target-ppc: Fix htab_mask calculation
[qemu/kevin.git] / arch_init.c
blobfe1727922cbaf120a7ff8c6985d3315cd9636f98
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "exec/ram_addr.h"
52 #include "hw/acpi/acpi.h"
53 #include "qemu/host-utils.h"
55 #ifdef DEBUG_ARCH_INIT
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 #ifdef TARGET_SPARC
64 int graphic_width = 1024;
65 int graphic_height = 768;
66 int graphic_depth = 8;
67 #else
68 int graphic_width = 800;
69 int graphic_height = 600;
70 int graphic_depth = 32;
71 #endif
74 #if defined(TARGET_ALPHA)
75 #define QEMU_ARCH QEMU_ARCH_ALPHA
76 #elif defined(TARGET_ARM)
77 #define QEMU_ARCH QEMU_ARCH_ARM
78 #elif defined(TARGET_CRIS)
79 #define QEMU_ARCH QEMU_ARCH_CRIS
80 #elif defined(TARGET_I386)
81 #define QEMU_ARCH QEMU_ARCH_I386
82 #elif defined(TARGET_M68K)
83 #define QEMU_ARCH QEMU_ARCH_M68K
84 #elif defined(TARGET_LM32)
85 #define QEMU_ARCH QEMU_ARCH_LM32
86 #elif defined(TARGET_MICROBLAZE)
87 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
88 #elif defined(TARGET_MIPS)
89 #define QEMU_ARCH QEMU_ARCH_MIPS
90 #elif defined(TARGET_MOXIE)
91 #define QEMU_ARCH QEMU_ARCH_MOXIE
92 #elif defined(TARGET_OPENRISC)
93 #define QEMU_ARCH QEMU_ARCH_OPENRISC
94 #elif defined(TARGET_PPC)
95 #define QEMU_ARCH QEMU_ARCH_PPC
96 #elif defined(TARGET_S390X)
97 #define QEMU_ARCH QEMU_ARCH_S390X
98 #elif defined(TARGET_SH4)
99 #define QEMU_ARCH QEMU_ARCH_SH4
100 #elif defined(TARGET_SPARC)
101 #define QEMU_ARCH QEMU_ARCH_SPARC
102 #elif defined(TARGET_XTENSA)
103 #define QEMU_ARCH QEMU_ARCH_XTENSA
104 #elif defined(TARGET_UNICORE32)
105 #define QEMU_ARCH QEMU_ARCH_UNICORE32
106 #endif
108 const uint32_t arch_type = QEMU_ARCH;
109 static bool mig_throttle_on;
110 static int dirty_rate_high_cnt;
111 static void check_guest_throttling(void);
113 /***********************************************************/
114 /* ram save/restore */
116 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
117 #define RAM_SAVE_FLAG_COMPRESS 0x02
118 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
119 #define RAM_SAVE_FLAG_PAGE 0x08
120 #define RAM_SAVE_FLAG_EOS 0x10
121 #define RAM_SAVE_FLAG_CONTINUE 0x20
122 #define RAM_SAVE_FLAG_XBZRLE 0x40
123 /* 0x80 is reserved in migration.h start with 0x100 next */
125 static struct defconfig_file {
126 const char *filename;
127 /* Indicates it is an user config file (disabled by -no-user-config) */
128 bool userconfig;
129 } default_config_files[] = {
130 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
131 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
132 { NULL }, /* end of list */
135 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
137 int qemu_read_default_config_files(bool userconfig)
139 int ret;
140 struct defconfig_file *f;
142 for (f = default_config_files; f->filename; f++) {
143 if (!userconfig && f->userconfig) {
144 continue;
146 ret = qemu_read_config_file(f->filename);
147 if (ret < 0 && ret != -ENOENT) {
148 return ret;
152 return 0;
