2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
25 * See docs/system/nvme.rst for extensive documentation.
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
38 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
39 * zoned=<true|false[optional]>, \
40 * subsys=<subsys_id>,detached=<true|false[optional]>
42 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
43 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
44 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
45 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
47 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
49 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
50 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
52 * The PMR will use BAR 4/5 exclusively.
54 * To place controller(s) and namespace(s) to a subsystem, then provide
55 * nvme-subsys device as above.
57 * nvme subsystem device parameters
58 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60 * This parameter provides the `<nqn_id>` part of the string
61 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
62 * of subsystem controllers. Note that `<nqn_id>` should be unique per
63 * subsystem, but this is not enforced by QEMU. If not specified, it will
64 * default to the value of the `id` parameter (`<subsys_id>`).
66 * nvme device parameters
67 * ~~~~~~~~~~~~~~~~~~~~~~
69 * Specifying this parameter attaches the controller to the subsystem and
70 * the SUBNQN field in the controller will report the NQN of the subsystem
71 * device. This also enables multi controller capability represented in
72 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
73 * Namesapce Sharing Capabilities).
76 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
77 * of concurrently outstanding Asynchronous Event Request commands support
78 * by the controller. This is a 0's based value.
81 * This is the maximum number of events that the device will enqueue for
82 * completion when there are no outstanding AERs. When the maximum number of
83 * enqueued events are reached, subsequent events will be dropped.
86 * Indicates the maximum data transfer size for a command that transfers data
87 * between host-accessible memory and the controller. The value is specified
88 * as a power of two (2^n) and is in units of the minimum memory page size
89 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
92 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
93 * this value is specified as a power of two (2^n) and is in units of the
94 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
98 * Indicates the maximum data transfer size for the Zone Append command. Like
99 * `mdts`, the value is specified as a power of two (2^n) and is in units of
100 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
101 * defaulting to the value of `mdts`).
103 * nvme namespace device parameters
104 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
106 * When the parent nvme device (as defined explicitly by the 'bus' parameter
107 * or implicitly by the most recently defined NvmeBus) is linked to an
108 * nvme-subsys device, the namespace will be attached to all controllers in
109 * the subsystem. If set to 'off' (the default), the namespace will remain a
110 * private namespace and may only be attached to a single controller at a
114 * This parameter is only valid together with the `subsys` parameter. If left
115 * at the default value (`false/off`), the namespace will be attached to all
116 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
117 * namespace will be be available in the subsystem not not attached to any
120 * Setting `zoned` to true selects Zoned Command Set at the namespace.
121 * In this case, the following namespace properties are available to configure
123 * zoned.zone_size=<zone size in bytes, default: 128MiB>
124 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
126 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
127 * The value 0 (default) forces zone capacity to be the same as zone
128 * size. The value of this property may not exceed zone size.
130 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
131 * This value needs to be specified in 64B units. If it is zero,
132 * namespace(s) will not support zone descriptor extensions.
134 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
135 * The default value means there is no limit to the number of
136 * concurrently active zones.
138 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
139 * The default value means there is no limit to the number of
140 * concurrently open zones.
142 * zoned.cross_read=<enable RAZB, default: false>
143 * Setting this property to true enables Read Across Zone Boundaries.
146 #include "qemu/osdep.h"
147 #include "qemu/cutils.h"
148 #include "qemu/error-report.h"
149 #include "qemu/log.h"
150 #include "qemu/units.h"
151 #include "qapi/error.h"
152 #include "qapi/visitor.h"
153 #include "sysemu/sysemu.h"
154 #include "sysemu/block-backend.h"
155 #include "sysemu/hostmem.h"
156 #include "hw/pci/msix.h"
157 #include "migration/vmstate.h"
162 #define NVME_MAX_IOQPAIRS 0xffff
163 #define NVME_DB_SIZE 4
164 #define NVME_SPEC_VER 0x00010400
165 #define NVME_CMB_BIR 2
166 #define NVME_PMR_BIR 4
167 #define NVME_TEMPERATURE 0x143
168 #define NVME_TEMPERATURE_WARNING 0x157
169 #define NVME_TEMPERATURE_CRITICAL 0x175
170 #define NVME_NUM_FW_SLOTS 1
171 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
173 #define NVME_GUEST_ERR(trace, fmt, ...) \
175 (trace_##trace)(__VA_ARGS__); \
176 qemu_log_mask(LOG_GUEST_ERROR, #trace \
177 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
180 static const bool nvme_feature_support
[NVME_FID_MAX
] = {
181 [NVME_ARBITRATION
] = true,
182 [NVME_POWER_MANAGEMENT
] = true,
183 [NVME_TEMPERATURE_THRESHOLD
] = true,
184 [NVME_ERROR_RECOVERY
] = true,
185 [NVME_VOLATILE_WRITE_CACHE
] = true,
186 [NVME_NUMBER_OF_QUEUES
] = true,
187 [NVME_INTERRUPT_COALESCING
] = true,
188 [NVME_INTERRUPT_VECTOR_CONF
] = true,
189 [NVME_WRITE_ATOMICITY
] = true,
190 [NVME_ASYNCHRONOUS_EVENT_CONF
] = true,
191 [NVME_TIMESTAMP
] = true,
192 [NVME_COMMAND_SET_PROFILE
] = true,
195 static const uint32_t nvme_feature_cap
[NVME_FID_MAX
] = {
196 [NVME_TEMPERATURE_THRESHOLD
] = NVME_FEAT_CAP_CHANGE
,
197 [NVME_ERROR_RECOVERY
] = NVME_FEAT_CAP_CHANGE
| NVME_FEAT_CAP_NS
,
198 [NVME_VOLATILE_WRITE_CACHE
] = NVME_FEAT_CAP_CHANGE
,
199 [NVME_NUMBER_OF_QUEUES
] = NVME_FEAT_CAP_CHANGE
,
200 [NVME_ASYNCHRONOUS_EVENT_CONF
] = NVME_FEAT_CAP_CHANGE
,
201 [NVME_TIMESTAMP
] = NVME_FEAT_CAP_CHANGE
,
202 [NVME_COMMAND_SET_PROFILE
] = NVME_FEAT_CAP_CHANGE
,
205 static const uint32_t nvme_cse_acs
[256] = {
206 [NVME_ADM_CMD_DELETE_SQ
] = NVME_CMD_EFF_CSUPP
,
207 [NVME_ADM_CMD_CREATE_SQ
] = NVME_CMD_EFF_CSUPP
,
208 [NVME_ADM_CMD_GET_LOG_PAGE
] = NVME_CMD_EFF_CSUPP
,
209 [NVME_ADM_CMD_DELETE_CQ
] = NVME_CMD_EFF_CSUPP
,
210 [NVME_ADM_CMD_CREATE_CQ
] = NVME_CMD_EFF_CSUPP
,
211 [NVME_ADM_CMD_IDENTIFY
] = NVME_CMD_EFF_CSUPP
,
212 [NVME_ADM_CMD_ABORT
] = NVME_CMD_EFF_CSUPP
,
213 [NVME_ADM_CMD_SET_FEATURES
] = NVME_CMD_EFF_CSUPP
,
214 [NVME_ADM_CMD_GET_FEATURES
] = NVME_CMD_EFF_CSUPP
,
215 [NVME_ADM_CMD_ASYNC_EV_REQ
] = NVME_CMD_EFF_CSUPP
,
216 [NVME_ADM_CMD_NS_ATTACHMENT
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_NIC
,
217 [NVME_ADM_CMD_FORMAT_NVM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
220 static const uint32_t nvme_cse_iocs_none
[256];
222 static const uint32_t nvme_cse_iocs_nvm
[256] = {
223 [NVME_CMD_FLUSH
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
224 [NVME_CMD_WRITE_ZEROES
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
225 [NVME_CMD_WRITE
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
226 [NVME_CMD_READ
] = NVME_CMD_EFF_CSUPP
,
227 [NVME_CMD_DSM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
228 [NVME_CMD_VERIFY
] = NVME_CMD_EFF_CSUPP
,
229 [NVME_CMD_COPY
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
230 [NVME_CMD_COMPARE
] = NVME_CMD_EFF_CSUPP
,
233 static const uint32_t nvme_cse_iocs_zoned
[256] = {
234 [NVME_CMD_FLUSH
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
235 [NVME_CMD_WRITE_ZEROES
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
236 [NVME_CMD_WRITE
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
237 [NVME_CMD_READ
] = NVME_CMD_EFF_CSUPP
,
238 [NVME_CMD_DSM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
239 [NVME_CMD_VERIFY
] = NVME_CMD_EFF_CSUPP
,
240 [NVME_CMD_COPY
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
241 [NVME_CMD_COMPARE
] = NVME_CMD_EFF_CSUPP
,
242 [NVME_CMD_ZONE_APPEND
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
243 [NVME_CMD_ZONE_MGMT_SEND
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
244 [NVME_CMD_ZONE_MGMT_RECV
] = NVME_CMD_EFF_CSUPP
,
247 static void nvme_process_sq(void *opaque
);
249 static uint16_t nvme_sqid(NvmeRequest
*req
)
251 return le16_to_cpu(req
->sq
->sqid
);
254 static void nvme_assign_zone_state(NvmeNamespace
*ns
, NvmeZone
*zone
,
257 if (QTAILQ_IN_USE(zone
, entry
)) {
258 switch (nvme_get_zone_state(zone
)) {
259 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
260 QTAILQ_REMOVE(&ns
->exp_open_zones
, zone
, entry
);
262 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
263 QTAILQ_REMOVE(&ns
->imp_open_zones
, zone
, entry
);
265 case NVME_ZONE_STATE_CLOSED
:
266 QTAILQ_REMOVE(&ns
->closed_zones
, zone
, entry
);
268 case NVME_ZONE_STATE_FULL
:
269 QTAILQ_REMOVE(&ns
->full_zones
, zone
, entry
);
275 nvme_set_zone_state(zone
, state
);
278 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
279 QTAILQ_INSERT_TAIL(&ns
->exp_open_zones
, zone
, entry
);
281 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
282 QTAILQ_INSERT_TAIL(&ns
->imp_open_zones
, zone
, entry
);
284 case NVME_ZONE_STATE_CLOSED
:
285 QTAILQ_INSERT_TAIL(&ns
->closed_zones
, zone
, entry
);
287 case NVME_ZONE_STATE_FULL
:
288 QTAILQ_INSERT_TAIL(&ns
->full_zones
, zone
, entry
);
289 case NVME_ZONE_STATE_READ_ONLY
:
297 * Check if we can open a zone without exceeding open/active limits.
