4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
8 #include "qemu/osdep.h"
11 #include "internals.h"
12 #include "cpu-features.h"
14 #include "exec/exec-all.h"
15 #include "exec/helper-proto.h"
16 #include "sysemu/tcg.h"
19 /* Return the Exception Level targeted by debug exceptions. */
20 static int arm_debug_target_el(CPUARMState
*env
)
22 bool secure
= arm_is_secure(env
);
23 bool route_to_el2
= false;
25 if (arm_feature(env
, ARM_FEATURE_M
)) {
29 if (arm_is_el2_enabled(env
)) {
30 route_to_el2
= env
->cp15
.hcr_el2
& HCR_TGE
||
31 env
->cp15
.mdcr_el2
& MDCR_TDE
;
36 } else if (arm_feature(env
, ARM_FEATURE_EL3
) &&
37 !arm_el_is_aa64(env
, 3) && secure
) {
45 * Raise an exception to the debug target el.
46 * Modify syndrome to indicate when origin and target EL are the same.
48 G_NORETURN
static void
49 raise_exception_debug(CPUARMState
*env
, uint32_t excp
, uint32_t syndrome
)
51 int debug_el
= arm_debug_target_el(env
);
52 int cur_el
= arm_current_el(env
);
55 * If singlestep is targeting a lower EL than the current one, then
56 * DisasContext.ss_active must be false and we can never get here.
57 * Similarly for watchpoint and breakpoint matches.
59 assert(debug_el
>= cur_el
);
60 syndrome
|= (debug_el
== cur_el
) << ARM_EL_EC_SHIFT
;
61 raise_exception(env
, excp
, syndrome
, debug_el
);
64 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
65 static bool aa64_generate_debug_exceptions(CPUARMState
*env
)
67 int cur_el
= arm_current_el(env
);
74 /* MDCR_EL3.SDD disables debug events from Secure state */
75 if (arm_is_secure_below_el3(env
)
76 && extract32(env
->cp15
.mdcr_el3
, 16, 1)) {
81 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
82 * while not masking the (D)ebug bit in DAIF.
84 debug_el
= arm_debug_target_el(env
);
86 if (cur_el
== debug_el
) {
87 return extract32(env
->cp15
.mdscr_el1
, 13, 1)
88 && !(env
->daif
& PSTATE_D
);
91 /* Otherwise the debug target needs to be a higher EL */
92 return debug_el
> cur_el
;
95 static bool aa32_generate_debug_exceptions(CPUARMState
*env
)
97 int el
= arm_current_el(env
);
99 if (el
== 0 && arm_el_is_aa64(env
, 1)) {
100 return aa64_generate_debug_exceptions(env
);
103 if (arm_is_secure(env
)) {
106 if (el
== 0 && (env
->cp15
.sder
& 1)) {
108 * SDER.SUIDEN means debug exceptions from Secure EL0
109 * are always enabled. Otherwise they are controlled by
110 * SDCR.SPD like those from other Secure ELs.
115 spd
= extract32(env
->cp15
.mdcr_el3
, 14, 2);
118 /* SPD == 0b01 is reserved, but behaves as 0b00. */
121 * For 0b00 we return true if external secure invasive debug
122 * is enabled. On real hardware this is controlled by external
123 * signals to the core. QEMU always permits debug, and behaves
124 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
138 * Return true if debugging exceptions are currently enabled.
139 * This corresponds to what in ARM ARM pseudocode would be
140 * if UsingAArch32() then
141 * return AArch32.GenerateDebugExceptions()
143 * return AArch64.GenerateDebugExceptions()
144 * We choose to push the if() down into this function for clarity,
145 * since the pseudocode has it at all callsites except for the one in
146 * CheckSoftwareStep(), where it is elided because both branches would
147 * always return the same value.
149 bool arm_generate_debug_exceptions(CPUARMState
*env
)
151 if ((env
->cp15
.oslsr_el1
& 1) || (env
->cp15
.osdlr_el1
& 1)) {
155 return aa64_generate_debug_exceptions(env
);
157 return aa32_generate_debug_exceptions(env
);
162 * Is single-stepping active? (Note that the "is EL_D AArch64?" check
163 * implicitly means this always returns false in pre-v8 CPUs.)