155 static inline bool is_zero_range(uint8_t *p, uint64_t size)
157 return buffer_find_nonzero_offset(p, size) == size;
160 /* struct contains XBZRLE cache and a static page
161 used by the compression */
162 static struct {
163 /* buffer used for XBZRLE encoding */
164 uint8_t *encoded_buf;
165 /* buffer for storing page content */
166 uint8_t *current_buf;
167 /* Cache for XBZRLE */
168 PageCache *cache;
169 } XBZRLE = {
170 .encoded_buf = NULL,
171 .current_buf = NULL,
172 .cache = NULL,
174 /* buffer used for XBZRLE decoding */
175 static uint8_t *xbzrle_decoded_buf;
177 int64_t xbzrle_cache_resize(int64_t new_size)
179 if (new_size < TARGET_PAGE_SIZE) {
180 return -1;
183 if (XBZRLE.cache != NULL) {
184 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
185 TARGET_PAGE_SIZE;
187 return pow2floor(new_size);
190 /* accounting for migration statistics */
191 typedef struct AccountingInfo {
192 uint64_t dup_pages;
193 uint64_t skipped_pages;
194 uint64_t norm_pages;
195 uint64_t iterations;
196 uint64_t xbzrle_bytes;
197 uint64_t xbzrle_pages;
198 uint64_t xbzrle_cache_miss;
199 uint64_t xbzrle_overflows;
200 } AccountingInfo;
202 static AccountingInfo acct_info;
204 static void acct_clear(void)
206 memset(&acct_info, 0, sizeof(acct_info));
209 uint64_t dup_mig_bytes_transferred(void)
211 return acct_info.dup_pages * TARGET_PAGE_SIZE;
214 uint64_t dup_mig_pages_transferred(void)
216 return acct_info.dup_pages;
219 uint64_t skipped_mig_bytes_transferred(void)
221 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
224 uint64_t skipped_mig_pages_transferred(void)
226 return acct_info.skipped_pages;
229 uint64_t norm_mig_bytes_transferred(void)
231 return acct_info.norm_pages * TARGET_PAGE_SIZE;
234 uint64_t norm_mig_pages_transferred(void)
236 return acct_info.norm_pages;
239 uint64_t xbzrle_mig_bytes_transferred(void)
241 return acct_info.xbzrle_bytes;
244 uint64_t xbzrle_mig_pages_transferred(void)
246 return acct_info.xbzrle_pages;
249 uint64_t xbzrle_mig_pages_cache_miss(void)
251 return acct_info.xbzrle_cache_miss;
254 uint64_t xbzrle_mig_pages_overflow(void)
256 return acct_info.xbzrle_overflows;
259 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
260 int cont, int flag)
262 size_t size;
264 qemu_put_be64(f, offset | cont | flag);
265 size = 8;
267 if (!cont) {
268 qemu_put_byte(f, strlen(block->idstr));
269 qemu_put_buffer(f, (uint8_t *)block->idstr,
270 strlen(block->idstr));
271 size += 1 + strlen(block->idstr);
273 return size;
276 /* This is the last block that we have visited serching for dirty pages
278 static RAMBlock *last_seen_block;
279 /* This is the last block from where we have sent data */
280 static RAMBlock *last_sent_block;
281 static ram_addr_t last_offset;
282 static unsigned long *migration_bitmap;
283 static uint64_t migration_dirty_pages;
284 static uint32_t last_version;
285 static bool ram_bulk_stage;
287 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
288 * The important thing is that a stale (not-yet-0'd) page be replaced
289 * by the new data.