298 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
300 static int nvme_aor_check(NvmeNamespace
*ns
, uint32_t act
, uint32_t opn
)
302 if (ns
->params
.max_active_zones
!= 0 &&
303 ns
->nr_active_zones
+ act
> ns
->params
.max_active_zones
) {
304 trace_pci_nvme_err_insuff_active_res(ns
->params
.max_active_zones
);
305 return NVME_ZONE_TOO_MANY_ACTIVE
| NVME_DNR
;
307 if (ns
->params
.max_open_zones
!= 0 &&
308 ns
->nr_open_zones
+ opn
> ns
->params
.max_open_zones
) {
309 trace_pci_nvme_err_insuff_open_res(ns
->params
.max_open_zones
);
310 return NVME_ZONE_TOO_MANY_OPEN
| NVME_DNR
;
316 static bool nvme_addr_is_cmb(NvmeCtrl
*n
, hwaddr addr
)
324 lo
= n
->params
.legacy_cmb
? n
->cmb
.mem
.addr
: n
->cmb
.cba
;
325 hi
= lo
+ int128_get64(n
->cmb
.mem
.size
);
327 return addr
>= lo
&& addr
< hi
;
330 static inline void *nvme_addr_to_cmb(NvmeCtrl
*n
, hwaddr addr
)
332 hwaddr base
= n
->params
.legacy_cmb
? n
->cmb
.mem
.addr
: n
->cmb
.cba
;
333 return &n
->cmb
.buf
[addr
- base
];
336 static bool nvme_addr_is_pmr(NvmeCtrl
*n
, hwaddr addr
)
344 hi
= n
->pmr
.cba
+ int128_get64(n
->pmr
.dev
->mr
.size
);
346 return addr
>= n
->pmr
.cba
&& addr
< hi
;
349 static inline void *nvme_addr_to_pmr(NvmeCtrl
*n
, hwaddr addr
)
351 return memory_region_get_ram_ptr(&n
->pmr
.dev
->mr
) + (addr
- n
->pmr
.cba
);
354 static int nvme_addr_read(NvmeCtrl
*n
, hwaddr addr
, void *buf
, int size
)
356 hwaddr hi
= addr
+ size
- 1;
361 if (n
->bar
.cmbsz
&& nvme_addr_is_cmb(n
, addr
) && nvme_addr_is_cmb(n
, hi
)) {
362 memcpy(buf
, nvme_addr_to_cmb(n
, addr
), size
);
366 if (nvme_addr_is_pmr(n
, addr
) && nvme_addr_is_pmr(n
, hi
)) {
367 memcpy(buf
, nvme_addr_to_pmr(n
, addr
), size
);
371 return pci_dma_read(&n
->parent_obj
, addr
, buf
, size
);
374 static int nvme_addr_write(NvmeCtrl
*n
, hwaddr addr
, void *buf
, int size
)
376 hwaddr hi
= addr
+ size
- 1;
381 if (n
->bar
.cmbsz
&& nvme_addr_is_cmb(n
, addr
) && nvme_addr_is_cmb(n
, hi
)) {
382 memcpy(nvme_addr_to_cmb(n
, addr
), buf
, size
);
386 if (nvme_addr_is_pmr(n
, addr
) && nvme_addr_is_pmr(n
, hi
)) {
387 memcpy(nvme_addr_to_pmr(n
, addr
), buf
, size
);
391 return pci_dma_write(&n
->parent_obj
, addr
, buf
, size
);
394 static bool nvme_nsid_valid(NvmeCtrl
*n
, uint32_t nsid
)
397 (nsid
== NVME_NSID_BROADCAST
|| nsid
<= NVME_MAX_NAMESPACES
);
400 static int nvme_check_sqid(NvmeCtrl
*n
, uint16_t sqid
)
402 return sqid
< n
->params
.max_ioqpairs
+ 1 && n
->sq
[sqid
] != NULL
? 0 : -1;
405 static int nvme_check_cqid(NvmeCtrl
*n
, uint16_t cqid
)
407 return cqid
< n
->params
.max_ioqpairs
+ 1 && n
->cq
[cqid
] != NULL
? 0 : -1;
410 static void nvme_inc_cq_tail(NvmeCQueue
*cq
)
413 if (cq
->tail
>= cq
->size
) {
415 cq
->phase
= !cq
->phase
;
419 static void nvme_inc_sq_head(NvmeSQueue
*sq
)
421 sq
->head
= (sq
->head
+ 1) % sq
->size
;
424 static uint8_t nvme_cq_full(NvmeCQueue
*cq
)
426 return (cq
->tail
+ 1) % cq
->size
== cq
->head
;
429 static uint8_t nvme_sq_empty(NvmeSQueue
*sq
)
431 return sq
->head
== sq
->tail
;
434 static void nvme_irq_check(NvmeCtrl
*n
)
436 if (msix_enabled(&(n
->parent_obj
))) {
439 if (~n
->bar
.intms
& n
->irq_status
) {
440 pci_irq_assert(&n
->parent_obj
);
442 pci_irq_deassert(&n
->parent_obj
);
446 static void nvme_irq_assert(NvmeCtrl
*n
, NvmeCQueue
*cq
)
448 if (cq
->irq_enabled
) {
449 if (msix_enabled(&(n
->parent_obj
))) {
450 trace_pci_nvme_irq_msix(cq
->vector
);
451 msix_notify(&(n
->parent_obj
), cq
->vector
);
453 trace_pci_nvme_irq_pin();
454 assert(cq
->vector
< 32);
455 n
->irq_status
|= 1 << cq
->vector
;
459 trace_pci_nvme_irq_masked();
463 static void nvme_irq_deassert(NvmeCtrl
*n
, NvmeCQueue
*cq
)
465 if (cq
->irq_enabled
) {
466 if (msix_enabled(&(n
->parent_obj
))) {
469 assert(cq
->vector
< 32);
470 n
->irq_status
&= ~(1 << cq
->vector
);
476 static void nvme_req_clear(NvmeRequest
*req
)
481 memset(&req
->cqe
, 0x0, sizeof(req
->cqe
));
482 req
->status
= NVME_SUCCESS
;
485 static inline void nvme_sg_init(NvmeCtrl
*n
, NvmeSg
*sg
, bool dma
)
488 pci_dma_sglist_init(&sg
->qsg
, &n
->parent_obj
, 0);
489 sg
->flags
= NVME_SG_DMA
;
491 qemu_iovec_init(&sg
->iov
, 0);
494 sg
->flags
|= NVME_SG_ALLOC
;
497 static inline void nvme_sg_unmap(NvmeSg
*sg
)
499 if (!(sg
->flags
& NVME_SG_ALLOC
)) {
503 if (sg
->flags
& NVME_SG_DMA
) {
504 qemu_sglist_destroy(&sg
->qsg
);
506 qemu_iovec_destroy(&sg
->iov
);
509 memset(sg
, 0x0, sizeof(*sg
));
513 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
514 * holds both data and metadata. This function splits the data and metadata
515 * into two separate QSG/IOVs.
517 static void nvme_sg_split(NvmeSg
*sg
, NvmeNamespace
*ns
, NvmeSg
*data
,
521 uint32_t trans_len
, count
= ns
->lbasz
;
523 bool dma
= sg
->flags
& NVME_SG_DMA
;
525 size_t sg_len
= dma
? sg
->qsg
.size
: sg
->iov
.size
;
528 assert(sg
->flags
& NVME_SG_ALLOC
);
531 sge_len
= dma
? sg
->qsg
.sg
[sg_idx
].len
: sg
->iov
.iov
[sg_idx
].iov_len
;
533 trans_len
= MIN(sg_len
, count
);
534 trans_len
= MIN(trans_len
, sge_len
- offset
);
538 qemu_sglist_add(&dst
->qsg
, sg
->qsg
.sg
[sg_idx
].base
+ offset
,
541 qemu_iovec_add(&dst
->iov
,
542 sg
->iov
.iov
[sg_idx
].iov_base
+ offset
,
552 dst
= (dst
== data
) ? mdata
: data
;
553 count
= (dst
== data
) ? ns
->lbasz
: ns
->lbaf
.ms
;
556 if (sge_len
== offset
) {
563 static uint16_t nvme_map_addr_cmb(NvmeCtrl
*n
, QEMUIOVector
*iov
, hwaddr addr
,
570 trace_pci_nvme_map_addr_cmb(addr
, len
);
572 if (!nvme_addr_is_cmb(n
, addr
) || !nvme_addr_is_cmb(n
, addr
+ len
- 1)) {
573 return NVME_DATA_TRAS_ERROR
;
576 qemu_iovec_add(iov
, nvme_addr_to_cmb(n
, addr
), len
);
581 static uint16_t nvme_map_addr_pmr(NvmeCtrl
*n
, QEMUIOVector
*iov
, hwaddr addr
,
588 if (!nvme_addr_is_pmr(n
, addr
) || !nvme_addr_is_pmr(n
, addr
+ len
- 1)) {
589 return NVME_DATA_TRAS_ERROR
;
592 qemu_iovec_add(iov
, nvme_addr_to_pmr(n
, addr
), len
);
597 static uint16_t nvme_map_addr(NvmeCtrl
*n
, NvmeSg
*sg
, hwaddr addr
, size_t len
)
599 bool cmb
= false, pmr
= false;
605 trace_pci_nvme_map_addr(addr
, len
);
607 if (nvme_addr_is_cmb(n
, addr
)) {
609 } else if (nvme_addr_is_pmr(n
, addr
)) {
614 if (sg
->flags
& NVME_SG_DMA
) {
615 return NVME_INVALID_USE_OF_CMB
| NVME_DNR
;
619 return nvme_map_addr_cmb(n
, &sg
->iov
, addr
, len
);
621 return nvme_map_addr_pmr(n
, &sg
->iov
, addr
, len
);
625 if (!(sg
->flags
& NVME_SG_DMA
)) {
626 return NVME_INVALID_USE_OF_CMB
| NVME_DNR
;
629 qemu_sglist_add(&sg
->qsg
, addr
, len
);
634 static inline bool nvme_addr_is_dma(NvmeCtrl
*n
, hwaddr addr
)
636 return !(nvme_addr_is_cmb(n
, addr
) || nvme_addr_is_pmr(n
, addr
));
639 static uint16_t nvme_map_prp(NvmeCtrl
*n
, NvmeSg
*sg
, uint64_t prp1
,
640 uint64_t prp2
, uint32_t len
)
642 hwaddr trans_len
= n
->page_size
- (prp1
% n
->page_size
);
643 trans_len
= MIN(len
, trans_len
);
644 int num_prps
= (len
>> n
->page_bits
) + 1;
648 trace_pci_nvme_map_prp(trans_len
, len
, prp1
, prp2
, num_prps
);
650 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, prp1
));
652 status
= nvme_map_addr(n
, sg
, prp1
, trans_len
);
659 if (len
> n
->page_size
) {
660 uint64_t prp_list
[n
->max_prp_ents
];
661 uint32_t nents
, prp_trans
;
665 * The first PRP list entry, pointed to by PRP2 may contain offset.
666 * Hence, we need to calculate the number of entries in based on
669 nents
= (n
->page_size
- (prp2
& (n
->page_size
- 1))) >> 3;
670 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
671 ret
= nvme_addr_read(n
, prp2
, (void *)prp_list
, prp_trans
);
673 trace_pci_nvme_err_addr_read(prp2
);
674 status
= NVME_DATA_TRAS_ERROR
;
678 uint64_t prp_ent
= le64_to_cpu(prp_list
[i
]);
680 if (i
== nents
- 1 && len
> n
->page_size
) {
681 if (unlikely(prp_ent
& (n
->page_size
- 1))) {
682 trace_pci_nvme_err_invalid_prplist_ent(prp_ent
);
683 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
688 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
689 nents
= MIN(nents
, n
->max_prp_ents
);
690 prp_trans
= nents
* sizeof(uint64_t);
691 ret
= nvme_addr_read(n
, prp_ent
, (void *)prp_list
,
694 trace_pci_nvme_err_addr_read(prp_ent
);
695 status
= NVME_DATA_TRAS_ERROR
;
698 prp_ent
= le64_to_cpu(prp_list
[i
]);
701 if (unlikely(prp_ent
& (n
->page_size
- 1))) {
702 trace_pci_nvme_err_invalid_prplist_ent(prp_ent
);
703 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
707 trans_len
= MIN(len
, n
->page_size
);
708 status
= nvme_map_addr(n
, sg
, prp_ent
, trans_len
);
717 if (unlikely(prp2
& (n
->page_size
- 1))) {
718 trace_pci_nvme_err_invalid_prp2_align(prp2
);
719 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
722 status
= nvme_map_addr(n
, sg
, prp2
, len
);
737 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
738 * number of bytes mapped in len.
740 static uint16_t nvme_map_sgl_data(NvmeCtrl
*n
, NvmeSg
*sg
,
741 NvmeSglDescriptor
*segment
, uint64_t nsgld
,
742 size_t *len
, NvmeCmd
*cmd
)
744 dma_addr_t addr
, trans_len
;
748 for (int i
= 0; i
< nsgld
; i
++) {
749 uint8_t type
= NVME_SGL_TYPE(segment
[i
].type
);
752 case NVME_SGL_DESCR_TYPE_BIT_BUCKET
:
753 if (cmd
->opcode
== NVME_CMD_WRITE
) {
756 case NVME_SGL_DESCR_TYPE_DATA_BLOCK
:
758 case NVME_SGL_DESCR_TYPE_SEGMENT
:
759 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT
:
760 return NVME_INVALID_NUM_SGL_DESCRS
| NVME_DNR
;
762 return NVME_SGL_DESCR_TYPE_INVALID
| NVME_DNR
;
765 dlen
= le32_to_cpu(segment
[i
].len
);
773 * All data has been mapped, but the SGL contains additional
774 * segments and/or descriptors. The controller might accept
775 * ignoring the rest of the SGL.
