256 bytes touching at most 9 tags.
697 * The loop below uses 7 logical operations and 1 memory operation
698 * per tag pair. An implementation that loads an aligned word and
699 * uses masking to ignore adjacent tags requires 18 logical operations
700 * and thus does not begin to pay off until 6 tags.
701 * Which, according to the survey above, is unlikely to be common.
703 static int checkN(uint8_t *mem
, int odd
, int cmp
, int count
)
707 /* Replicate the test tag and compare. */
717 if (unlikely((diff
) & 0x0f)) {
726 if (unlikely((diff
) & 0xf0)) {
740 * @tag: tag memory to test
741 * @odd: true to begin testing at tags at odd nibble
742 * @cmp: the tag to compare against
743 * @count: number of tags to test
745 * Return the number of successful tests.
746 * Thus a return value < @count indicates a failure.
748 * This is like checkN, but it runs backwards, checking the
749 * tags starting with @tag and then the tags preceding it.
750 * This is needed by the backwards-memory-copying operations.
752 static int checkNrev(uint8_t *mem
, int odd
, int cmp
, int count
)
756 /* Replicate the test tag and compare. */
766 if (unlikely((diff
) & 0xf0)) {
775 if (unlikely((diff
) & 0x0f)) {
788 * mte_probe_int() - helper for mte_probe and mte_check
789 * @env: CPU environment
790 * @desc: MTEDESC descriptor
791 * @ptr: virtual address of the base of the access
792 * @fault: return virtual address of the first check failure
794 * Internal routine for both mte_probe and mte_check.
795 * Return zero on failure, filling in *fault.
796 * Return negative on trivial success for tbi disabled.
797 * Return positive on success with tbi enabled.
799 static int mte_probe_int(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
,
800 uintptr_t ra
, uint64_t *fault
)
802 int mmu_idx
, ptr_tag
, bit55
;
803 uint64_t ptr_last
, prev_page
, next_page
;
804 uint64_t tag_first
, tag_last
;
805 uint32_t sizem1
, tag_count
, n
, c
;
806 uint8_t *mem1
, *mem2
;
809 bit55
= extract64(ptr
, 55, 1);
812 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
813 if (unlikely(!tbi_check(desc
, bit55
))) {
817 ptr_tag
= allocation_tag_from_addr(ptr
);
819 if (tcma_check(desc
, bit55
, ptr_tag
)) {
823 mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
824 type
= FIELD_EX32(desc
, MTEDESC
, WRITE
) ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
825 sizem1
= FIELD_EX32(desc
, MTEDESC
, SIZEM1
);
827 /* Find the addr of the end of the access */
828 ptr_last
= ptr
+ sizem1
;
830 /* Round the bounds to the tag granule, and compute the number of tags. */
831 tag_first
= QEMU_ALIGN_DOWN(ptr
, TAG_GRANULE
);
832 tag_last
= QEMU_ALIGN_DOWN(ptr_last
, TAG_GRANULE
);
833 tag_count
= ((tag_last
- tag_first
) / TAG_GRANULE
) + 1;
835 /* Locate the page boundaries. */
836 prev_page
= ptr
& TARGET_PAGE_MASK
;
837 next_page
= prev_page
+ TARGET_PAGE_SIZE
;
839 if (likely(tag_last
- prev_page
< TARGET_PAGE_SIZE
)) {
840 /* Memory access stays on one page. */
841 mem1
= allocation_tag_mem(env
, mmu_idx
, ptr
, type
, sizem1
+ 1,
846 /* Perform all of the comparisons. */
847 n
= checkN(mem1
, ptr
& TAG_GRANULE
, ptr_tag
, tag_count
);
849 /* Memory access crosses to next page. */
850 mem1
= allocation_tag_mem(env
, mmu_idx
, ptr
, type
, next_page
- ptr
,
853 mem2
= allocation_tag_mem(env
, mmu_idx
, next_page
, type
,
854 ptr_last
- next_page
+ 1,
858 * Perform all of the comparisons.
859 * Note the possible but unlikely case of the operation spanning
860 * two pages that do not both have tagging enabled.
862 n
= c
= (next_page
- tag_first
) / TAG_GRANULE
;
864 n
= checkN(mem1
, ptr
& TAG_GRANULE
, ptr_tag
, c
);
870 n
+= checkN(mem2
, 0, ptr_tag
, tag_count
- c
);
874 if (likely(n
== tag_count
)) {
879 * If we failed, we know which granule. For the first granule, the
880 * failure address is @ptr, the first byte accessed. Otherwise the
881 * failure address is the first byte of the nth granule.
884 *fault
= tag_first
+ n
* TAG_GRANULE
;
889 uint64_t mte_check(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
, uintptr_t ra
)
892 int ret
= mte_probe_int(env
, desc
, ptr
, ra
, &fault
);
894 if (unlikely(ret
== 0)) {
895 mte_check_fail(env
, desc
, fault
, ra
);
896 } else if (ret
< 0) {
899 return useronly_clean_ptr(ptr
);
902 uint64_t HELPER(mte_check
)(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
)
905 * R_XCHFJ: Alignment check not caused by memory type is priority 1,
906 * higher than any translation fault. When MTE is disabled, tcg
907 * performs the alignment check during the code generated for the
908 * memory access. With MTE enabled, we must check this here before
909 * raising any translation fault in allocation_tag_mem.