165 bool arm_singlestep_active(CPUARMState
*env
)
167 return extract32(env
->cp15
.mdscr_el1
, 0, 1)
168 && arm_el_is_aa64(env
, arm_debug_target_el(env
))
169 && arm_generate_debug_exceptions(env
);
172 /* Return true if the linked breakpoint entry lbn passes its checks */
173 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
175 CPUARMState
*env
= &cpu
->env
;
176 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
177 int brps
= arm_num_brps(cpu
);
178 int ctx_cmps
= arm_num_ctx_cmps(cpu
);
184 * Links to unimplemented or non-context aware breakpoints are
185 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
186 * as if linked to an UNKNOWN context-aware breakpoint (in which
187 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
188 * We choose the former.
190 if (lbn
>= brps
|| lbn
< (brps
- ctx_cmps
)) {
194 bcr
= env
->cp15
.dbgbcr
[lbn
];
196 if (extract64(bcr
, 0, 1) == 0) {
197 /* Linked breakpoint disabled : generate no events */
201 bt
= extract64(bcr
, 20, 4);
202 hcr_el2
= arm_hcr_el2_eff(env
);
205 case 3: /* linked context ID match */
206 switch (arm_current_el(env
)) {
208 /* Context matches never fire in AArch64 EL3 */
211 if (!(hcr_el2
& HCR_E2H
)) {
212 /* Context matches never fire in EL2 without E2H enabled. */
215 contextidr
= env
->cp15
.contextidr_el
[2];
218 contextidr
= env
->cp15
.contextidr_el
[1];
221 if ((hcr_el2
& (HCR_E2H
| HCR_TGE
)) == (HCR_E2H
| HCR_TGE
)) {
222 contextidr
= env
->cp15
.contextidr_el
[2];
224 contextidr
= env
->cp15
.contextidr_el
[1];
230 case 7: /* linked contextidr_el1 match */
231 contextidr
= env
->cp15
.contextidr_el
[1];
233 case 13: /* linked contextidr_el2 match */
234 contextidr
= env
->cp15
.contextidr_el
[2];
237 case 9: /* linked VMID match (reserved if no EL2) */
238 case 11: /* linked context ID and VMID match (reserved if no EL2) */
239 case 15: /* linked full context ID match */
242 * Links to Unlinked context breakpoints must generate no
243 * events; we choose to do the same for reserved values too.
249 * We match the whole register even if this is AArch32 using the
250 * short descriptor format (in which case it holds both PROCID and ASID),
251 * since we don't implement the optional v7 context ID masking.
253 return contextidr
== (uint32_t)env
->cp15
.dbgbvr
[lbn
];
256 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
258 CPUARMState
*env
= &cpu
->env
;
260 int pac
, hmc
, ssc
, wt
, lbn
;
262 * Note that for watchpoints the check is against the CPU security
263 * state, not the S/NS attribute on the offending data access.
265 bool is_secure
= arm_is_secure(env
);
266 int access_el
= arm_current_el(env
);
269 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
271 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
274 cr
= env
->cp15
.dbgwcr
[n
];
275 if (wp
->hitattrs
.user
) {
277 * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
278 * match watchpoints as if they were accesses done at EL0, even if
279 * the CPU is at EL1 or higher.
284 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
286 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
289 cr
= env
->cp15
.dbgbcr
[n
];
292 * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
293 * enabled and that the address and access type match; for breakpoints
294 * we know the address matched; check the remaining fields, including
295 * linked breakpoints. We rely on WCR and BCR having the same layout
296 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
297 * Note that some combinations of {PAC, HMC, SSC} are reserved and
298 * must act either like some valid combination or as if the watchpoint
299 * were disabled. We choose the former, and use this together with
300 * the fact that EL3 must always be Secure and EL2 must always be
301 * Non-Secure to simplify the code slightly compared to the full
302 * table in the ARM ARM.
304 pac
= FIELD_EX64(cr
, DBGWCR
, PAC
);
305 hmc
= FIELD_EX64(cr
, DBGWCR
, HMC
);
306 ssc
= FIELD_EX64(cr
, DBGWCR
, SSC
);
332 if (extract32(pac
, 0, 1) == 0) {
337 if (extract32(pac
, 1, 1) == 0) {
342 g_assert_not_reached();
345 wt
= FIELD_EX64(cr
, DBGWCR
, WT
);
346 lbn
= FIELD_EX64(cr
, DBGWCR
, LBN
);
348 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
355 static bool check_watchpoints(ARMCPU
*cpu
)
357 CPUARMState
*env
= &cpu
->env
;
361 * If watchpoints are disabled globally or we can't take debug
362 * exceptions here then watchpoint firings are ignored.
364 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
365 || !arm_generate_debug_exceptions(env
)) {
369 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
370 if (bp_wp_matches(cpu
, n
, true)) {
377 bool arm_debug_check_breakpoint(CPUState
*cs
)
379 ARMCPU
*cpu
= ARM_CPU(cs
);
380 CPUARMState
*env
= &cpu
->env
;
385 * If breakpoints are disabled globally or we can't take debug
386 * exceptions here then breakpoint firings are ignored.