290 * As a bonus, if the page wasn't in the cache it gets added so that
291 * when a small write is made into the 0'd page it gets XBZRLE sent
293 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
295 if (ram_bulk_stage || !migrate_use_xbzrle()) {
296 return;
299 /* We don't care if this fails to allocate a new cache page
300 * as long as it updated an old one */
301 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE);
304 #define ENCODING_FLAG_XBZRLE 0x1
306 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
307 ram_addr_t current_addr, RAMBlock *block,
308 ram_addr_t offset, int cont, bool last_stage)
310 int encoded_len = 0, bytes_sent = -1;
311 uint8_t *prev_cached_page;
313 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
314 if (!last_stage) {
315 if (cache_insert(XBZRLE.cache, current_addr, current_data) == -1) {
316 return -1;
319 acct_info.xbzrle_cache_miss++;
320 return -1;
323 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
325 /* save current buffer into memory */
326 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
328 /* XBZRLE encoding (if there is no overflow) */
329 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
330 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
331 TARGET_PAGE_SIZE);
332 if (encoded_len == 0) {
333 DPRINTF("Skipping unmodified page\n");
334 return 0;
335 } else if (encoded_len == -1) {
336 DPRINTF("Overflow\n");
337 acct_info.xbzrle_overflows++;
338 /* update data in the cache */
339 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
340 return -1;
343 /* we need to update the data in the cache, in order to get the same data */
344 if (!last_stage) {
345 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
348 /* Send XBZRLE based compressed page */
349 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
350 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
351 qemu_put_be16(f, encoded_len);
352 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
353 bytes_sent += encoded_len + 1 + 2;
354 acct_info.xbzrle_pages++;
355 acct_info.xbzrle_bytes += bytes_sent;
357 return bytes_sent;
360 static inline
361 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
362 ram_addr_t start)
364 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
365 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
366 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
367 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
369 unsigned long next;
371 if (ram_bulk_stage && nr > base) {
372 next = nr + 1;
373 } else {
374 next = find_next_bit(migration_bitmap, size, nr);
377 if (next < size) {
378 clear_bit(next, migration_bitmap);
379 migration_dirty_pages--;
381 return (next - base) << TARGET_PAGE_BITS;
384 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
386 bool ret;
387 int nr = addr >> TARGET_PAGE_BITS;
389 ret = test_and_set_bit(nr, migration_bitmap);
391 if (!ret) {
392 migration_dirty_pages++;
394 return ret;
397 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
399 ram_addr_t addr;
400 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
402 /* start address is aligned at the start of a word? */
403 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
404 int k;
405 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
406 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
408 for (k = page; k < page + nr; k++) {
409 if (src[k]) {
410 unsigned long new_dirty;
411 new_dirty = ~migration_bitmap[k];
412 migration_bitmap[k] |= src[k];
413 new_dirty &= src[k];
414 migration_dirty_pages += ctpopl(new_dirty);
415 src[k] = 0;
418 } else {
419 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
420 if (cpu_physical_memory_get_dirty(start + addr,
421 TARGET_PAGE_SIZE,
422 DIRTY_MEMORY_MIGRATION)) {
423 cpu_physical_memory_reset_dirty(start + addr,
424 TARGET_PAGE_SIZE,
425 DIRTY_MEMORY_MIGRATION);
426 migration_bitmap_set_dirty(start + addr);
433 /* Needs iothread lock! */
435 static void migration_bitmap_sync(void)
437 RAMBlock *block;
438 uint64_t num_dirty_pages_init = migration_dirty_pages;
439 MigrationState *s = migrate_get_current();
440 static int64_t start_time;
441 static int64_t bytes_xfer_prev;
442 static int64_t num_dirty_pages_period;
443 int64_t end_time;
444 int64_t bytes_xfer_now;
446 if (!bytes_xfer_prev) {
447 bytes_xfer_prev = ram_bytes_transferred();
450 if (!start_time) {
451 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
454 trace_migration_bitmap_sync_start();
455 address_space_sync_dirty_bitmap(&address_space_memory);
457 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
458 migration_bitmap_sync_range(block->mr->ram_addr, block->length);
460 trace_migration_bitmap_sync_end(migration_dirty_pages
461 - num_dirty_pages_init);
462 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
463 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
465 /* more than 1 second = 1000 millisecons */
466 if (end_time > start_time + 1000) {
467 if (migrate_auto_converge()) {
468 /* The following detection logic can be refined later. For now:
469 Check to see if the dirtied bytes is 50% more than the approx.
470 amount of bytes that just got transferred since the last time we
471 were in this routine. If that happens >N times (for now N==4)
472 we turn on the throttle down logic */
473 bytes_xfer_now = ram_bytes_transferred();
474 if (s->dirty_pages_rate &&
475 (num_dirty_pages_period * TARGET_PAGE_SIZE >
476 (bytes_xfer_now - bytes_xfer_prev)/2) &&
477 (dirty_rate_high_cnt++ > 4)) {
478 trace_migration_throttle();
479 mig_throttle_on = true;
480 dirty_rate_high_cnt = 0;
482 bytes_xfer_prev = bytes_xfer_now;
483 } else {
484 mig_throttle_on = false;
486 s->dirty_pages_rate = num_dirty_pages_period * 1000
487 / (end_time - start_time);
488 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
489 start_time = end_time;
490 num_dirty_pages_period = 0;
495 * ram_save_block: Writes a page of memory to the stream f
497 * Returns: The number of bytes written.
498 * 0 means no dirty pages
501 static int ram_save_block(QEMUFile *f, bool last_stage)
503 RAMBlock *block = last_seen_block;
504 ram_addr_t offset = last_offset;
505 bool complete_round = false;
506 int bytes_sent = 0;
507 MemoryRegion *mr;
508 ram_addr_t current_addr;
510 if (!block)
511 block = QTAILQ_FIRST(&ram_list.blocks);
513 while (true) {
514 mr = block->mr;
515 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
516 if (complete_round && block == last_seen_block &&
517 offset >= last_offset) {
518 break;
520 if (offset >= block->length) {
521 offset = 0;
522 block = QTAILQ_NEXT(block, next);
523 if (!block) {
524 block = QTAILQ_FIRST(&ram_list.blocks);
525 complete_round = true;
526 ram_bulk_stage = false;
528 } else {
529 int ret;
530 uint8_t *p;
531 bool send_async = true;
532 int cont = (block == last_sent_block) ?
533 RAM_SAVE_FLAG_CONTINUE : 0;
535 p = memory_region_get_ram_ptr(mr) + offset;
537 /* In doubt sent page as normal */
538 bytes_sent = -1;
539 ret = ram_control_save_page(f, block->offset,
540 offset, TARGET_PAGE_SIZE, &bytes_sent);
542 current_addr = block->offset + offset;
543 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
544 if (ret != RAM_SAVE_CONTROL_DELAYED) {
545 if (bytes_sent > 0) {
546 acct_info.norm_pages++;
547 } else if (bytes_sent == 0) {
548 acct_info.dup_pages++;
551 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
552 acct_info.dup_pages++;
553 bytes_sent = save_block_hdr(f, block, offset, cont,
554 RAM_SAVE_FLAG_COMPRESS);
555 qemu_put_byte(f, 0);
556 bytes_sent++;
557 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
558 * page would be stale
560 xbzrle_cache_zero_page(current_addr);
561 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
562 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
563 offset, cont, last_stage);
564 if (!last_stage) {
565 /* We must send exactly what's in the xbzrle cache
566 * even if the page wasn't xbzrle compressed, so that
567 * it's right next time.