777 uint32_t sgls
= le32_to_cpu(n
->id_ctrl
.sgls
);
778 if (sgls
& NVME_CTRL_SGLS_EXCESS_LENGTH
) {
782 trace_pci_nvme_err_invalid_sgl_excess_length(dlen
);
783 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
786 trans_len
= MIN(*len
, dlen
);
788 if (type
== NVME_SGL_DESCR_TYPE_BIT_BUCKET
) {
792 addr
= le64_to_cpu(segment
[i
].addr
);
794 if (UINT64_MAX
- addr
< dlen
) {
795 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
798 status
= nvme_map_addr(n
, sg
, addr
, trans_len
);
810 static uint16_t nvme_map_sgl(NvmeCtrl
*n
, NvmeSg
*sg
, NvmeSglDescriptor sgl
,
811 size_t len
, NvmeCmd
*cmd
)
814 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
815 * dynamically allocating a potentially huge SGL. The spec allows the SGL
816 * to be larger (as in number of bytes required to describe the SGL
817 * descriptors and segment chain) than the command transfer size, so it is
818 * not bounded by MDTS.
820 const int SEG_CHUNK_SIZE
= 256;
822 NvmeSglDescriptor segment
[SEG_CHUNK_SIZE
], *sgld
, *last_sgld
;
830 addr
= le64_to_cpu(sgl
.addr
);
832 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl
.type
), len
);
834 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, addr
));
837 * If the entire transfer can be described with a single data block it can
838 * be mapped directly.
840 if (NVME_SGL_TYPE(sgl
.type
) == NVME_SGL_DESCR_TYPE_DATA_BLOCK
) {
841 status
= nvme_map_sgl_data(n
, sg
, sgld
, 1, &len
, cmd
);
850 switch (NVME_SGL_TYPE(sgld
->type
)) {
851 case NVME_SGL_DESCR_TYPE_SEGMENT
:
852 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT
:
855 return NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
858 seg_len
= le32_to_cpu(sgld
->len
);
860 /* check the length of the (Last) Segment descriptor */
861 if ((!seg_len
|| seg_len
& 0xf) &&
862 (NVME_SGL_TYPE(sgld
->type
) != NVME_SGL_DESCR_TYPE_BIT_BUCKET
)) {
863 return NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
866 if (UINT64_MAX
- addr
< seg_len
) {
867 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
870 nsgld
= seg_len
/ sizeof(NvmeSglDescriptor
);
872 while (nsgld
> SEG_CHUNK_SIZE
) {
873 if (nvme_addr_read(n
, addr
, segment
, sizeof(segment
))) {
874 trace_pci_nvme_err_addr_read(addr
);
875 status
= NVME_DATA_TRAS_ERROR
;
879 status
= nvme_map_sgl_data(n
, sg
, segment
, SEG_CHUNK_SIZE
,
885 nsgld
-= SEG_CHUNK_SIZE
;
886 addr
+= SEG_CHUNK_SIZE
* sizeof(NvmeSglDescriptor
);
889 ret
= nvme_addr_read(n
, addr
, segment
, nsgld
*
890 sizeof(NvmeSglDescriptor
));
892 trace_pci_nvme_err_addr_read(addr
);
893 status
= NVME_DATA_TRAS_ERROR
;
897 last_sgld
= &segment
[nsgld
- 1];
900 * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
903 switch (NVME_SGL_TYPE(last_sgld
->type
)) {
904 case NVME_SGL_DESCR_TYPE_DATA_BLOCK
:
905 case NVME_SGL_DESCR_TYPE_BIT_BUCKET
:
906 status
= nvme_map_sgl_data(n
, sg
, segment
, nsgld
, &len
, cmd
);
918 * If the last descriptor was not a Data Block or Bit Bucket, then the
919 * current segment must not be a Last Segment.
921 if (NVME_SGL_TYPE(sgld
->type
) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT
) {
922 status
= NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
927 addr
= le64_to_cpu(sgld
->addr
);
930 * Do not map the last descriptor; it will be a Segment or Last Segment
931 * descriptor and is handled by the next iteration.
933 status
= nvme_map_sgl_data(n
, sg
, segment
, nsgld
- 1, &len
, cmd
);
940 /* if there is any residual left in len, the SGL was too short */
942 status
= NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
953 uint16_t nvme_map_dptr(NvmeCtrl
*n
, NvmeSg
*sg
, size_t len
,
958 switch (NVME_CMD_FLAGS_PSDT(cmd
->flags
)) {
960 prp1
= le64_to_cpu(cmd
->dptr
.prp1
);
961 prp2
= le64_to_cpu(cmd
->dptr
.prp2
);
963 return nvme_map_prp(n
, sg
, prp1
, prp2
, len
);
964 case NVME_PSDT_SGL_MPTR_CONTIGUOUS
:
965 case NVME_PSDT_SGL_MPTR_SGL
:
966 return nvme_map_sgl(n
, sg
, cmd
->dptr
.sgl
, len
, cmd
);
968 return NVME_INVALID_FIELD
;
972 static uint16_t nvme_map_mptr(NvmeCtrl
*n
, NvmeSg
*sg
, size_t len
,
975 int psdt
= NVME_CMD_FLAGS_PSDT(cmd
->flags
);
976 hwaddr mptr
= le64_to_cpu(cmd
->mptr
);
979 if (psdt
== NVME_PSDT_SGL_MPTR_SGL
) {
980 NvmeSglDescriptor sgl
;
982 if (nvme_addr_read(n
, mptr
, &sgl
, sizeof(sgl
))) {
983 return NVME_DATA_TRAS_ERROR
;
986 status
= nvme_map_sgl(n
, sg
, sgl
, len
, cmd
);
987 if (status
&& (status
& 0x7ff) == NVME_DATA_SGL_LEN_INVALID
) {
988 status
= NVME_MD_SGL_LEN_INVALID
| NVME_DNR
;
994 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, mptr
));
995 status
= nvme_map_addr(n
, sg
, mptr
, len
);
1003 static uint16_t nvme_map_data(NvmeCtrl
*n
, uint32_t nlb
, NvmeRequest
*req
)
1005 NvmeNamespace
*ns
= req
->ns
;
1006 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1007 uint16_t ctrl
= le16_to_cpu(rw
->control
);
1008 size_t len
= nvme_l2b(ns
, nlb
);
1011 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
) &&
1012 (ctrl
& NVME_RW_PRINFO_PRACT
&& ns
->lbaf
.ms
== 8)) {
1016 if (nvme_ns_ext(ns
)) {
1019 len
+= nvme_m2b(ns
, nlb
);
1021 status
= nvme_map_dptr(n
, &sg
, len
, &req
->cmd
);
1026 nvme_sg_init(n
, &req
->sg
, sg
.flags
& NVME_SG_DMA
);
1027 nvme_sg_split(&sg
, ns
, &req
->sg
, NULL
);
1030 return NVME_SUCCESS
;
1034 return nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1037 static uint16_t nvme_map_mdata(NvmeCtrl
*n
, uint32_t nlb
, NvmeRequest
*req
)
1039 NvmeNamespace
*ns
= req
->ns
;
1040 size_t len
= nvme_m2b(ns
, nlb
);
1043 if (nvme_ns_ext(ns
)) {
1046 len
+= nvme_l2b(ns
, nlb
);
1048 status
= nvme_map_dptr(n
, &sg
, len
, &req
->cmd
);
1053 nvme_sg_init(n
, &req
->sg
, sg
.flags
& NVME_SG_DMA
);
1054 nvme_sg_split(&sg
, ns
, NULL
, &req
->sg
);
1057 return NVME_SUCCESS
;
1060 return nvme_map_mptr(n
, &req
->sg
, len
, &req
->cmd
);
1063 static uint16_t nvme_tx_interleaved(NvmeCtrl
*n
, NvmeSg
*sg
, uint8_t *ptr
,
1064 uint32_t len
, uint32_t bytes
,
1065 int32_t skip_bytes
, int64_t offset
,
1066 NvmeTxDirection dir
)
1069 uint32_t trans_len
, count
= bytes
;
1070 bool dma
= sg
->flags
& NVME_SG_DMA
;
1075 assert(sg
->flags
& NVME_SG_ALLOC
);
1078 sge_len
= dma
? sg
->qsg
.sg
[sg_idx
].len
: sg
->iov
.iov
[sg_idx
].iov_len
;
1080 if (sge_len
- offset
< 0) {
1086 if (sge_len
== offset
) {
1092 trans_len
= MIN(len
, count
);
1093 trans_len
= MIN(trans_len
, sge_len
- offset
);
1096 addr
= sg
->qsg
.sg
[sg_idx
].base
+ offset
;
1098 addr
= (hwaddr
)(uintptr_t)sg
->iov
.iov
[sg_idx
].iov_base
+ offset
;
1101 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1102 ret
= nvme_addr_read(n
, addr
, ptr
, trans_len
);
1104 ret
= nvme_addr_write(n
, addr
, ptr
, trans_len
);
1108 return NVME_DATA_TRAS_ERROR
;
1114 offset
+= trans_len
;
1118 offset
+= skip_bytes
;
1122 return NVME_SUCCESS
;
1125 static uint16_t nvme_tx(NvmeCtrl
*n
, NvmeSg
*sg
, uint8_t *ptr
, uint32_t len
,
1126 NvmeTxDirection dir
)
1128 assert(sg
->flags
& NVME_SG_ALLOC
);
1130 if (sg
->flags
& NVME_SG_DMA
) {
1133 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1134 residual
= dma_buf_write(ptr
, len
, &sg
->qsg
);
1136 residual
= dma_buf_read(ptr
, len
, &sg
->qsg
);
1139 if (unlikely(residual
)) {
1140 trace_pci_nvme_err_invalid_dma();
1141 return NVME_INVALID_FIELD
| NVME_DNR
;
1146 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1147 bytes
= qemu_iovec_to_buf(&sg
->iov
, 0, ptr
, len
);
1149 bytes
= qemu_iovec_from_buf(&sg
->iov
, 0, ptr
, len
);
1152 if (unlikely(bytes
!= len
)) {
1153 trace_pci_nvme_err_invalid_dma();
1154 return NVME_INVALID_FIELD
| NVME_DNR
;
1158 return NVME_SUCCESS
;
1161 static inline uint16_t nvme_c2h(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
1166 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1171 return nvme_tx(n
, &req
->sg
, ptr
, len
, NVME_TX_DIRECTION_FROM_DEVICE
);
1174 static inline uint16_t nvme_h2c(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
1179 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1184 return nvme_tx(n
, &req
->sg
, ptr
, len
, NVME_TX_DIRECTION_TO_DEVICE
);
1187 uint16_t nvme_bounce_data(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
1188 NvmeTxDirection dir
, NvmeRequest
*req
)
1190 NvmeNamespace
*ns
= req
->ns
;
1191 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1192 uint16_t ctrl
= le16_to_cpu(rw
->control
);
1194 if (nvme_ns_ext(ns
) &&
1195 !(ctrl
& NVME_RW_PRINFO_PRACT
&& ns
->lbaf
.ms
== 8)) {
1196 return nvme_tx_interleaved(n
, &req
->sg
, ptr
, len
, ns
->lbasz
,
1197 ns
->lbaf
.ms
, 0, dir
);
1200 return nvme_tx(n
, &req
->sg
, ptr
, len
, dir
);
1203 uint16_t nvme_bounce_mdata(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
1204 NvmeTxDirection dir
, NvmeRequest
*req
)
1206 NvmeNamespace
*ns
= req
->ns
;
1209 if (nvme_ns_ext(ns
)) {
1210 return nvme_tx_interleaved(n
, &req
->sg
, ptr
, len
, ns
->lbaf
.ms
,
1211 ns
->lbasz
, ns
->lbasz
, dir
);
1214 nvme_sg_unmap(&req
->sg
);
1216 status
= nvme_map_mptr(n
, &req
->sg
, len
, &req
->cmd
);
1221 return nvme_tx(n
, &req
->sg
, ptr
, len
, dir
);
1224 static inline void nvme_blk_read(BlockBackend
*blk
, int64_t offset
,
1225 BlockCompletionFunc
*cb
, NvmeRequest
*req
)
1227 assert(req
->sg
.flags
& NVME_SG_ALLOC
);
1229 if (req
->sg
.flags
& NVME_SG_DMA
) {
1230 req
->aiocb
= dma_blk_read(blk
, &req
->sg
.qsg
, offset
, BDRV_SECTOR_SIZE
,
1233 req
->aiocb
= blk_aio_preadv(blk
, offset
, &req
->sg
.iov
, 0, cb
, req
);