388 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
389 || !arm_generate_debug_exceptions(env
)) {
394 * Single-step exceptions have priority over breakpoint exceptions.
395 * If single-step state is active-pending, suppress the bp.
397 if (arm_singlestep_active(env
) && !(env
->pstate
& PSTATE_SS
)) {
402 * PC alignment faults have priority over breakpoint exceptions.
404 pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
405 if ((is_a64(env
) || !env
->thumb
) && (pc
& 3) != 0) {
410 * Instruction aborts have priority over breakpoint exceptions.
411 * TODO: We would need to look up the page for PC and verify that
412 * it is present and executable.
415 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
416 if (bp_wp_matches(cpu
, n
, false)) {
423 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
)
426 * Called by core code when a CPU watchpoint fires; need to check if this
427 * is also an architectural watchpoint match.
429 ARMCPU
*cpu
= ARM_CPU(cs
);
431 return check_watchpoints(cpu
);
435 * Return the FSR value for a debug exception (watchpoint, hardware
436 * breakpoint or BKPT insn) targeting the specified exception level.
438 static uint32_t arm_debug_exception_fsr(CPUARMState
*env
)
440 ARMMMUFaultInfo fi
= { .type
= ARMFault_Debug
};
441 int target_el
= arm_debug_target_el(env
);
444 if (arm_feature(env
, ARM_FEATURE_M
)) {
446 } else if (target_el
== 2 || arm_el_is_aa64(env
, target_el
)) {
448 } else if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
449 arm_feature(env
, ARM_FEATURE_V8
)) {
451 } else if (arm_feature(env
, ARM_FEATURE_LPAE
) &&
452 (env
->cp15
.tcr_el
[target_el
] & TTBCR_EAE
)) {
459 return arm_fi_to_lfsc(&fi
);
461 return arm_fi_to_sfsc(&fi
);
465 void arm_debug_excp_handler(CPUState
*cs
)
468 * Called by core code when a watchpoint or breakpoint fires;
469 * need to check which one and raise the appropriate exception.
471 ARMCPU
*cpu
= ARM_CPU(cs
);
472 CPUARMState
*env
= &cpu
->env
;
473 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
476 if (wp_hit
->flags
& BP_CPU
) {
477 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
479 cs
->watchpoint_hit
= NULL
;
481 env
->exception
.fsr
= arm_debug_exception_fsr(env
);
482 env
->exception
.vaddress
= wp_hit
->hitaddr
;
483 raise_exception_debug(env
, EXCP_DATA_ABORT
,
484 syn_watchpoint(0, 0, wnr
));
487 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
490 * (1) GDB breakpoints should be handled first.
491 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
492 * since singlestep is also done by generating a debug internal
495 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
496 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
500 env
->exception
.fsr
= arm_debug_exception_fsr(env
);
502 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
503 * values to the guest that it shouldn't be able to see at its
504 * exception/security level.
506 env
->exception
.vaddress
= 0;
507 raise_exception_debug(env
, EXCP_PREFETCH_ABORT
, syn_breakpoint(0));
512 * Raise an EXCP_BKPT with the specified syndrome register value,
513 * targeting the correct exception level for debug exceptions.
515 void HELPER(exception_bkpt_insn
)(CPUARMState
*env
, uint32_t syndrome
)
517 int debug_el
= arm_debug_target_el(env
);
518 int cur_el
= arm_current_el(env
);
520 /* FSR will only be used if the debug target EL is AArch32. */
521 env
->exception
.fsr
= arm_debug_exception_fsr(env
);
523 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
524 * values to the guest that it shouldn't be able to see at its
525 * exception/security level.
527 env
->exception
.vaddress
= 0;
529 * Other kinds of architectural debug exception are ignored if
530 * they target an exception level below the current one (in QEMU
531 * this is checked by arm_generate_debug_exceptions()). Breakpoint
532 * instructions are special because they always generate an exception
533 * to somewhere: if they can't go to the configured debug exception
534 * level they are taken to the current exception level.