569 p = get_cached_data(XBZRLE.cache, current_addr);
571 /* Can't send this cached data async, since the cache page
572 * might get updated before it gets to the wire
574 send_async = false;
578 /* XBZRLE overflow or normal page */
579 if (bytes_sent == -1) {
580 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
581 if (send_async) {
582 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
583 } else {
584 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
586 bytes_sent += TARGET_PAGE_SIZE;
587 acct_info.norm_pages++;
590 /* if page is unmodified, continue to the next */
591 if (bytes_sent > 0) {
592 last_sent_block = block;
593 break;
597 last_seen_block = block;
598 last_offset = offset;
600 return bytes_sent;
603 static uint64_t bytes_transferred;
605 void acct_update_position(QEMUFile *f, size_t size, bool zero)
607 uint64_t pages = size / TARGET_PAGE_SIZE;
608 if (zero) {
609 acct_info.dup_pages += pages;
610 } else {
611 acct_info.norm_pages += pages;
612 bytes_transferred += size;
613 qemu_update_position(f, size);
617 static ram_addr_t ram_save_remaining(void)
619 return migration_dirty_pages;
622 uint64_t ram_bytes_remaining(void)
624 return ram_save_remaining() * TARGET_PAGE_SIZE;
627 uint64_t ram_bytes_transferred(void)
629 return bytes_transferred;
632 uint64_t ram_bytes_total(void)
634 RAMBlock *block;
635 uint64_t total = 0;
637 QTAILQ_FOREACH(block, &ram_list.blocks, next)
638 total += block->length;
640 return total;
643 void free_xbzrle_decoded_buf(void)
645 g_free(xbzrle_decoded_buf);
646 xbzrle_decoded_buf = NULL;
649 static void migration_end(void)
651 if (migration_bitmap) {
652 memory_global_dirty_log_stop();
653 g_free(migration_bitmap);
654 migration_bitmap = NULL;
657 if (XBZRLE.cache) {
658 cache_fini(XBZRLE.cache);
659 g_free(XBZRLE.cache);
660 g_free(XBZRLE.encoded_buf);
661 g_free(XBZRLE.current_buf);
662 XBZRLE.cache = NULL;
663 XBZRLE.encoded_buf = NULL;
664 XBZRLE.current_buf = NULL;
668 static void ram_migration_cancel(void *opaque)
670 migration_end();
673 static void reset_ram_globals(void)
675 last_seen_block = NULL;
676 last_sent_block = NULL;
677 last_offset = 0;
678 last_version = ram_list.version;
679 ram_bulk_stage = true;
682 #define MAX_WAIT 50 /* ms, half buffered_file limit */
684 static int ram_save_setup(QEMUFile *f, void *opaque)
686 RAMBlock *block;
687 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
689 migration_bitmap = bitmap_new(ram_pages);
690 bitmap_set(migration_bitmap, 0, ram_pages);
691 migration_dirty_pages = ram_pages;
692 mig_throttle_on = false;
693 dirty_rate_high_cnt = 0;
695 if (migrate_use_xbzrle()) {
696 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
697 TARGET_PAGE_SIZE,
698 TARGET_PAGE_SIZE);
699 if (!XBZRLE.cache) {
700 DPRINTF("Error creating cache\n");
701 return -1;
704 /* We prefer not to abort if there is no memory */
705 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
706 if (!XBZRLE.encoded_buf) {
707 DPRINTF("Error allocating encoded_buf\n");
708 return -1;
711 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
712 if (!XBZRLE.current_buf) {
713 DPRINTF("Error allocating current_buf\n");
714 g_free(XBZRLE.encoded_buf);
715 XBZRLE.encoded_buf = NULL;
716 return -1;
719 acct_clear();
722 qemu_mutex_lock_iothread();
723 qemu_mutex_lock_ramlist();
724 bytes_transferred = 0;
725 reset_ram_globals();
727 memory_global_dirty_log_start();
728 migration_bitmap_sync();
729 qemu_mutex_unlock_iothread();
731 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
733 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
734 qemu_put_byte(f, strlen(block->idstr));
735 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
736 qemu_put_be64(f, block->length);
739 qemu_mutex_unlock_ramlist();
741 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
742 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
744 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
746 return 0;
749 static int ram_save_iterate(QEMUFile *f, void *opaque)
751 int ret;
752 int i;
753 int64_t t0;
754 int total_sent = 0;
756 qemu_mutex_lock_ramlist();
758 if (ram_list.version != last_version) {
759 reset_ram_globals();
762 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
764 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
765 i = 0;
766 while ((ret = qemu_file_rate_limit(f)) == 0) {
767 int bytes_sent;
769 bytes_sent = ram_save_block(f, false);
770 /* no more blocks to sent */
771 if (bytes_sent == 0) {
772 break;
774 total_sent += bytes_sent;
775 acct_info.iterations++;
776 check_guest_throttling();
777 /* we want to check in the 1st loop, just in case it was the 1st time
778 and we had to sync the dirty bitmap.
779 qemu_get_clock_ns() is a bit expensive, so we only check each some
780 iterations
782 if ((i & 63) == 0) {
783 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
784 if (t1 > MAX_WAIT) {
785 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
786 t1, i);
787 break;
790 i++;
793 qemu_mutex_unlock_ramlist();
796 * Must occur before EOS (or any QEMUFile operation)
797 * because of RDMA protocol.