911 unsigned align
= FIELD_EX32(desc
, MTEDESC
, ALIGN
);
912 if (unlikely(align
)) {
913 align
= (1u << align
) - 1;
914 if (unlikely(ptr
& align
)) {
915 int idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
916 bool w
= FIELD_EX32(desc
, MTEDESC
, WRITE
);
917 MMUAccessType type
= w
? MMU_DATA_STORE
: MMU_DATA_LOAD
;
918 arm_cpu_do_unaligned_access(env_cpu(env
), ptr
, type
, idx
, GETPC());
922 return mte_check(env
, desc
, ptr
, GETPC());
926 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
927 * Returns false if the access is Checked and the check failed. This
928 * is only intended to probe the tag -- the validity of the page must
929 * be checked beforehand.
931 bool mte_probe(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
)
934 int ret
= mte_probe_int(env
, desc
, ptr
, 0, &fault
);
940 * Perform an MTE checked access for DC_ZVA.
942 uint64_t HELPER(mte_check_zva
)(CPUARMState
*env
, uint32_t desc
, uint64_t ptr
)
944 uintptr_t ra
= GETPC();
945 int log2_dcz_bytes
, log2_tag_bytes
;
947 intptr_t dcz_bytes
, tag_bytes
, i
;
949 uint64_t ptr_tag
, mem_tag
, align_ptr
;
951 bit55
= extract64(ptr
, 55, 1);
953 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
954 if (unlikely(!tbi_check(desc
, bit55
))) {
958 ptr_tag
= allocation_tag_from_addr(ptr
);
960 if (tcma_check(desc
, bit55
, ptr_tag
)) {
965 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
966 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
967 * sure that we can access one complete tag byte here.
969 log2_dcz_bytes
= env_archcpu(env
)->dcz_blocksize
+ 2;
970 log2_tag_bytes
= log2_dcz_bytes
- (LOG2_TAG_GRANULE
+ 1);
971 dcz_bytes
= (intptr_t)1 << log2_dcz_bytes
;
972 tag_bytes
= (intptr_t)1 << log2_tag_bytes
;
973 align_ptr
= ptr
& -dcz_bytes
;
976 * Trap if accessing an invalid page. DC_ZVA requires that we supply
977 * the original pointer for an invalid page. But watchpoints require
978 * that we probe the actual space. So do both.
980 mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
981 (void) probe_write(env
, ptr
, 1, mmu_idx
, ra
);
982 mem
= allocation_tag_mem(env
, mmu_idx
, align_ptr
, MMU_DATA_STORE
,
983 dcz_bytes
, MMU_DATA_LOAD
, ra
);
989 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
990 * it is quite easy to perform all of the comparisons at once without
993 * The most common zva block size is 64; some of the thunderx cpus use
994 * a block size of 128. For user-only, aarch64_max_initfn will set the
995 * block size to 512. Fill out the other cases for future-proofing.
997 * In order to be able to find the first miscompare later, we want the
998 * tag bytes to be in little-endian order.
1000 switch (log2_tag_bytes
) {
1001 case 0: /* zva_blocksize 32 */
1002 mem_tag
= *(uint8_t *)mem
;
1005 case 1: /* zva_blocksize 64 */
1006 mem_tag
= cpu_to_le16(*(uint16_t *)mem
);
1009 case 2: /* zva_blocksize 128 */
1010 mem_tag
= cpu_to_le32(*(uint32_t *)mem
);
1011 ptr_tag
*= 0x11111111u
;
1013 case 3: /* zva_blocksize 256 */
1014 mem_tag
= cpu_to_le64(*(uint64_t *)mem
);
1015 ptr_tag
*= 0x1111111111111111ull
;
1018 default: /* zva_blocksize 512, 1024, 2048 */
1019 ptr_tag
*= 0x1111111111111111ull
;
1022 mem_tag
= cpu_to_le64(*(uint64_t *)(mem
+ i
));
1023 if (unlikely(mem_tag
!= ptr_tag
)) {
1027 align_ptr
+= 16 * TAG_GRANULE
;
1028 } while (i
< tag_bytes
);
1032 if (likely(mem_tag
== ptr_tag
)) {
1037 /* Locate the first nibble that differs. */
1038 i
= ctz64(mem_tag
^ ptr_tag
) >> 4;
1039 mte_check_fail(env
, desc
, align_ptr
+ i
* TAG_GRANULE
, ra
);
1042 return useronly_clean_ptr(ptr
);
1045 uint64_t mte_mops_probe(CPUARMState
*env
, uint64_t ptr
, uint64_t size
,
1048 int mmu_idx
, tag_count
;
1049 uint64_t ptr_tag
, tag_first
, tag_last
;
1051 bool w
= FIELD_EX32(desc
, MTEDESC
, WRITE
);
1054 mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
1055 /* True probe; this will never fault */
1056 mem
= allocation_tag_mem_probe(env
, mmu_idx
, ptr
,
1057 w
? MMU_DATA_STORE
: MMU_DATA_LOAD
,
1058 size
, MMU_DATA_LOAD
, true, 0);
1064 * TODO: checkN() is not designed for checks of the size we expect
1065 * for FEAT_MOPS operations, so we should implement this differently.