536 if (debug_el
< cur_el
) {
539 raise_exception(env
, EXCP_BKPT
, syndrome
, debug_el
);
542 void HELPER(exception_swstep
)(CPUARMState
*env
, uint32_t syndrome
)
544 raise_exception_debug(env
, EXCP_UDEF
, syndrome
);
547 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
549 CPUARMState
*env
= &cpu
->env
;
551 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
552 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
554 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
556 if (env
->cpu_watchpoint
[n
]) {
557 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
558 env
->cpu_watchpoint
[n
] = NULL
;
561 if (!FIELD_EX64(wcr
, DBGWCR
, E
)) {
562 /* E bit clear : watchpoint disabled */
566 switch (FIELD_EX64(wcr
, DBGWCR
, LSC
)) {
568 /* LSC 00 is reserved and must behave as if the wp is disabled */
571 flags
|= BP_MEM_READ
;
574 flags
|= BP_MEM_WRITE
;
577 flags
|= BP_MEM_ACCESS
;
582 * Attempts to use both MASK and BAS fields simultaneously are
583 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
584 * thus generating a watchpoint for every byte in the masked region.
586 mask
= FIELD_EX64(wcr
, DBGWCR
, MASK
);
587 if (mask
== 1 || mask
== 2) {
589 * Reserved values of MASK; we must act as if the mask value was
590 * some non-reserved value, or as if the watchpoint were disabled.
591 * We choose the latter.
595 /* Watchpoint covers an aligned area up to 2GB in size */
598 * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
599 * whether the watchpoint fires when the unmasked bits match; we opt
600 * to generate the exceptions.
604 /* Watchpoint covers bytes defined by the byte address select bits */
605 int bas
= FIELD_EX64(wcr
, DBGWCR
, BAS
);
608 if (extract64(wvr
, 2, 1)) {
610 * Deprecated case of an only 4-aligned address. BAS[7:4] are
611 * ignored, and BAS[3:0] define which bytes to watch.
617 /* This must act as if the watchpoint is disabled */
622 * The BAS bits are supposed to be programmed to indicate a contiguous
623 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
624 * we fire for each byte in the word/doubleword addressed by the WVR.
625 * We choose to ignore any non-zero bits after the first range of 1s.
627 basstart
= ctz32(bas
);
628 len
= cto32(bas
>> basstart
);
632 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
633 &env
->cpu_watchpoint
[n
]);
636 void hw_watchpoint_update_all(ARMCPU
*cpu
)
639 CPUARMState
*env
= &cpu
->env
;
642 * Completely clear out existing QEMU watchpoints and our array, to
643 * avoid possible stale entries following migration load.
645 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
646 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
648 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
649 hw_watchpoint_update(cpu
, i
);
653 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
655 CPUARMState
*env
= &cpu
->env
;
656 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
657 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
662 if (env
->cpu_breakpoint
[n
]) {
663 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
664 env
->cpu_breakpoint
[n
] = NULL
;
667 if (!extract64(bcr
, 0, 1)) {
668 /* E bit clear : watchpoint disabled */
672 bt
= extract64(bcr
, 20, 4);
675 case 4: /* unlinked address mismatch (reserved if AArch64) */
676 case 5: /* linked address mismatch (reserved if AArch64) */
677 qemu_log_mask(LOG_UNIMP
,
678 "arm: address mismatch breakpoint types not implemented\n");
680 case 0: /* unlinked address match */
681 case 1: /* linked address match */
684 * Bits [1:0] are RES0.
686 * It is IMPLEMENTATION DEFINED whether bits [63:49]
687 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
688 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
689 * value is read as written. It is CONSTRAINED UNPREDICTABLE
690 * whether the RESS bits are ignored when comparing an address.
691 * Therefore we are allowed to compare the entire register, which
692 * lets us avoid considering whether FEAT_LVA is actually enabled.
694 * The BAS field is used to allow setting breakpoints on 16-bit
695 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
696 * a bp will fire if the addresses covered by the bp and the addresses
697 * covered by the insn overlap but the insn doesn't start at the
698 * start of the bp address range. We choose to require the insn and
699 * the bp to have the same address. The constraints on writing to
700 * BAS enforced in dbgbcr_write mean we have only four cases:
701 * 0b0000 => no breakpoint
702 * 0b0011 => breakpoint on addr
703 * 0b1100 => breakpoint on addr + 2
704 * 0b1111 => breakpoint on addr
705 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
707 int bas
= extract64(bcr
, 5, 4);
717 case 2: /* unlinked context ID match */
718 case 8: /* unlinked VMID match (reserved if no EL2) */
719 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
720 qemu_log_mask(LOG_UNIMP
,
721 "arm: unlinked context breakpoint types not implemented\n");
723 case 9: /* linked VMID match (reserved if no EL2) */
724 case 11: /* linked context ID and VMID match (reserved if no EL2) */
725 case 3: /* linked context ID match */
728 * We must generate no events for Linked context matches (unless
729 * they are linked to by some other bp/wp, which is handled in
730 * updates for the linking bp/wp). We choose to also generate no events
731 * for reserved values.