799 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
801 bytes_transferred += total_sent;
804 * Do not count these 8 bytes into total_sent, so that we can
805 * return 0 if no page had been dirtied.
807 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
808 bytes_transferred += 8;
810 ret = qemu_file_get_error(f);
811 if (ret < 0) {
812 return ret;
815 return total_sent;
818 static int ram_save_complete(QEMUFile *f, void *opaque)
820 qemu_mutex_lock_ramlist();
821 migration_bitmap_sync();
823 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
825 /* try transferring iterative blocks of memory */
827 /* flush all remaining blocks regardless of rate limiting */
828 while (true) {
829 int bytes_sent;
831 bytes_sent = ram_save_block(f, true);
832 /* no more blocks to sent */
833 if (bytes_sent == 0) {
834 break;
836 bytes_transferred += bytes_sent;
839 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
840 migration_end();
842 qemu_mutex_unlock_ramlist();
843 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
845 return 0;
848 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
850 uint64_t remaining_size;
852 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
854 if (remaining_size < max_size) {
855 qemu_mutex_lock_iothread();
856 migration_bitmap_sync();
857 qemu_mutex_unlock_iothread();
858 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
860 return remaining_size;
863 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
865 int ret, rc = 0;
866 unsigned int xh_len;
867 int xh_flags;
869 if (!xbzrle_decoded_buf) {
870 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
873 /* extract RLE header */
874 xh_flags = qemu_get_byte(f);
875 xh_len = qemu_get_be16(f);
877 if (xh_flags != ENCODING_FLAG_XBZRLE) {
878 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
879 return -1;
882 if (xh_len > TARGET_PAGE_SIZE) {
883 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
884 return -1;
886 /* load data and decode */
887 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
889 /* decode RLE */
890 ret = xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
891 TARGET_PAGE_SIZE);
892 if (ret == -1) {
893 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
894 rc = -1;
895 } else if (ret > TARGET_PAGE_SIZE) {
896 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
897 ret, TARGET_PAGE_SIZE);
898 abort();
901 return rc;
904 static inline void *host_from_stream_offset(QEMUFile *f,
905 ram_addr_t offset,
906 int flags)
908 static RAMBlock *block = NULL;
909 char id[256];
910 uint8_t len;
912 if (flags & RAM_SAVE_FLAG_CONTINUE) {
913 if (!block) {
914 fprintf(stderr, "Ack, bad migration stream!\n");
915 return NULL;
918 return memory_region_get_ram_ptr(block->mr) + offset;
921 len = qemu_get_byte(f);
922 qemu_get_buffer(f, (uint8_t *)id, len);
923 id[len] = 0;
925 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
926 if (!strncmp(id, block->idstr, sizeof(id)))
927 return memory_region_get_ram_ptr(block->mr) + offset;
930 fprintf(stderr, "Can't find block %s!\n", id);
931 return NULL;
935 * If a page (or a whole RDMA chunk) has been
936 * determined to be zero, then zap it.