1066 * Maybe we should do something like
1067 * if (region start and size are aligned nicely) {
1068 * do direct loads of 64 tag bits at a time;
1073 /* Round the bounds to the tag granule, and compute the number of tags. */
1074 ptr_tag
= allocation_tag_from_addr(ptr
);
1075 tag_first
= QEMU_ALIGN_DOWN(ptr
, TAG_GRANULE
);
1076 tag_last
= QEMU_ALIGN_DOWN(ptr
+ size
- 1, TAG_GRANULE
);
1077 tag_count
= ((tag_last
- tag_first
) / TAG_GRANULE
) + 1;
1078 n
= checkN(mem
, ptr
& TAG_GRANULE
, ptr_tag
, tag_count
);
1079 if (likely(n
== tag_count
)) {
1084 * Failure; for the first granule, it's at @ptr. Otherwise
1085 * it's at the first byte of the nth granule. Calculate how
1086 * many bytes we can access without hitting that failure.
1091 return n
* TAG_GRANULE
- (ptr
- tag_first
);
1095 uint64_t mte_mops_probe_rev(CPUARMState
*env
, uint64_t ptr
, uint64_t size
,
1098 int mmu_idx
, tag_count
;
1099 uint64_t ptr_tag
, tag_first
, tag_last
;
1101 bool w
= FIELD_EX32(desc
, MTEDESC
, WRITE
);
1104 mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
1106 * True probe; this will never fault. Note that our caller passes
1107 * us a pointer to the end of the region, but allocation_tag_mem_probe()
1108 * wants a pointer to the start. Because we know we don't span a page
1109 * boundary and that allocation_tag_mem_probe() doesn't otherwise care
1110 * about the size, pass in a size of 1 byte. This is simpler than
1111 * adjusting the ptr to point to the start of the region and then having
1112 * to adjust the returned 'mem' to get the end of the tag memory.
1114 mem
= allocation_tag_mem_probe(env
, mmu_idx
, ptr
,
1115 w
? MMU_DATA_STORE
: MMU_DATA_LOAD
,
1116 1, MMU_DATA_LOAD
, true, 0);
1122 * TODO: checkNrev() is not designed for checks of the size we expect
1123 * for FEAT_MOPS operations, so we should implement this differently.
1124 * Maybe we should do something like
1125 * if (region start and size are aligned nicely) {
1126 * do direct loads of 64 tag bits at a time;
1131 /* Round the bounds to the tag granule, and compute the number of tags. */
1132 ptr_tag
= allocation_tag_from_addr(ptr
);
1133 tag_first
= QEMU_ALIGN_DOWN(ptr
- (size
- 1), TAG_GRANULE
);
1134 tag_last
= QEMU_ALIGN_DOWN(ptr
, TAG_GRANULE
);
1135 tag_count
= ((tag_last
- tag_first
) / TAG_GRANULE
) + 1;
1136 n
= checkNrev(mem
, ptr
& TAG_GRANULE
, ptr_tag
, tag_count
);
1137 if (likely(n
== tag_count
)) {
1142 * Failure; for the first granule, it's at @ptr. Otherwise
1143 * it's at the last byte of the nth granule. Calculate how
1144 * many bytes we can access without hitting that failure.
1149 return (n
- 1) * TAG_GRANULE
+ ((ptr
+ 1) - tag_last
);
1153 void mte_mops_set_tags(CPUARMState
*env
, uint64_t ptr
, uint64_t size
,
1156 int mmu_idx
, tag_count
;
1161 /* Tags not actually enabled */
1165 mmu_idx
= FIELD_EX32(desc
, MTEDESC
, MIDX
);
1166 /* True probe: this will never fault */
1167 mem
= allocation_tag_mem_probe(env
, mmu_idx
, ptr
, MMU_DATA_STORE
, size
,
1168 MMU_DATA_STORE
, true, 0);
1174 * We know that ptr and size are both TAG_GRANULE aligned; store
1175 * the tag from the pointer value into the tag memory.
1177 ptr_tag
= allocation_tag_from_addr(ptr
);
1178 tag_count
= size
/ TAG_GRANULE
;
1179 if (ptr
& TAG_GRANULE
) {
1180 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */
1181 store_tag1_parallel(TAG_GRANULE
, mem
, ptr_tag
);
1185 memset(mem
, ptr_tag
| (ptr_tag
<< 4), tag_count
/ 2);
1186 if (tag_count
& 1) {
1187 /* Final trailing unaligned nibble */
1188 mem
+= tag_count
/ 2;
1189 store_tag1_parallel(0, mem
, ptr_tag
);