736 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
739 void hw_breakpoint_update_all(ARMCPU
*cpu
)
742 CPUARMState
*env
= &cpu
->env
;
745 * Completely clear out existing QEMU breakpoints and our array, to
746 * avoid possible stale entries following migration load.
748 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
749 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
751 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
752 hw_breakpoint_update(cpu
, i
);
756 #if !defined(CONFIG_USER_ONLY)
758 vaddr
arm_adjust_watchpoint_address(CPUState
*cs
, vaddr addr
, int len
)
760 ARMCPU
*cpu
= ARM_CPU(cs
);
761 CPUARMState
*env
= &cpu
->env
;
764 * In BE32 system mode, target memory is stored byteswapped (on a
765 * little-endian host system), and by the time we reach here (via an
766 * opcode helper) the addresses of subword accesses have been adjusted
767 * to account for that, which means that watchpoints will not match.
768 * Undo the adjustment here.
770 if (arm_sctlr_b(env
)) {
773 } else if (len
== 2) {
781 #endif /* !CONFIG_USER_ONLY */
782 #endif /* CONFIG_TCG */
785 * Check for traps to "powerdown debug" registers, which are controlled
788 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
791 int el
= arm_current_el(env
);
792 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
793 bool mdcr_el2_tdosa
= (mdcr_el2
& MDCR_TDOSA
) || (mdcr_el2
& MDCR_TDE
) ||
794 (arm_hcr_el2_eff(env
) & HCR_TGE
);
796 if (el
< 2 && mdcr_el2_tdosa
) {
797 return CP_ACCESS_TRAP_EL2
;
799 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
800 return CP_ACCESS_TRAP_EL3
;
806 * Check for traps to "debug ROM" registers, which are controlled
807 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
809 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
812 int el
= arm_current_el(env
);
813 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
814 bool mdcr_el2_tdra
= (mdcr_el2
& MDCR_TDRA
) || (mdcr_el2
& MDCR_TDE
) ||
815 (arm_hcr_el2_eff(env
) & HCR_TGE
);
817 if (el
< 2 && mdcr_el2_tdra
) {
818 return CP_ACCESS_TRAP_EL2
;
820 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
821 return CP_ACCESS_TRAP_EL3
;
827 * Check for traps to general debug registers, which are controlled
828 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
830 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
833 int el
= arm_current_el(env
);
834 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
835 bool mdcr_el2_tda
= (mdcr_el2
& MDCR_TDA
) || (mdcr_el2
& MDCR_TDE
) ||
836 (arm_hcr_el2_eff(env
) & HCR_TGE
);
838 if (el
< 2 && mdcr_el2_tda
) {
839 return CP_ACCESS_TRAP_EL2
;
841 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
842 return CP_ACCESS_TRAP_EL3
;
847 static CPAccessResult
access_dbgvcr32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
850 /* MCDR_EL3.TDMA doesn't apply for FEAT_NV traps */
851 if (arm_current_el(env
) == 2 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
852 return CP_ACCESS_TRAP_EL3
;
858 * Check for traps to Debug Comms Channel registers. If FEAT_FGT
859 * is implemented then these are controlled by MDCR_EL2.TDCC for
860 * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
861 * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
862 * For EL0, they are also controlled by MDSCR_EL1.TDCC.
864 static CPAccessResult
access_tdcc(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
867 int el
= arm_current_el(env
);
868 uint64_t mdcr_el2
= arm_mdcr_el2_eff(env
);
869 bool mdscr_el1_tdcc
= extract32(env
->cp15
.mdscr_el1
, 12, 1);
870 bool mdcr_el2_tda
= (mdcr_el2
& MDCR_TDA
) || (mdcr_el2
& MDCR_TDE
) ||
871 (arm_hcr_el2_eff(env
) & HCR_TGE
);
872 bool mdcr_el2_tdcc
= cpu_isar_feature(aa64_fgt
, env_archcpu(env
)) &&
873 (mdcr_el2
& MDCR_TDCC
);
874 bool mdcr_el3_tdcc
= cpu_isar_feature(aa64_fgt
, env_archcpu(env
)) &&
875 (env
->cp15
.mdcr_el3
& MDCR_TDCC
);
877 if (el
< 1 && mdscr_el1_tdcc
) {
878 return CP_ACCESS_TRAP
;
880 if (el
< 2 && (mdcr_el2_tda
|| mdcr_el2_tdcc
)) {
881 return CP_ACCESS_TRAP_EL2
;
883 if (el
< 3 && ((env
->cp15
.mdcr_el3
& MDCR_TDA
) || mdcr_el3_tdcc
)) {
884 return CP_ACCESS_TRAP_EL3
;
889 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
893 * Writes to OSLAR_EL1 may update the OS lock status, which can be
894 * read via a bit in OSLSR_EL1.