938 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
940 if (ch != 0 || !is_zero_range(host, size)) {
941 memset(host, ch, size);
945 static int ram_load(QEMUFile *f, void *opaque, int version_id)
947 ram_addr_t addr;
948 int flags, ret = 0;
949 int error;
950 static uint64_t seq_iter;
952 seq_iter++;
954 if (version_id < 4 || version_id > 4) {
955 return -EINVAL;
958 do {
959 addr = qemu_get_be64(f);
961 flags = addr & ~TARGET_PAGE_MASK;
962 addr &= TARGET_PAGE_MASK;
964 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
965 if (version_id == 4) {
966 /* Synchronize RAM block list */
967 char id[256];
968 ram_addr_t length;
969 ram_addr_t total_ram_bytes = addr;
971 while (total_ram_bytes) {
972 RAMBlock *block;
973 uint8_t len;
975 len = qemu_get_byte(f);
976 qemu_get_buffer(f, (uint8_t *)id, len);
977 id[len] = 0;
978 length = qemu_get_be64(f);
980 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
981 if (!strncmp(id, block->idstr, sizeof(id))) {
982 if (block->length != length) {
983 fprintf(stderr,
984 "Length mismatch: %s: " RAM_ADDR_FMT
985 " in != " RAM_ADDR_FMT "\n", id, length,
986 block->length);
987 ret = -EINVAL;
988 goto done;
990 break;
994 if (!block) {
995 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
996 "accept migration\n", id);
997 ret = -EINVAL;
998 goto done;
1001 total_ram_bytes -= length;
1006 if (flags & RAM_SAVE_FLAG_COMPRESS) {
1007 void *host;
1008 uint8_t ch;
1010 host = host_from_stream_offset(f, addr, flags);
1011 if (!host) {
1012 return -EINVAL;
1015 ch = qemu_get_byte(f);
1016 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1017 } else if (flags & RAM_SAVE_FLAG_PAGE) {
1018 void *host;
1020 host = host_from_stream_offset(f, addr, flags);
1021 if (!host) {
1022 return -EINVAL;
1025 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1026 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
1027 void *host = host_from_stream_offset(f, addr, flags);
1028 if (!host) {
1029 return -EINVAL;
1032 if (load_xbzrle(f, addr, host) < 0) {
1033 ret = -EINVAL;
1034 goto done;
1036 } else if (flags & RAM_SAVE_FLAG_HOOK) {
1037 ram_control_load_hook(f, flags);
1039 error = qemu_file_get_error(f);
1040 if (error) {
1041 ret = error;
1042 goto done;
1044 } while (!(flags & RAM_SAVE_FLAG_EOS));
1046 done:
1047 DPRINTF("Completed load of VM with exit code %d seq iteration "
1048 "%" PRIu64 "\n", ret, seq_iter);
1049 return ret;
1052 SaveVMHandlers savevm_ram_handlers = {
1053 .save_live_setup = ram_save_setup,
1054 .save_live_iterate = ram_save_iterate,
1055 .save_live_complete = ram_save_complete,
1056 .save_live_pending = ram_save_pending,
1057 .load_state = ram_load,
1058 .cancel = ram_migration_cancel,
1061 struct soundhw {
1062 const char *name;
1063 const char *descr;
1064 int enabled;
1065 int isa;
1066 union {
1067 int (*init_isa) (ISABus *bus);
1068 int (*init_pci) (PCIBus *bus);
1069 } init;
1072 static struct soundhw soundhw[9];
1073 static int soundhw_count;
1075 void isa_register_soundhw(const char *name, const char *descr,
1076 int (*init_isa)(ISABus *bus))
1078 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1079 soundhw[soundhw_count].name = name;
1080 soundhw[soundhw_count].descr = descr;
1081 soundhw[soundhw_count].isa = 1;
1082 soundhw[soundhw_count].init.init_isa = init_isa;
1083 soundhw_count++;
1086 void pci_register_soundhw(const char *name, const char *descr,
1087 int (*init_pci)(PCIBus *bus))
1089 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1090 soundhw[soundhw_count].name = name;
1091 soundhw[soundhw_count].descr = descr;
1092 soundhw[soundhw_count].isa = 0;
1093 soundhw[soundhw_count].init.init_pci = init_pci;
1094 soundhw_count++;
1097 void select_soundhw(const char *optarg)
1099 struct soundhw *c;
1101 if (is_help_option(optarg)) {
1102 show_valid_cards:
1104 if (soundhw_count) {
1105 printf("Valid sound card names (comma separated):\n");
1106 for (c = soundhw; c->name; ++c) {