1237 static inline void nvme_blk_write(BlockBackend
*blk
, int64_t offset
,
1238 BlockCompletionFunc
*cb
, NvmeRequest
*req
)
1240 assert(req
->sg
.flags
& NVME_SG_ALLOC
);
1242 if (req
->sg
.flags
& NVME_SG_DMA
) {
1243 req
->aiocb
= dma_blk_write(blk
, &req
->sg
.qsg
, offset
, BDRV_SECTOR_SIZE
,
1246 req
->aiocb
= blk_aio_pwritev(blk
, offset
, &req
->sg
.iov
, 0, cb
, req
);
1250 static void nvme_post_cqes(void *opaque
)
1252 NvmeCQueue
*cq
= opaque
;
1253 NvmeCtrl
*n
= cq
->ctrl
;
1254 NvmeRequest
*req
, *next
;
1257 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
1261 if (nvme_cq_full(cq
)) {
1266 req
->cqe
.status
= cpu_to_le16((req
->status
<< 1) | cq
->phase
);
1267 req
->cqe
.sq_id
= cpu_to_le16(sq
->sqid
);
1268 req
->cqe
.sq_head
= cpu_to_le16(sq
->head
);
1269 addr
= cq
->dma_addr
+ cq
->tail
* n
->cqe_size
;
1270 ret
= pci_dma_write(&n
->parent_obj
, addr
, (void *)&req
->cqe
,
1273 trace_pci_nvme_err_addr_write(addr
);
1274 trace_pci_nvme_err_cfs();
1275 n
->bar
.csts
= NVME_CSTS_FAILED
;
1278 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
1279 nvme_inc_cq_tail(cq
);
1280 nvme_sg_unmap(&req
->sg
);
1281 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
1283 if (cq
->tail
!= cq
->head
) {
1284 nvme_irq_assert(n
, cq
);
1288 static void nvme_enqueue_req_completion(NvmeCQueue
*cq
, NvmeRequest
*req
)
1290 assert(cq
->cqid
== req
->sq
->cqid
);
1291 trace_pci_nvme_enqueue_req_completion(nvme_cid(req
), cq
->cqid
,
1295 trace_pci_nvme_err_req_status(nvme_cid(req
), nvme_nsid(req
->ns
),
1296 req
->status
, req
->cmd
.opcode
);
1299 QTAILQ_REMOVE(&req
->sq
->out_req_list
, req
, entry
);
1300 QTAILQ_INSERT_TAIL(&cq
->req_list
, req
, entry
);
1301 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
1304 static void nvme_process_aers(void *opaque
)
1306 NvmeCtrl
*n
= opaque
;
1307 NvmeAsyncEvent
*event
, *next
;
1309 trace_pci_nvme_process_aers(n
->aer_queued
);
1311 QTAILQ_FOREACH_SAFE(event
, &n
->aer_queue
, entry
, next
) {
1313 NvmeAerResult
*result
;
1315 /* can't post cqe if there is nothing to complete */
1316 if (!n
->outstanding_aers
) {
1317 trace_pci_nvme_no_outstanding_aers();
1321 /* ignore if masked (cqe posted, but event not cleared) */
1322 if (n
->aer_mask
& (1 << event
->result
.event_type
)) {
1323 trace_pci_nvme_aer_masked(event
->result
.event_type
, n
->aer_mask
);
1327 QTAILQ_REMOVE(&n
->aer_queue
, event
, entry
);
1330 n
->aer_mask
|= 1 << event
->result
.event_type
;
1331 n
->outstanding_aers
--;
1333 req
= n
->aer_reqs
[n
->outstanding_aers
];
1335 result
= (NvmeAerResult
*) &req
->cqe
.result
;
1336 result
->event_type
= event
->result
.event_type
;
1337 result
->event_info
= event
->result
.event_info
;
1338 result
->log_page
= event
->result
.log_page
;
1341 trace_pci_nvme_aer_post_cqe(result
->event_type
, result
->event_info
,
1344 nvme_enqueue_req_completion(&n
->admin_cq
, req
);
1348 static void nvme_enqueue_event(NvmeCtrl
*n
, uint8_t event_type
,
1349 uint8_t event_info
, uint8_t log_page
)
1351 NvmeAsyncEvent
*event
;
1353 trace_pci_nvme_enqueue_event(event_type
, event_info
, log_page
);
1355 if (n
->aer_queued
== n
->params
.aer_max_queued
) {
1356 trace_pci_nvme_enqueue_event_noqueue(n
->aer_queued
);
1360 event
= g_new(NvmeAsyncEvent
, 1);
1361 event
->result
= (NvmeAerResult
) {
1362 .event_type
= event_type
,
1363 .event_info
= event_info
,
1364 .log_page
= log_page
,
1367 QTAILQ_INSERT_TAIL(&n
->aer_queue
, event
, entry
);
1370 nvme_process_aers(n
);
1373 static void nvme_smart_event(NvmeCtrl
*n
, uint8_t event
)
1377 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1378 if (!(NVME_AEC_SMART(n
->features
.async_config
) & event
)) {
1383 case NVME_SMART_SPARE
:
1384 aer_info
= NVME_AER_INFO_SMART_SPARE_THRESH
;
1386 case NVME_SMART_TEMPERATURE
:
1387 aer_info
= NVME_AER_INFO_SMART_TEMP_THRESH
;
1389 case NVME_SMART_RELIABILITY
:
1390 case NVME_SMART_MEDIA_READ_ONLY
:
1391 case NVME_SMART_FAILED_VOLATILE_MEDIA
:
1392 case NVME_SMART_PMR_UNRELIABLE
:
1393 aer_info
= NVME_AER_INFO_SMART_RELIABILITY
;
1399 nvme_enqueue_event(n
, NVME_AER_TYPE_SMART
, aer_info
, NVME_LOG_SMART_INFO
);
1402 static void nvme_clear_events(NvmeCtrl
*n
, uint8_t event_type
)
1404 n
->aer_mask
&= ~(1 << event_type
);
1405 if (!QTAILQ_EMPTY(&n
->aer_queue
)) {
1406 nvme_process_aers(n
);
1410 static inline uint16_t nvme_check_mdts(NvmeCtrl
*n
, size_t len
)
1412 uint8_t mdts
= n
->params
.mdts
;
1414 if (mdts
&& len
> n
->page_size
<< mdts
) {
1415 trace_pci_nvme_err_mdts(len
);
1416 return NVME_INVALID_FIELD
| NVME_DNR
;
1419 return NVME_SUCCESS
;
1422 static inline uint16_t nvme_check_bounds(NvmeNamespace
*ns
, uint64_t slba
,
1425 uint64_t nsze
= le64_to_cpu(ns
->id_ns
.nsze
);
1427 if (unlikely(UINT64_MAX
- slba
< nlb
|| slba
+ nlb
> nsze
)) {
1428 trace_pci_nvme_err_invalid_lba_range(slba
, nlb
, nsze
);
1429 return NVME_LBA_RANGE
| NVME_DNR
;
1432 return NVME_SUCCESS
;
1435 static uint16_t nvme_check_dulbe(NvmeNamespace
*ns
, uint64_t slba
,
1438 BlockDriverState
*bs
= blk_bs(ns
->blkconf
.blk
);
1440 int64_t pnum
= 0, bytes
= nvme_l2b(ns
, nlb
);
1441 int64_t offset
= nvme_l2b(ns
, slba
);
1445 Error
*local_err
= NULL
;
1448 * `pnum` holds the number of bytes after offset that shares the same
1449 * allocation status as the byte at offset. If `pnum` is different from
1450 * `bytes`, we should check the allocation status of the next range and
1451 * continue this until all bytes have been checked.
1456 ret
= bdrv_block_status(bs
, offset
, bytes
, &pnum
, NULL
, NULL
);
1458 error_setg_errno(&local_err
, -ret
, "unable to get block status");
1459 error_report_err(local_err
);
1461 return NVME_INTERNAL_DEV_ERROR
;
1464 zeroed
= !!(ret
& BDRV_BLOCK_ZERO
);
1466 trace_pci_nvme_block_status(offset
, bytes
, pnum
, ret
, zeroed
);
1473 } while (pnum
!= bytes
);
1475 return NVME_SUCCESS
;
1478 static void nvme_aio_err(NvmeRequest
*req
, int ret
)
1480 uint16_t status
= NVME_SUCCESS
;
1481 Error
*local_err
= NULL
;
1483 switch (req
->cmd
.opcode
) {
1485 status
= NVME_UNRECOVERED_READ
;
1487 case NVME_CMD_FLUSH
:
1488 case NVME_CMD_WRITE
:
1489 case NVME_CMD_WRITE_ZEROES
:
1490 case NVME_CMD_ZONE_APPEND
:
1491 status
= NVME_WRITE_FAULT
;
1494 status
= NVME_INTERNAL_DEV_ERROR
;
1498 trace_pci_nvme_err_aio(nvme_cid(req
), strerror(-ret
), status
);
1500 error_setg_errno(&local_err
, -ret
, "aio failed");
1501 error_report_err(local_err
);
1504 * Set the command status code to the first encountered error but allow a
1505 * subsequent Internal Device Error to trump it.
1507 if (req
->status
&& status
!= NVME_INTERNAL_DEV_ERROR
) {
1511 req
->status
= status
;
1514 static inline uint32_t nvme_zone_idx(NvmeNamespace
*ns
, uint64_t slba
)
1516 return ns
->zone_size_log2
> 0 ? slba
>> ns
->zone_size_log2
:
1517 slba
/ ns
->zone_size
;
1520 static inline NvmeZone
*nvme_get_zone_by_slba(NvmeNamespace
*ns
, uint64_t slba
)
1522 uint32_t zone_idx
= nvme_zone_idx(ns
, slba
);
1524 assert(zone_idx
< ns
->num_zones
);
1525 return &ns
->zone_array
[zone_idx
];
1528 static uint16_t nvme_check_zone_state_for_write(NvmeZone
*zone
)
1530 uint64_t zslba
= zone
->d
.zslba
;
1532 switch (nvme_get_zone_state(zone
)) {
1533 case NVME_ZONE_STATE_EMPTY
:
1534 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1535 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1536 case NVME_ZONE_STATE_CLOSED
:
1537 return NVME_SUCCESS
;
1538 case NVME_ZONE_STATE_FULL
:
1539 trace_pci_nvme_err_zone_is_full(zslba
);
1540 return NVME_ZONE_FULL
;
1541 case NVME_ZONE_STATE_OFFLINE
:
1542 trace_pci_nvme_err_zone_is_offline(zslba
);
1543 return NVME_ZONE_OFFLINE
;
1544 case NVME_ZONE_STATE_READ_ONLY
:
1545 trace_pci_nvme_err_zone_is_read_only(zslba
);
1546 return NVME_ZONE_READ_ONLY
;
1551 return NVME_INTERNAL_DEV_ERROR
;
1554 static uint16_t nvme_check_zone_write(NvmeNamespace
*ns
, NvmeZone
*zone
,
1555 uint64_t slba
, uint32_t nlb
)
1557 uint64_t zcap
= nvme_zone_wr_boundary(zone
);
1560 status
= nvme_check_zone_state_for_write(zone
);
1565 if (unlikely(slba
!= zone
->w_ptr
)) {
1566 trace_pci_nvme_err_write_not_at_wp(slba
, zone
->d
.zslba
, zone
->w_ptr
);
1567 return NVME_ZONE_INVALID_WRITE
;
1570 if (unlikely((slba
+ nlb
) > zcap
)) {
1571 trace_pci_nvme_err_zone_boundary(slba
, nlb
, zcap
);
1572 return NVME_ZONE_BOUNDARY_ERROR
;
1575 return NVME_SUCCESS
;
1578 static uint16_t nvme_check_zone_state_for_read(NvmeZone
*zone
)
1580 switch (nvme_get_zone_state(zone
)) {
1581 case NVME_ZONE_STATE_EMPTY
:
1582 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1583 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1584 case NVME_ZONE_STATE_FULL
:
1585 case NVME_ZONE_STATE_CLOSED
:
1586 case NVME_ZONE_STATE_READ_ONLY
:
1587 return NVME_SUCCESS
;
1588 case NVME_ZONE_STATE_OFFLINE
:
1589 trace_pci_nvme_err_zone_is_offline(zone
->d
.zslba
);
1590 return NVME_ZONE_OFFLINE
;
1595 return NVME_INTERNAL_DEV_ERROR
;
1598 static uint16_t nvme_check_zone_read(NvmeNamespace
*ns
, uint64_t slba
,
1601 NvmeZone
*zone
= nvme_get_zone_by_slba(ns
, slba
);
1602 uint64_t bndry
= nvme_zone_rd_boundary(ns
, zone
);
1603 uint64_t end
= slba
+ nlb
;
1606 status
= nvme_check_zone_state_for_read(zone
);
1609 } else if (unlikely(end
> bndry
)) {
1610 if (!ns
->params
.cross_zone_read
) {
1611 status
= NVME_ZONE_BOUNDARY_ERROR
;
1614 * Read across zone boundary - check that all subsequent
1615 * zones that are being read have an appropriate state.