898 if (ri
->state
== ARM_CP_STATE_AA32
) {
899 oslock
= (value
== 0xC5ACCE55);
904 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
907 static void osdlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
910 ARMCPU
*cpu
= env_archcpu(env
);
912 * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
913 * implemented this is RAZ/WI.
915 if(arm_feature(env
, ARM_FEATURE_AARCH64
)
916 ? cpu_isar_feature(aa64_doublelock
, cpu
)
917 : cpu_isar_feature(aa32_doublelock
, cpu
)) {
918 env
->cp15
.osdlr_el1
= value
& 1;
922 static void dbgclaimset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
925 env
->cp15
.dbgclaim
|= (value
& 0xFF);
928 static uint64_t dbgclaimset_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
930 /* CLAIM bits are RAO */
934 static void dbgclaimclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
937 env
->cp15
.dbgclaim
&= ~(value
& 0xFF);
940 static const ARMCPRegInfo debug_cp_reginfo
[] = {
942 * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
943 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
944 * unlike DBGDRAR it is never accessible from EL0.
945 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
948 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
949 .access
= PL0_R
, .accessfn
= access_tdra
,
950 .type
= ARM_CP_CONST
| ARM_CP_NO_GDB
, .resetvalue
= 0 },
951 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
952 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
953 .access
= PL1_R
, .accessfn
= access_tdra
,
954 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
955 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
956 .access
= PL0_R
, .accessfn
= access_tdra
,
957 .type
= ARM_CP_CONST
| ARM_CP_NO_GDB
, .resetvalue
= 0 },
958 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
959 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
960 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
961 .access
= PL1_RW
, .accessfn
= access_tda
,
962 .fgt
= FGT_MDSCR_EL1
,
963 .nv2_redirect_offset
= 0x158,
964 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
967 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
968 * Debug Communication Channel is not implemented.
970 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_AA64
,
971 .opc0
= 2, .opc1
= 3, .crn
= 0, .crm
= 1, .opc2
= 0,
972 .access
= PL0_R
, .accessfn
= access_tdcc
,
973 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
975 * These registers belong to the Debug Communications Channel,
976 * which is not implemented. However we implement RAZ/WI behaviour
977 * with trapping to prevent spurious SIGILLs if the guest OS does
978 * access them as the support cannot be probed for.
980 { .name
= "OSDTRRX_EL1", .state
= ARM_CP_STATE_BOTH
, .cp
= 14,
981 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 2,
982 .access
= PL1_RW
, .accessfn
= access_tdcc
,
983 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
984 { .name
= "OSDTRTX_EL1", .state
= ARM_CP_STATE_BOTH
, .cp
= 14,
985 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
986 .access
= PL1_RW
, .accessfn
= access_tdcc
,
987 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
988 /* DBGDTRTX_EL0/DBGDTRRX_EL0 depend on direction */
989 { .name
= "DBGDTR_EL0", .state
= ARM_CP_STATE_BOTH
, .cp
= 14,
990 .opc0
= 2, .opc1
= 3, .crn
= 0, .crm
= 5, .opc2
= 0,
991 .access
= PL0_RW
, .accessfn
= access_tdcc
,
992 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
994 * OSECCR_EL1 provides a mechanism for an operating system
995 * to access the contents of EDECCR. EDECCR is not implemented though,
996 * as is the rest of external device mechanism.
998 { .name
= "OSECCR_EL1", .state
= ARM_CP_STATE_BOTH
, .cp
= 14,
999 .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
1000 .access
= PL1_RW
, .accessfn
= access_tda
,
1001 .fgt
= FGT_OSECCR_EL1
,
1002 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1004 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
1005 * it is unlikely a guest will care.
1006 * We don't implement the configurable EL0 access.