1107 printf ("%-11s %s\n", c->name, c->descr);
1109 printf("\n-soundhw all will enable all of the above\n");
1110 } else {
1111 printf("Machine has no user-selectable audio hardware "
1112 "(it may or may not have always-present audio hardware).\n");
1114 exit(!is_help_option(optarg));
1116 else {
1117 size_t l;
1118 const char *p;
1119 char *e;
1120 int bad_card = 0;
1122 if (!strcmp(optarg, "all")) {
1123 for (c = soundhw; c->name; ++c) {
1124 c->enabled = 1;
1126 return;
1129 p = optarg;
1130 while (*p) {
1131 e = strchr(p, ',');
1132 l = !e ? strlen(p) : (size_t) (e - p);
1134 for (c = soundhw; c->name; ++c) {
1135 if (!strncmp(c->name, p, l) && !c->name[l]) {
1136 c->enabled = 1;
1137 break;
1141 if (!c->name) {
1142 if (l > 80) {
1143 fprintf(stderr,
1144 "Unknown sound card name (too big to show)\n");
1146 else {
1147 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1148 (int) l, p);
1150 bad_card = 1;
1152 p += l + (e != NULL);
1155 if (bad_card) {
1156 goto show_valid_cards;
1161 void audio_init(void)
1163 struct soundhw *c;
1164 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1165 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1167 for (c = soundhw; c->name; ++c) {
1168 if (c->enabled) {
1169 if (c->isa) {
1170 if (!isa_bus) {
1171 fprintf(stderr, "ISA bus not available for %s\n", c->name);
1172 exit(1);
1174 c->init.init_isa(isa_bus);
1175 } else {
1176 if (!pci_bus) {
1177 fprintf(stderr, "PCI bus not available for %s\n", c->name);
1178 exit(1);
1180 c->init.init_pci(pci_bus);
1186 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1188 int ret;
1190 if (strlen(str) != 36) {
1191 return -1;
1194 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1195 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1196 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1197 &uuid[15]);
1199 if (ret != 16) {
1200 return -1;
1202 return 0;
1205 void do_acpitable_option(const QemuOpts *opts)
1207 #ifdef TARGET_I386
1208 Error *err = NULL;
1210 acpi_table_add(opts, &err);
1211 if (err) {
1212 error_report("Wrong acpi table provided: %s",
1213 error_get_pretty(err));
1214 error_free(err);
1215 exit(1);
1217 #endif
1220 void do_smbios_option(QemuOpts *opts)
1222 #ifdef TARGET_I386
1223 smbios_entry_add(opts);
1224 #endif
1227 void cpudef_init(void)
1229 #if defined(cpudef_setup)
1230 cpudef_setup(); /* parse cpu definitions in target config file */
1231 #endif
1234 int tcg_available(void)
1236 return 1;
1239 int kvm_available(void)
1241 #ifdef CONFIG_KVM
1242 return 1;
1243 #else
1244 return 0;
1245 #endif
1248 int xen_available(void)
1250 #ifdef CONFIG_XEN
1251 return 1;
1252 #else
1253 return 0;
1254 #endif
1258 TargetInfo *qmp_query_target(Error **errp)
1260 TargetInfo *info = g_malloc0(sizeof(*info));
1262 info->arch = g_strdup(TARGET_NAME);
1264 return info;
1267 /* Stub function that's gets run on the vcpu when its brought out of the
1268 VM to run inside qemu via async_run_on_cpu()*/
1269 static void mig_sleep_cpu(void *opq)
1271 qemu_mutex_unlock_iothread();
1272 g_usleep(30*1000);
1273 qemu_mutex_lock_iothread();
1276 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1277 much time in the VM. The migration thread will try to catchup.
1278 Workload will experience a performance drop.
1280 static void mig_throttle_guest_down(void)
1282 CPUState *cpu;
1284 qemu_mutex_lock_iothread();
1285 CPU_FOREACH(cpu) {
1286 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1288 qemu_mutex_unlock_iothread();
1291 static void check_guest_throttling(void)
1293 static int64_t t0;
1294 int64_t t1;
1296 if (!mig_throttle_on) {
1297 return;
1300 if (!t0) {
1301 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1302 return;
1305 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1307 /* If it has been more than 40 ms since the last time the guest
1308 * was throttled then do it again.
1310 if (40 < (t1-t0)/1000000) {
1311 mig_throttle_guest_down();
1312 t0 = t1;