1619 status
= nvme_check_zone_state_for_read(zone
);
1623 } while (end
> nvme_zone_rd_boundary(ns
, zone
));
1630 static uint16_t nvme_zrm_finish(NvmeNamespace
*ns
, NvmeZone
*zone
)
1632 switch (nvme_get_zone_state(zone
)) {
1633 case NVME_ZONE_STATE_FULL
:
1634 return NVME_SUCCESS
;
1636 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1637 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1638 nvme_aor_dec_open(ns
);
1640 case NVME_ZONE_STATE_CLOSED
:
1641 nvme_aor_dec_active(ns
);
1643 case NVME_ZONE_STATE_EMPTY
:
1644 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_FULL
);
1645 return NVME_SUCCESS
;
1648 return NVME_ZONE_INVAL_TRANSITION
;
1652 static uint16_t nvme_zrm_close(NvmeNamespace
*ns
, NvmeZone
*zone
)
1654 switch (nvme_get_zone_state(zone
)) {
1655 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1656 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1657 nvme_aor_dec_open(ns
);
1658 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_CLOSED
);
1660 case NVME_ZONE_STATE_CLOSED
:
1661 return NVME_SUCCESS
;
1664 return NVME_ZONE_INVAL_TRANSITION
;
1668 static void nvme_zrm_auto_transition_zone(NvmeNamespace
*ns
)
1672 if (ns
->params
.max_open_zones
&&
1673 ns
->nr_open_zones
== ns
->params
.max_open_zones
) {
1674 zone
= QTAILQ_FIRST(&ns
->imp_open_zones
);
1677 * Automatically close this implicitly open zone.
1679 QTAILQ_REMOVE(&ns
->imp_open_zones
, zone
, entry
);
1680 nvme_zrm_close(ns
, zone
);
1686 NVME_ZRM_AUTO
= 1 << 0,
1689 static uint16_t nvme_zrm_open_flags(NvmeNamespace
*ns
, NvmeZone
*zone
,
1695 switch (nvme_get_zone_state(zone
)) {
1696 case NVME_ZONE_STATE_EMPTY
:
1701 case NVME_ZONE_STATE_CLOSED
:
1702 nvme_zrm_auto_transition_zone(ns
);
1703 status
= nvme_aor_check(ns
, act
, 1);
1709 nvme_aor_inc_active(ns
);
1712 nvme_aor_inc_open(ns
);
1714 if (flags
& NVME_ZRM_AUTO
) {
1715 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_IMPLICITLY_OPEN
);
1716 return NVME_SUCCESS
;
1721 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1722 if (flags
& NVME_ZRM_AUTO
) {
1723 return NVME_SUCCESS
;
1726 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_EXPLICITLY_OPEN
);
1730 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1731 return NVME_SUCCESS
;
1734 return NVME_ZONE_INVAL_TRANSITION
;
1738 static inline uint16_t nvme_zrm_auto(NvmeNamespace
*ns
, NvmeZone
*zone
)
1740 return nvme_zrm_open_flags(ns
, zone
, NVME_ZRM_AUTO
);
1743 static inline uint16_t nvme_zrm_open(NvmeNamespace
*ns
, NvmeZone
*zone
)
1745 return nvme_zrm_open_flags(ns
, zone
, 0);
1748 static void nvme_advance_zone_wp(NvmeNamespace
*ns
, NvmeZone
*zone
,
1753 if (zone
->d
.wp
== nvme_zone_wr_boundary(zone
)) {
1754 nvme_zrm_finish(ns
, zone
);
1758 static void nvme_finalize_zoned_write(NvmeNamespace
*ns
, NvmeRequest
*req
)
1760 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1765 slba
= le64_to_cpu(rw
->slba
);
1766 nlb
= le16_to_cpu(rw
->nlb
) + 1;
1767 zone
= nvme_get_zone_by_slba(ns
, slba
);
1769 nvme_advance_zone_wp(ns
, zone
, nlb
);
1772 static inline bool nvme_is_write(NvmeRequest
*req
)
1774 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1776 return rw
->opcode
== NVME_CMD_WRITE
||
1777 rw
->opcode
== NVME_CMD_ZONE_APPEND
||
1778 rw
->opcode
== NVME_CMD_WRITE_ZEROES
;
1781 static void nvme_misc_cb(void *opaque
, int ret
)
1783 NvmeRequest
*req
= opaque
;
1784 NvmeNamespace
*ns
= req
->ns
;
1786 BlockBackend
*blk
= ns
->blkconf
.blk
;
1787 BlockAcctCookie
*acct
= &req
->acct
;
1788 BlockAcctStats
*stats
= blk_get_stats(blk
);
1790 trace_pci_nvme_misc_cb(nvme_cid(req
), blk_name(blk
));
1793 block_acct_failed(stats
, acct
);
1794 nvme_aio_err(req
, ret
);
1796 block_acct_done(stats
, acct
);
1799 nvme_enqueue_req_completion(nvme_cq(req
), req
);
1802 void nvme_rw_complete_cb(void *opaque
, int ret
)
1804 NvmeRequest
*req
= opaque
;
1805 NvmeNamespace
*ns
= req
->ns
;
1806 BlockBackend
*blk
= ns
->blkconf
.blk
;
1807 BlockAcctCookie
*acct
= &req
->acct
;
1808 BlockAcctStats
*stats
= blk_get_stats(blk
);
1810 trace_pci_nvme_rw_complete_cb(nvme_cid(req
), blk_name(blk
));
1813 block_acct_failed(stats
, acct
);
1814 nvme_aio_err(req
, ret
);
1816 block_acct_done(stats
, acct
);
1819 if (ns
->params
.zoned
&& nvme_is_write(req
)) {
1820 nvme_finalize_zoned_write(ns
, req
);
1823 nvme_enqueue_req_completion(nvme_cq(req
), req
);
1826 static void nvme_rw_cb(void *opaque
, int ret
)
1828 NvmeRequest
*req
= opaque
;
1829 NvmeNamespace
*ns
= req
->ns
;
1831 BlockBackend
*blk
= ns
->blkconf
.blk
;
1833 trace_pci_nvme_rw_cb(nvme_cid(req
), blk_name(blk
));
1840 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1841 uint64_t slba
= le64_to_cpu(rw
->slba
);
1842 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
1843 uint64_t offset
= nvme_moff(ns
, slba
);
1845 if (req
->cmd
.opcode
== NVME_CMD_WRITE_ZEROES
) {
1846 size_t mlen
= nvme_m2b(ns
, nlb
);
1848 req
->aiocb
= blk_aio_pwrite_zeroes(blk
, offset
, mlen
,
1850 nvme_rw_complete_cb
, req
);
1854 if (nvme_ns_ext(ns
) || req
->cmd
.mptr
) {
1857 nvme_sg_unmap(&req
->sg
);
1858 status
= nvme_map_mdata(nvme_ctrl(req
), nlb
, req
);
1864 if (req
->cmd
.opcode
== NVME_CMD_READ
) {
1865 return nvme_blk_read(blk
, offset
, nvme_rw_complete_cb
, req
);
1868 return nvme_blk_write(blk
, offset
, nvme_rw_complete_cb
, req
);
1873 nvme_rw_complete_cb(req
, ret
);
1876 struct nvme_aio_format_ctx
{
1880 /* number of outstanding write zeroes for this namespace */
1884 static void nvme_aio_format_cb(void *opaque
, int ret
)
1886 struct nvme_aio_format_ctx
*ctx
= opaque
;
1887 NvmeRequest
*req
= ctx
->req
;
1888 NvmeNamespace
*ns
= ctx
->ns
;
1889 uintptr_t *num_formats
= (uintptr_t *)&req
->opaque
;
1890 int *count
= ctx
->count
;
1895 nvme_aio_err(req
, ret
);
1905 if (--(*num_formats
)) {
1909 nvme_enqueue_req_completion(nvme_cq(req
), req
);
1912 struct nvme_aio_flush_ctx
{
1915 BlockAcctCookie acct
;
1918 static void nvme_aio_flush_cb(void *opaque
, int ret
)
1920 struct nvme_aio_flush_ctx
*ctx
= opaque
;
1921 NvmeRequest
*req
= ctx
->req
;
1922 uintptr_t *num_flushes
= (uintptr_t *)&req
->opaque
;
1924 BlockBackend
*blk
= ctx
->ns
->blkconf
.blk
;
1925 BlockAcctCookie
*acct
= &ctx
->acct
;
1926 BlockAcctStats
*stats
= blk_get_stats(blk
);
1928 trace_pci_nvme_aio_flush_cb(nvme_cid(req
), blk_name(blk
));
1931 block_acct_done(stats
, acct
);
1933 block_acct_failed(stats
, acct
);
1934 nvme_aio_err(req
, ret
);
1944 nvme_enqueue_req_completion(nvme_cq(req
), req
);
1947 static void nvme_verify_cb(void *opaque
, int ret
)
1949 NvmeBounceContext
*ctx
= opaque
;
1950 NvmeRequest
*req
= ctx
->req
;
1951 NvmeNamespace
*ns
= req
->ns
;
1952 BlockBackend
*blk
= ns
->blkconf
.blk
;
1953 BlockAcctCookie
*acct
= &req
->acct
;
1954 BlockAcctStats
*stats
= blk_get_stats(blk
);
1955 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1956 uint64_t slba
= le64_to_cpu(rw
->slba
);
1957 uint16_t ctrl
= le16_to_cpu(rw
->control
);
1958 uint16_t apptag
= le16_to_cpu(rw
->apptag
);
1959 uint16_t appmask
= le16_to_cpu(rw
->appmask
);
1960 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
1963 trace_pci_nvme_verify_cb(nvme_cid(req
), NVME_RW_PRINFO(ctrl
), apptag
,
1967 block_acct_failed(stats
, acct
);
1968 nvme_aio_err(req
, ret
);
1972 block_acct_done(stats
, acct
);
1974 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
1975 status
= nvme_dif_mangle_mdata(ns
, ctx
->mdata
.bounce
,
1976 ctx
->mdata
.iov
.size
, slba
);
1978 req
->status
= status
;
1982 req
->status
= nvme_dif_check(ns
, ctx
->data
.bounce
, ctx
->data
.iov
.size
,
1983 ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
,
1984 ctrl
, slba
, apptag
, appmask
, reftag
);
1988 qemu_iovec_destroy(&ctx
->data
.iov
);
1989 g_free(ctx
->data
.bounce
);
1991 qemu_iovec_destroy(&ctx
->mdata
.iov
);
1992 g_free(ctx
->mdata
.bounce
);
1996 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2000 static void nvme_verify_mdata_in_cb(void *opaque
, int ret
)
2002 NvmeBounceContext
*ctx
= opaque
;
2003 NvmeRequest
*req
= ctx
->req
;
2004 NvmeNamespace
*ns
= req
->ns
;
2005 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2006 uint64_t slba
= le64_to_cpu(rw
->slba
);
2007 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2008 size_t mlen
= nvme_m2b(ns
, nlb
);
2009 uint64_t offset
= nvme_moff(ns
, slba
);
2010 BlockBackend
*blk
= ns
->blkconf
.blk
;
2012 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req
), blk_name(blk
));
2018 ctx
->mdata
.bounce
= g_malloc(mlen
);
2020 qemu_iovec_reset(&ctx
->mdata
.iov
);
2021 qemu_iovec_add(&ctx
->mdata
.iov
, ctx
->mdata
.bounce
, mlen
);