1008 { .name
= "DBGDSCRint", .state
= ARM_CP_STATE_AA32
,
1009 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
1010 .type
= ARM_CP_ALIAS
,
1011 .access
= PL1_R
, .accessfn
= access_tda
,
1012 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
1013 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
1014 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
1015 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
1016 .accessfn
= access_tdosa
,
1017 .fgt
= FGT_OSLAR_EL1
,
1018 .writefn
= oslar_write
},
1019 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
1020 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
1021 .access
= PL1_R
, .resetvalue
= 10,
1022 .accessfn
= access_tdosa
,
1023 .fgt
= FGT_OSLSR_EL1
,
1024 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
1025 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
1026 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
1027 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
1028 .access
= PL1_RW
, .accessfn
= access_tdosa
,
1029 .fgt
= FGT_OSDLR_EL1
,
1030 .writefn
= osdlr_write
,
1031 .fieldoffset
= offsetof(CPUARMState
, cp15
.osdlr_el1
) },
1033 * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
1034 * implement vector catch debug events yet.
1037 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
1038 .access
= PL1_RW
, .accessfn
= access_tda
,
1039 .type
= ARM_CP_NOP
},
1041 * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
1042 * Channel but Linux may try to access this register. The 32-bit
1043 * alias is DBGDCCINT.
1045 { .name
= "MDCCINT_EL1", .state
= ARM_CP_STATE_BOTH
,
1046 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
1047 .access
= PL1_RW
, .accessfn
= access_tdcc
,
1048 .type
= ARM_CP_NOP
},
1050 * Dummy DBGCLAIM registers.
1051 * "The architecture does not define any functionality for the CLAIM tag bits.",
1052 * so we only keep the raw bits
1054 { .name
= "DBGCLAIMSET_EL1", .state
= ARM_CP_STATE_BOTH
,
1055 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 6,
1056 .type
= ARM_CP_ALIAS
,
1057 .access
= PL1_RW
, .accessfn
= access_tda
,
1058 .fgt
= FGT_DBGCLAIM
,
1059 .writefn
= dbgclaimset_write
, .readfn
= dbgclaimset_read
},
1060 { .name
= "DBGCLAIMCLR_EL1", .state
= ARM_CP_STATE_BOTH
,
1061 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 7, .crm
= 9, .opc2
= 6,
1062 .access
= PL1_RW
, .accessfn
= access_tda
,
1063 .fgt
= FGT_DBGCLAIM
,
1064 .writefn
= dbgclaimclr_write
, .raw_writefn
= raw_write
,
1065 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgclaim
) },
1068 /* These are present only when EL1 supports AArch32 */
1069 static const ARMCPRegInfo debug_aa32_el1_reginfo
[] = {
1071 * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
1072 * to save and restore a 32-bit guest's DBGVCR)
1074 { .name
= "DBGVCR32_EL2", .state
= ARM_CP_STATE_AA64
,
1075 .opc0
= 2, .opc1
= 4, .crn
= 0, .crm
= 7, .opc2
= 0,
1076 .access
= PL2_RW
, .accessfn
= access_dbgvcr32
,
1077 .type
= ARM_CP_NOP
| ARM_CP_EL3_NO_EL2_KEEP
},
1080 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
1081 /* 64 bit access versions of the (dummy) debug registers */
1082 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1083 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
| ARM_CP_NO_GDB
,
1085 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1086 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
| ARM_CP_NO_GDB
,
1090 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1093 ARMCPU
*cpu
= env_archcpu(env
);
1097 * Bits [1:0] are RES0.
1099 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
1100 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
1101 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
1102 * whether the RESS bits are ignored when comparing an address.
1104 * Therefore we are allowed to compare the entire register, which lets
1105 * us avoid considering whether or not FEAT_LVA is actually enabled.
1109 raw_write(env
, ri
, value
);
1110 if (tcg_enabled()) {
1111 hw_watchpoint_update(cpu
, i
);
1115 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1118 ARMCPU
*cpu
= env_archcpu(env
);
1121 raw_write(env
, ri
, value
);
1122 if (tcg_enabled()) {
1123 hw_watchpoint_update(cpu
, i
);
1127 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1130 ARMCPU
*cpu
= env_archcpu(env
);
1133 raw_write(env
, ri
, value
);
1134 if (tcg_enabled()) {
1135 hw_breakpoint_update(cpu
, i
);
1139 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1142 ARMCPU
*cpu
= env_archcpu(env
);
1146 * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
1149 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
1150 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
1152 raw_write(env
, ri
, value
);
1153 if (tcg_enabled()) {
1154 hw_breakpoint_update(cpu
, i
);
1158 void define_debug_regs(ARMCPU
*cpu
)
1161 * Define v7 and v8 architectural debug registers.
1162 * These are just dummy implementations for now.
1165 int wrps
, brps
, ctx_cmps
;
1168 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1169 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
1170 * the register must not exist for this cpu.