2023 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->mdata
.iov
, 0,
2024 nvme_verify_cb
, ctx
);
2028 nvme_verify_cb(ctx
, ret
);
2031 static void nvme_aio_discard_cb(void *opaque
, int ret
)
2033 NvmeRequest
*req
= opaque
;
2034 uintptr_t *discards
= (uintptr_t *)&req
->opaque
;
2036 trace_pci_nvme_aio_discard_cb(nvme_cid(req
));
2039 nvme_aio_err(req
, ret
);
2048 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2051 struct nvme_zone_reset_ctx
{
2056 static void nvme_aio_zone_reset_complete_cb(void *opaque
, int ret
)
2058 struct nvme_zone_reset_ctx
*ctx
= opaque
;
2059 NvmeRequest
*req
= ctx
->req
;
2060 NvmeNamespace
*ns
= req
->ns
;
2061 NvmeZone
*zone
= ctx
->zone
;
2062 uintptr_t *resets
= (uintptr_t *)&req
->opaque
;
2065 nvme_aio_err(req
, ret
);
2069 switch (nvme_get_zone_state(zone
)) {
2070 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
2071 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
2072 nvme_aor_dec_open(ns
);
2074 case NVME_ZONE_STATE_CLOSED
:
2075 nvme_aor_dec_active(ns
);
2077 case NVME_ZONE_STATE_FULL
:
2078 zone
->w_ptr
= zone
->d
.zslba
;
2079 zone
->d
.wp
= zone
->w_ptr
;
2080 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_EMPTY
);
2095 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2098 static void nvme_aio_zone_reset_cb(void *opaque
, int ret
)
2100 struct nvme_zone_reset_ctx
*ctx
= opaque
;
2101 NvmeRequest
*req
= ctx
->req
;
2102 NvmeNamespace
*ns
= req
->ns
;
2103 NvmeZone
*zone
= ctx
->zone
;
2105 trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req
), zone
->d
.zslba
);
2112 int64_t offset
= nvme_moff(ns
, zone
->d
.zslba
);
2114 blk_aio_pwrite_zeroes(ns
->blkconf
.blk
, offset
,
2115 nvme_m2b(ns
, ns
->zone_size
), BDRV_REQ_MAY_UNMAP
,
2116 nvme_aio_zone_reset_complete_cb
, ctx
);
2121 nvme_aio_zone_reset_complete_cb(opaque
, ret
);
2124 struct nvme_copy_ctx
{
2129 NvmeCopySourceRange
*ranges
;
2132 struct nvme_copy_in_ctx
{
2135 NvmeCopySourceRange
*range
;
2138 static void nvme_copy_complete_cb(void *opaque
, int ret
)
2140 NvmeRequest
*req
= opaque
;
2141 NvmeNamespace
*ns
= req
->ns
;
2142 struct nvme_copy_ctx
*ctx
= req
->opaque
;
2145 block_acct_failed(blk_get_stats(ns
->blkconf
.blk
), &req
->acct
);
2146 nvme_aio_err(req
, ret
);
2150 block_acct_done(blk_get_stats(ns
->blkconf
.blk
), &req
->acct
);
2153 if (ns
->params
.zoned
) {
2154 NvmeCopyCmd
*copy
= (NvmeCopyCmd
*)&req
->cmd
;
2155 uint64_t sdlba
= le64_to_cpu(copy
->sdlba
);
2156 NvmeZone
*zone
= nvme_get_zone_by_slba(ns
, sdlba
);
2158 nvme_advance_zone_wp(ns
, zone
, ctx
->nlb
);
2161 g_free(ctx
->bounce
);
2162 g_free(ctx
->mbounce
);
2165 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2168 static void nvme_copy_cb(void *opaque
, int ret
)
2170 NvmeRequest
*req
= opaque
;
2171 NvmeNamespace
*ns
= req
->ns
;
2172 struct nvme_copy_ctx
*ctx
= req
->opaque
;
2174 trace_pci_nvme_copy_cb(nvme_cid(req
));
2181 NvmeCopyCmd
*copy
= (NvmeCopyCmd
*)&req
->cmd
;
2182 uint64_t sdlba
= le64_to_cpu(copy
->sdlba
);
2183 int64_t offset
= nvme_moff(ns
, sdlba
);
2185 qemu_iovec_reset(&req
->sg
.iov
);
2186 qemu_iovec_add(&req
->sg
.iov
, ctx
->mbounce
, nvme_m2b(ns
, ctx
->nlb
));
2188 req
->aiocb
= blk_aio_pwritev(ns
->blkconf
.blk
, offset
, &req
->sg
.iov
, 0,
2189 nvme_copy_complete_cb
, req
);
2194 nvme_copy_complete_cb(opaque
, ret
);
2197 static void nvme_copy_in_complete(NvmeRequest
*req
)
2199 NvmeNamespace
*ns
= req
->ns
;
2200 NvmeCopyCmd
*copy
= (NvmeCopyCmd
*)&req
->cmd
;
2201 struct nvme_copy_ctx
*ctx
= req
->opaque
;
2202 uint64_t sdlba
= le64_to_cpu(copy
->sdlba
);
2205 trace_pci_nvme_copy_in_complete(nvme_cid(req
));
2207 block_acct_done(blk_get_stats(ns
->blkconf
.blk
), &req
->acct
);
2209 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2210 uint16_t prinfor
= (copy
->control
[0] >> 4) & 0xf;
2211 uint16_t prinfow
= (copy
->control
[2] >> 2) & 0xf;
2212 uint16_t nr
= copy
->nr
+ 1;
2213 NvmeCopySourceRange
*range
;
2216 uint16_t apptag
, appmask
;
2218 uint8_t *buf
= ctx
->bounce
, *mbuf
= ctx
->mbounce
;
2223 * The dif helpers expects prinfo to be similar to the control field of
2224 * the NvmeRwCmd, so shift by 10 to fake it.
2226 prinfor
= prinfor
<< 10;
2227 prinfow
= prinfow
<< 10;
2229 for (i
= 0; i
< nr
; i
++) {
2230 range
= &ctx
->ranges
[i
];
2231 slba
= le64_to_cpu(range
->slba
);
2232 nlb
= le16_to_cpu(range
->nlb
) + 1;
2233 len
= nvme_l2b(ns
, nlb
);
2234 mlen
= nvme_m2b(ns
, nlb
);
2235 apptag
= le16_to_cpu(range
->apptag
);
2236 appmask
= le16_to_cpu(range
->appmask
);
2237 reftag
= le32_to_cpu(range
->reftag
);
2239 status
= nvme_dif_check(ns
, buf
, len
, mbuf
, mlen
, prinfor
, slba
,
2240 apptag
, appmask
, reftag
);
2249 apptag
= le16_to_cpu(copy
->apptag
);
2250 appmask
= le16_to_cpu(copy
->appmask
);
2251 reftag
= le32_to_cpu(copy
->reftag
);
2253 if (prinfow
& NVME_RW_PRINFO_PRACT
) {
2254 size_t len
= nvme_l2b(ns
, ctx
->nlb
);
2255 size_t mlen
= nvme_m2b(ns
, ctx
->nlb
);
2257 status
= nvme_check_prinfo(ns
, prinfow
, sdlba
, reftag
);
2262 nvme_dif_pract_generate_dif(ns
, ctx
->bounce
, len
, ctx
->mbounce
,
2263 mlen
, apptag
, reftag
);
2265 status
= nvme_dif_check(ns
, ctx
->bounce
, len
, ctx
->mbounce
, mlen
,
2266 prinfow
, sdlba
, apptag
, appmask
, reftag
);
2273 status
= nvme_check_bounds(ns
, sdlba
, ctx
->nlb
);
2278 if (ns
->params
.zoned
) {
2279 NvmeZone
*zone
= nvme_get_zone_by_slba(ns
, sdlba
);
2281 status
= nvme_check_zone_write(ns
, zone
, sdlba
, ctx
->nlb
);
2286 status
= nvme_zrm_auto(ns
, zone
);
2291 zone
->w_ptr
+= ctx
->nlb
;
2294 qemu_iovec_init(&req
->sg
.iov
, 1);
2295 qemu_iovec_add(&req
->sg
.iov
, ctx
->bounce
, nvme_l2b(ns
, ctx
->nlb
));
2297 block_acct_start(blk_get_stats(ns
->blkconf
.blk
), &req
->acct
, 0,
2300 req
->aiocb
= blk_aio_pwritev(ns
->blkconf
.blk
, nvme_l2b(ns
, sdlba
),
2301 &req
->sg
.iov
, 0, nvme_copy_cb
, req
);
2306 req
->status
= status
;
2308 g_free(ctx
->bounce
);
2311 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2314 static void nvme_aio_copy_in_cb(void *opaque
, int ret
)
2316 struct nvme_copy_in_ctx
*in_ctx
= opaque
;
2317 NvmeRequest
*req
= in_ctx
->req
;
2318 NvmeNamespace
*ns
= req
->ns
;
2319 struct nvme_copy_ctx
*ctx
= req
->opaque
;
2321 qemu_iovec_destroy(&in_ctx
->iov
);
2324 trace_pci_nvme_aio_copy_in_cb(nvme_cid(req
));
2327 nvme_aio_err(req
, ret
);
2337 block_acct_failed(blk_get_stats(ns
->blkconf
.blk
), &req
->acct
);
2339 g_free(ctx
->bounce
);
2340 g_free(ctx
->mbounce
);
2343 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2348 nvme_copy_in_complete(req
);
2351 struct nvme_compare_ctx
{
2363 static void nvme_compare_mdata_cb(void *opaque
, int ret
)
2365 NvmeRequest
*req
= opaque
;
2366 NvmeNamespace
*ns
= req
->ns
;
2367 NvmeCtrl
*n
= nvme_ctrl(req
);
2368 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2369 uint16_t ctrl
= le16_to_cpu(rw
->control
);
2370 uint16_t apptag
= le16_to_cpu(rw
->apptag
);
2371 uint16_t appmask
= le16_to_cpu(rw
->appmask
);
2372 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
2373 struct nvme_compare_ctx
*ctx
= req
->opaque
;
2374 g_autofree
uint8_t *buf
= NULL
;
2375 BlockBackend
*blk
= ns
->blkconf
.blk
;
2376 BlockAcctCookie
*acct
= &req
->acct
;
2377 BlockAcctStats
*stats
= blk_get_stats(blk
);
2378 uint16_t status
= NVME_SUCCESS
;
2380 trace_pci_nvme_compare_mdata_cb(nvme_cid(req
));
2383 block_acct_failed(stats
, acct
);
2384 nvme_aio_err(req
, ret
);
2388 buf
= g_malloc(ctx
->mdata
.iov
.size
);
2390 status
= nvme_bounce_mdata(n
, buf
, ctx
->mdata
.iov
.size
,
2391 NVME_TX_DIRECTION_TO_DEVICE
, req
);
2393 req
->status
= status
;
2397 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2398 uint64_t slba
= le64_to_cpu(rw
->slba
);
2400 uint8_t *mbufp
= ctx
->mdata
.bounce
;
2401 uint8_t *end
= mbufp
+ ctx
->mdata
.iov
.size
;
2404 status
= nvme_dif_check(ns
, ctx
->data
.bounce
, ctx
->data
.iov
.size
,
2405 ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
, ctrl
,
2406 slba
, apptag
, appmask
, reftag
);
2408 req
->status
= status
;
2413 * When formatted with protection information, do not compare the DIF
2416 if (!(ns
->id_ns
.dps
& NVME_ID_NS_DPS_FIRST_EIGHT
)) {
2417 pil
= ns
->lbaf
.ms
- sizeof(NvmeDifTuple
);
2420 for (bufp
= buf
; mbufp
< end
; bufp
+= ns
->lbaf
.ms
, mbufp
+= ns
->lbaf
.ms
) {
2421 if (memcmp(bufp
+ pil
, mbufp
+ pil
, ns
->lbaf
.ms
- pil
)) {
2422 req
->status
= NVME_CMP_FAILURE
;
2430 if (memcmp(buf
, ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
)) {
2431 req
->status
= NVME_CMP_FAILURE
;
2435 block_acct_done(stats
, acct
);
2438 qemu_iovec_destroy(&ctx
->data
.iov
);
2439 g_free(ctx
->data
.bounce
);
2441 qemu_iovec_destroy(&ctx
->mdata
.iov
);
2442 g_free(ctx
->mdata
.bounce
);
2446 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2449 static void nvme_compare_data_cb(void *opaque
, int ret
)
2451 NvmeRequest
*req
= opaque
;
2452 NvmeCtrl
*n
= nvme_ctrl(req
);
2453 NvmeNamespace
*ns
= req
->ns
;
2454 BlockBackend
*blk
= ns
->blkconf
.blk
;
2455 BlockAcctCookie
*acct
= &req
->acct
;
2456 BlockAcctStats
*stats
= blk_get_stats(blk
);
2458 struct nvme_compare_ctx
*ctx
= req
->opaque
;
2459 g_autofree
uint8_t *buf
= NULL
;
2462 trace_pci_nvme_compare_data_cb(nvme_cid(req
));
2465 block_acct_failed(stats
, acct
);
2466 nvme_aio_err(req
, ret
);
2470 buf
= g_malloc(ctx
->data
.iov
.size
);
2472 status
= nvme_bounce_data(n
, buf
, ctx
->data
.iov
.size
,
2473 NVME_TX_DIRECTION_TO_DEVICE
, req
);
2475 req
->status
= status
;
2479 if (memcmp(buf
, ctx
->data
.bounce
, ctx
->data
.iov
.size
)) {
2480 req
->status
= NVME_CMP_FAILURE
;
2485 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2486 uint64_t slba
= le64_to_cpu(rw
->slba
);
2487 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2488 size_t mlen
= nvme_m2b(ns
, nlb
);
2489 uint64_t offset
= nvme_moff(ns
, slba
);
2491 ctx
->mdata
.bounce
= g_malloc(mlen
);
2493 qemu_iovec_init(&ctx
->mdata
.iov
, 1);
2494 qemu_iovec_add(&ctx
->mdata
.iov
, ctx
->mdata
.bounce
, mlen
);
2496 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->mdata
.iov
, 0,
2497 nvme_compare_mdata_cb
, req
);
2501 block_acct_done(stats
, acct
);
2504 qemu_iovec_destroy(&ctx
->data
.iov
);
2505 g_free(ctx
->data
.bounce
);
2508 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2511 static uint16_t nvme_dsm(NvmeCtrl
*n
, NvmeRequest
*req
)
2513 NvmeNamespace
*ns
= req
->ns
;
2514 NvmeDsmCmd
*dsm
= (NvmeDsmCmd
*) &req
->cmd
;
2516 uint32_t attr
= le32_to_cpu(dsm
->attributes
);
2517 uint32_t nr
= (le32_to_cpu(dsm
->nr
) & 0xff) + 1;
2519 uint16_t status
= NVME_SUCCESS
;
2521 trace_pci_nvme_dsm(nvme_cid(req
), nvme_nsid(ns
), nr
, attr
);
2523 if (attr
& NVME_DSMGMT_AD
) {
2526 NvmeDsmRange range
[nr
];
2527 uintptr_t *discards
= (uintptr_t *)&req
->opaque
;
2529 status
= nvme_h2c(n
, (uint8_t *)range
, sizeof(range
), req
);
2535 * AIO callbacks may be called immediately, so initialize discards to 1
2536 * to make sure the the callback does not complete the request before
2537 * all discards have been issued.
2541 for (int i
= 0; i
< nr
; i
++) {
2542 uint64_t slba
= le64_to_cpu(range
[i
].slba
);
2543 uint32_t nlb
= le32_to_cpu(range
[i
].nlb
);
2545 if (nvme_check_bounds(ns
, slba
, nlb
)) {
2549 trace_pci_nvme_dsm_deallocate(nvme_cid(req
), nvme_nsid(ns
), slba
,
2552 if (nlb
> n
->dmrsl
) {
2553 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb
, n
->dmrsl
);
2556 offset
= nvme_l2b(ns
, slba
);
2557 len
= nvme_l2b(ns
, nlb
);
2560 size_t bytes
= MIN(BDRV_REQUEST_MAX_BYTES
, len
);
2564 blk_aio_pdiscard(ns
->blkconf
.blk
, offset
, bytes
,
2565 nvme_aio_discard_cb
, req
);
2572 /* account for the 1-initialization */
2576 status
= NVME_NO_COMPLETE
;
2578 status
= req
->status
;
2585 static uint16_t nvme_verify(NvmeCtrl
*n
, NvmeRequest
*req
)
2587 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2588 NvmeNamespace
*ns
= req
->ns
;
2589 BlockBackend
*blk
= ns
->blkconf
.blk
;
2590 uint64_t slba
= le64_to_cpu(rw
->slba
);
2591 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2592 size_t len
= nvme_l2b(ns
, nlb
);
2593 int64_t offset
= nvme_l2b(ns
, slba
);
2594 uint16_t ctrl
= le16_to_cpu(rw
->control
);
2595 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
2596 NvmeBounceContext
*ctx
= NULL
;
2599 trace_pci_nvme_verify(nvme_cid(req
), nvme_nsid(ns
), slba
, nlb
);
2601 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2602 status
= nvme_check_prinfo(ns
, ctrl
, slba
, reftag
);
2607 if (ctrl
& NVME_RW_PRINFO_PRACT
) {
2608 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
2612 if (len
> n
->page_size
<< n
->params
.vsl
) {
2613 return NVME_INVALID_FIELD
| NVME_DNR
;
2616 status
= nvme_check_bounds(ns
, slba
, nlb
);
2621 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
2622 status
= nvme_check_dulbe(ns
, slba
, nlb
);
2628 ctx
= g_new0(NvmeBounceContext
, 1);
2631 ctx
->data
.bounce
= g_malloc(len
);
2633 qemu_iovec_init(&ctx
->data
.iov
, 1);
2634 qemu_iovec_add(&ctx
->data
.iov
, ctx
->data
.bounce
, len
);
2636 block_acct_start(blk_get_stats(blk
), &req
->acct
, ctx
->data
.iov
.size
,
2639 req
->aiocb
= blk_aio_preadv(ns
->blkconf
.blk
, offset
, &ctx
->data
.iov
, 0,
2640 nvme_verify_mdata_in_cb
, ctx
);
2641 return NVME_NO_COMPLETE
;
2644 static uint16_t nvme_copy(NvmeCtrl
*n
, NvmeRequest
*req
)
2646 NvmeNamespace
*ns
= req
->ns
;
2647 NvmeCopyCmd
*copy
= (NvmeCopyCmd
*)&req
->cmd
;
2649 uint16_t nr
= copy
->nr
+ 1;
2650 uint8_t format
= copy
->control
[0] & 0xf;
2653 * Shift the PRINFOR/PRINFOW values by 10 to allow reusing the
2654 * NVME_RW_PRINFO constants.
2656 uint16_t prinfor
= ((copy
->control
[0] >> 4) & 0xf) << 10;
2657 uint16_t prinfow
= ((copy
->control
[2] >> 2) & 0xf) << 10;
2660 uint8_t *bounce
= NULL
, *bouncep
= NULL
;
2661 uint8_t *mbounce
= NULL
, *mbouncep
= NULL
;
2662 struct nvme_copy_ctx
*ctx
;
2666 trace_pci_nvme_copy(nvme_cid(req
), nvme_nsid(ns
), nr
, format
);
2668 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
) &&
2669 ((prinfor
& NVME_RW_PRINFO_PRACT
) != (prinfow
& NVME_RW_PRINFO_PRACT
))) {
2670 return NVME_INVALID_FIELD
| NVME_DNR
;
2673 if (!(n
->id_ctrl
.ocfs
& (1 << format
))) {
2674 trace_pci_nvme_err_copy_invalid_format(format
);
2675 return NVME_INVALID_FIELD
| NVME_DNR
;
2678 if (nr
> ns
->id_ns
.msrc
+ 1) {
2679 return NVME_CMD_SIZE_LIMIT
| NVME_DNR
;
2682 ctx
= g_new(struct nvme_copy_ctx
, 1);
2683 ctx
->ranges
= g_new(NvmeCopySourceRange
, nr
);
2685 status
= nvme_h2c(n
, (uint8_t *)ctx
->ranges
,
2686 nr
* sizeof(NvmeCopySourceRange
), req
);
2691 for (i
= 0; i
< nr
; i
++) {
2692 uint64_t slba
= le64_to_cpu(ctx
->ranges
[i
].slba
);
2693 uint32_t _nlb
= le16_to_cpu(ctx
->ranges
[i
].nlb
) + 1;
2695 if (_nlb
> le16_to_cpu(ns
->id_ns
.mssrl
)) {
2696 status
= NVME_CMD_SIZE_LIMIT
| NVME_DNR
;
2700 status
= nvme_check_bounds(ns
, slba
, _nlb
);
2705 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
2706 status
= nvme_check_dulbe(ns
, slba
, _nlb
);
2712 if (ns
->params
.zoned
) {
2713 status
= nvme_check_zone_read(ns
, slba
, _nlb
);
2722 if (nlb
> le32_to_cpu(ns
->id_ns
.mcl
)) {
2723 status
= NVME_CMD_SIZE_LIMIT
| NVME_DNR
;
2727 bounce
= bouncep
= g_malloc(nvme_l2b(ns
, nlb
));
2729 mbounce
= mbouncep
= g_malloc(nvme_m2b(ns
, nlb
));
2732 block_acct_start(blk_get_stats(ns
->blkconf
.blk
), &req
->acct
, 0,
2735 ctx
->bounce
= bounce
;
2736 ctx
->mbounce
= mbounce
;
2742 for (i
= 0; i
< nr
; i
++) {
2743 uint64_t slba
= le64_to_cpu(ctx
->ranges
[i
].slba
);
2744 uint32_t nlb
= le16_to_cpu(ctx
->ranges
[i
].nlb
) + 1;
2746 size_t len
= nvme_l2b(ns
, nlb
);
2747 int64_t offset
= nvme_l2b(ns
, slba
);
2749 trace_pci_nvme_copy_source_range(slba
, nlb
);
2751 struct nvme_copy_in_ctx
*in_ctx
= g_new(struct nvme_copy_in_ctx
, 1);
2754 qemu_iovec_init(&in_ctx
->iov
, 1);
2755 qemu_iovec_add(&in_ctx
->iov
, bouncep
, len
);
2759 blk_aio_preadv(ns
->blkconf
.blk
, offset
, &in_ctx
->iov
, 0,
2760 nvme_aio_copy_in_cb
, in_ctx
);
2765 len
= nvme_m2b(ns
, nlb
);
2766 offset
= nvme_moff(ns
, slba
);
2768 in_ctx
= g_new(struct nvme_copy_in_ctx
, 1);
2771 qemu_iovec_init(&in_ctx
->iov
, 1);
2772 qemu_iovec_add(&in_ctx
->iov
, mbouncep
, len
);
2776 blk_aio_preadv(ns
->blkconf
.blk
, offset
, &in_ctx
->iov
, 0,
2777 nvme_aio_copy_in_cb
, in_ctx
);
2783 /* account for the 1-initialization */
2787 nvme_copy_in_complete(req
);
2790 return NVME_NO_COMPLETE
;
2793 g_free(ctx
->ranges
);
2799 static uint16_t nvme_compare(NvmeCtrl
*n
, NvmeRequest
*req
)
2801 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2802 NvmeNamespace
*ns
= req
->ns
;
2803 BlockBackend
*blk
= ns
->blkconf
.blk
;
2804 uint64_t slba
= le64_to_cpu(rw
->slba
);
2805 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2806 uint16_t ctrl
= le16_to_cpu(rw
->control
);
2807 size_t data_len
= nvme_l2b(ns
, nlb
);
2808 size_t len
= data_len
;
2809 int64_t offset
= nvme_l2b(ns
, slba
);
2810 struct nvme_compare_ctx
*ctx
= NULL
;
2813 trace_pci_nvme_compare(nvme_cid(req
), nvme_nsid(ns
), slba
, nlb
);
2815 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
) && (ctrl
& NVME_RW_PRINFO_PRACT
)) {
2816 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
2819 if (nvme_ns_ext(ns
)) {
2820 len
+= nvme_m2b(ns
, nlb
);
2823 status