1172 if (cpu
->isar
.dbgdidr
!= 0) {
1173 ARMCPRegInfo dbgdidr
= {
1174 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0,
1175 .opc1
= 0, .opc2
= 0,
1176 .access
= PL0_R
, .accessfn
= access_tda
,
1177 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->isar
.dbgdidr
,
1179 define_one_arm_cp_reg(cpu
, &dbgdidr
);
1183 * DBGDEVID is present in the v7 debug architecture if
1184 * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1185 * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1186 * from v7.1 of the debug architecture. Because no fields have yet
1187 * been defined in DBGDEVID2 (and quite possibly none will ever
1188 * be) we don't define an ARMISARegisters field for it.
1189 * These registers exist only if EL1 can use AArch32, but that
1190 * happens naturally because they are only PL1 accessible anyway.
1192 if (extract32(cpu
->isar
.dbgdidr
, 15, 1)) {
1193 ARMCPRegInfo dbgdevid
= {
1195 .cp
= 14, .opc1
= 0, .crn
= 7, .opc2
= 2, .crn
= 7,
1196 .access
= PL1_R
, .accessfn
= access_tda
,
1197 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->isar
.dbgdevid
,
1199 define_one_arm_cp_reg(cpu
, &dbgdevid
);
1201 if (cpu_isar_feature(aa32_debugv7p1
, cpu
)) {
1202 ARMCPRegInfo dbgdevid12
[] = {
1204 .name
= "DBGDEVID1",
1205 .cp
= 14, .opc1
= 0, .crn
= 7, .opc2
= 1, .crn
= 7,
1206 .access
= PL1_R
, .accessfn
= access_tda
,
1207 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->isar
.dbgdevid1
,
1209 .name
= "DBGDEVID2",
1210 .cp
= 14, .opc1
= 0, .crn
= 7, .opc2
= 0, .crn
= 7,
1211 .access
= PL1_R
, .accessfn
= access_tda
,
1212 .type
= ARM_CP_CONST
, .resetvalue
= 0,
1215 define_arm_cp_regs(cpu
, dbgdevid12
);
1218 brps
= arm_num_brps(cpu
);
1219 wrps
= arm_num_wrps(cpu
);
1220 ctx_cmps
= arm_num_ctx_cmps(cpu
);
1222 assert(ctx_cmps
<= brps
);
1224 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
1225 if (cpu_isar_feature(aa64_aa32_el1
, cpu
)) {
1226 define_arm_cp_regs(cpu
, debug_aa32_el1_reginfo
);
1229 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
1230 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
1233 for (i
= 0; i
< brps
; i
++) {
1234 char *dbgbvr_el1_name
= g_strdup_printf("DBGBVR%d_EL1", i
);
1235 char *dbgbcr_el1_name
= g_strdup_printf("DBGBCR%d_EL1", i
);
1236 ARMCPRegInfo dbgregs
[] = {
1237 { .name
= dbgbvr_el1_name
, .state
= ARM_CP_STATE_BOTH
,
1238 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
1239 .access
= PL1_RW
, .accessfn
= access_tda
,
1240 .fgt
= FGT_DBGBVRN_EL1
,
1241 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
1242 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
1244 { .name
= dbgbcr_el1_name
, .state
= ARM_CP_STATE_BOTH
,
1245 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
1246 .access
= PL1_RW
, .accessfn
= access_tda
,
1247 .fgt
= FGT_DBGBCRN_EL1
,
1248 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
1249 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
1252 define_arm_cp_regs(cpu
, dbgregs
);
1253 g_free(dbgbvr_el1_name
);
1254 g_free(dbgbcr_el1_name
);
1257 for (i
= 0; i
< wrps
; i
++) {
1258 char *dbgwvr_el1_name
= g_strdup_printf("DBGWVR%d_EL1", i
);
1259 char *dbgwcr_el1_name
= g_strdup_printf("DBGWCR%d_EL1", i
);
1260 ARMCPRegInfo dbgregs
[] = {
1261 { .name
= dbgwvr_el1_name
, .state
= ARM_CP_STATE_BOTH
,
1262 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
1263 .access
= PL1_RW
, .accessfn
= access_tda
,
1264 .fgt
= FGT_DBGWVRN_EL1
,
1265 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
1266 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
1268 { .name
= dbgwcr_el1_name
, .state
= ARM_CP_STATE_BOTH
,
1269 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
1270 .access
= PL1_RW
, .accessfn
= access_tda
,
1271 .fgt
= FGT_DBGWCRN_EL1
,
1272 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
1273 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
1276 define_arm_cp_regs(cpu
, dbgregs
);
1277 g_free(dbgwvr_el1_name
);
1278 g_free(dbgwcr_el1_name
);