= nvme_check_mdts(n
, len
);
2828 status
= nvme_check_bounds(ns
, slba
, nlb
);
2833 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
2834 status
= nvme_check_dulbe(ns
, slba
, nlb
);
2840 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
2845 ctx
= g_new(struct nvme_compare_ctx
, 1);
2846 ctx
->data
.bounce
= g_malloc(data_len
);
2850 qemu_iovec_init(&ctx
->data
.iov
, 1);
2851 qemu_iovec_add(&ctx
->data
.iov
, ctx
->data
.bounce
, data_len
);
2853 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_len
,
2855 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->data
.iov
, 0,
2856 nvme_compare_data_cb
, req
);
2858 return NVME_NO_COMPLETE
;
2861 static uint16_t nvme_flush(NvmeCtrl
*n
, NvmeRequest
*req
)
2863 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
2864 uintptr_t *num_flushes
= (uintptr_t *)&req
->opaque
;
2866 struct nvme_aio_flush_ctx
*ctx
;
2869 trace_pci_nvme_flush(nvme_cid(req
), nsid
);
2871 if (nsid
!= NVME_NSID_BROADCAST
) {
2872 req
->ns
= nvme_ns(n
, nsid
);
2873 if (unlikely(!req
->ns
)) {
2874 return NVME_INVALID_FIELD
| NVME_DNR
;
2877 block_acct_start(blk_get_stats(req
->ns
->blkconf
.blk
), &req
->acct
, 0,
2879 req
->aiocb
= blk_aio_flush(req
->ns
->blkconf
.blk
, nvme_misc_cb
, req
);
2880 return NVME_NO_COMPLETE
;
2883 /* 1-initialize; see comment in nvme_dsm */
2886 for (int i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
2892 ctx
= g_new(struct nvme_aio_flush_ctx
, 1);
2898 block_acct_start(blk_get_stats(ns
->blkconf
.blk
), &ctx
->acct
, 0,
2900 blk_aio_flush(ns
->blkconf
.blk
, nvme_aio_flush_cb
, ctx
);
2903 /* account for the 1-initialization */
2907 status
= NVME_NO_COMPLETE
;
2909 status
= req
->status
;
2915 static uint16_t nvme_read(NvmeCtrl
*n
, NvmeRequest
*req
)
2917 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2918 NvmeNamespace
*ns
= req
->ns
;
2919 uint64_t slba
= le64_to_cpu(rw
->slba
);
2920 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
2921 uint16_t ctrl
= le16_to_cpu(rw
->control
);
2922 uint64_t data_size
= nvme_l2b(ns
, nlb
);
2923 uint64_t mapped_size
= data_size
;
2924 uint64_t data_offset
;
2925 BlockBackend
*blk
= ns
->blkconf
.blk
;
2928 if (nvme_ns_ext(ns
)) {
2929 mapped_size
+= nvme_m2b(ns
, nlb
);
2931 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2932 bool pract
= ctrl
& NVME_RW_PRINFO_PRACT
;
2934 if (pract
&& ns
->lbaf
.ms
== 8) {
2935 mapped_size
= data_size
;
2940 trace_pci_nvme_read(nvme_cid(req
), nvme_nsid(ns
), nlb
, mapped_size
, slba
);
2942 status
= nvme_check_mdts(n
, mapped_size
);
2947 status
= nvme_check_bounds(ns
, slba
, nlb
);
2952 if (ns
->params
.zoned
) {
2953 status
= nvme_check_zone_read(ns
, slba
, nlb
);
2955 trace_pci_nvme_err_zone_read_not_ok(slba
, nlb
, status
);
2960 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
2961 status
= nvme_check_dulbe(ns
, slba
, nlb
);
2967 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2968 return nvme_dif_rw(n
, req
);
2971 status
= nvme_map_data(n
, nlb
, req
);
2976 data_offset
= nvme_l2b(ns
, slba
);
2978 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_size
,
2980 nvme_blk_read(blk
, data_offset
, nvme_rw_cb
, req
);
2981 return NVME_NO_COMPLETE
;
2984 block_acct_invalid(blk_get_stats(blk
), BLOCK_ACCT_READ
);
2985 return status
| NVME_DNR
;
2988 static uint16_t nvme_do_write(NvmeCtrl
*n
, NvmeRequest
*req
, bool append
,
2991 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2992 NvmeNamespace
*ns
= req
->ns
;
2993 uint64_t slba
= le64_to_cpu(rw
->slba
);
2994 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
2995 uint16_t ctrl
= le16_to_cpu(rw
->control
);
2996 uint64_t data_size
= nvme_l2b(ns
, nlb
);
2997 uint64_t mapped_size
= data_size
;
2998 uint64_t data_offset
;
3000 NvmeZonedResult
*res
= (NvmeZonedResult
*)&req
->cqe
;
3001 BlockBackend
*blk
= ns
->blkconf
.blk
;
3004 if (nvme_ns_ext(ns
)) {
3005 mapped_size
+= nvme_m2b(ns
, nlb
);
3007 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3008 bool pract
= ctrl
& NVME_RW_PRINFO_PRACT
;
3010 if (pract
&& ns
->lbaf
.ms
== 8) {
3011 mapped_size
-= nvme_m2b(ns
, nlb
);
3016 trace_pci_nvme_write(nvme_cid(req
), nvme_io_opc_str(rw
->opcode
),
3017 nvme_nsid(ns
), nlb
, mapped_size
, slba
);
3020 status
= nvme_check_mdts(n
, mapped_size
);
3026 status
= nvme_check_bounds(ns
, slba
, nlb
);
3031 if (ns
->params
.zoned
) {
3032 zone
= nvme_get_zone_by_slba(ns
, slba
);
3035 bool piremap
= !!(ctrl
& NVME_RW_PIREMAP
);
3037 if (unlikely(slba
!= zone
->d
.zslba
)) {
3038 trace_pci_nvme_err_append_not_at_start(slba
, zone
->d
.zslba
);
3039 status
= NVME_INVALID_FIELD
;
3043 if (n
->params
.zasl
&&
3044 data_size
> (uint64_t)n
->page_size
<< n
->params
.zasl
) {
3045 trace_pci_nvme_err_zasl(data_size
);
3046 return NVME_INVALID_FIELD
| NVME_DNR
;
3050 rw
->slba
= cpu_to_le64(slba
);
3051 res
->slba
= cpu_to_le64(slba
);
3053 switch (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3054 case NVME_ID_NS_DPS_TYPE_1
:
3056 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
3061 case NVME_ID_NS_DPS_TYPE_2
:
3063 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
3064 rw
->reftag
= cpu_to_le32(reftag
+ (slba
- zone
->d
.zslba
));
3069 case NVME_ID_NS_DPS_TYPE_3
:
3071 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
3078 status
= nvme_check_zone_write(ns
, zone
, slba
, nlb
);
3083 status
= nvme_zrm_auto(ns
, zone
);
3091 data_offset
= nvme_l2b(ns
, slba
);
3093 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3094 return nvme_dif_rw(n
, req
);
3098 status
= nvme_map_data(n
, nlb
, req
);
3103 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_size
,
3105 nvme_blk_write(blk
, data_offset
, nvme_rw_cb
, req
);
3107 req
->aiocb
= blk_aio_pwrite_zeroes(blk
, data_offset
, data_size
,
3108 BDRV_REQ_MAY_UNMAP
, nvme_rw_cb
,
3112 return NVME_NO_COMPLETE
;
3115 block_acct_invalid(blk_get_stats(blk
), BLOCK_ACCT_WRITE
);
3116 return status
| NVME_DNR
;
3119 static inline uint16_t nvme_write(NvmeCtrl
*n
, NvmeRequest
*req
)
3121 return nvme_do_write(n
, req
, false, false);
3124 static inline uint16_t nvme_write_zeroes(NvmeCtrl
*n
, NvmeRequest
*req
)
3126 return nvme_do_write(n
, req
, false, true);
3129 static inline uint16_t nvme_zone_append(NvmeCtrl
*n
, NvmeRequest
*req
)
3131 return nvme_do_write(n
, req
, true, false);
3134 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace
*ns
, NvmeCmd
*c
,
3135 uint64_t *slba
, uint32_t *zone_idx
)
3137 uint32_t dw10
= le32_to_cpu(c
->cdw10
);
3138 uint32_t dw11
= le32_to_cpu(c
->cdw11
);
3140 if (!ns
->params
.zoned
) {
3141 trace_pci_nvme_err_invalid_opc(c
->opcode
);
3142 return NVME_INVALID_OPCODE
| NVME_DNR
;
3145 *slba
= ((uint64_t)dw11
) << 32 | dw10
;
3146 if (unlikely(*slba
>= ns
->id_ns
.nsze
)) {
3147 trace_pci_nvme_err_invalid_lba_range(*slba
, 0, ns
->id_ns
.nsze
);
3149 return NVME_LBA_RANGE
| NVME_DNR
;
3152 *zone_idx
= nvme_zone_idx(ns
, *slba
);
3153 assert(*zone_idx
< ns
->num_zones
);
3155 return NVME_SUCCESS
;
3158 typedef uint16_t (*op_handler_t
)(NvmeNamespace
*, NvmeZone
*, NvmeZoneState
,
3161 enum NvmeZoneProcessingMask
{
3162 NVME_PROC_CURRENT_ZONE
= 0,
3163 NVME_PROC_OPENED_ZONES
= 1 << 0,
3164 NVME_PROC_CLOSED_ZONES
= 1 << 1,
3165 NVME_PROC_READ_ONLY_ZONES
= 1 << 2,
3166 NVME_PROC_FULL_ZONES
= 1 << 3,
3169 static uint16_t nvme_open_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3170 NvmeZoneState state
, NvmeRequest
*req
)
3172 return nvme_zrm_open(ns
, zone
);
3175 static uint16_t nvme_close_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3176 NvmeZoneState state
, NvmeRequest
*req
)
3178 return nvme_zrm_close(ns
, zone
);
3181 static uint16_t nvme_finish_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3182 NvmeZoneState state
, NvmeRequest
*req
)
3184 return nvme_zrm_finish(ns
, zone
);
3187 static uint16_t nvme_reset_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3188 NvmeZoneState state
, NvmeRequest
*req
)
3190 uintptr_t *resets
= (uintptr_t *)&req
->opaque
;
3191 struct nvme_zone_reset_ctx
*ctx
;
3194 case NVME_ZONE_STATE_EMPTY
:
3195 return NVME_SUCCESS
;
3196 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
3197 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
3198 case NVME_ZONE_STATE_CLOSED
:
3199 case NVME_ZONE_STATE_FULL
:
3202 return NVME_ZONE_INVAL_TRANSITION
;
3206 * The zone reset aio callback needs to know the zone that is being reset
3207 * in order to transition the zone on completion.
3209 ctx
= g_new(struct nvme_zone_reset_ctx
, 1);
3215 blk_aio_pwrite_zeroes(ns
->blkconf
.blk
, nvme_l2b(ns
, zone
->d
.zslba
),
3216 nvme_l2b(ns
, ns
->zone_size
), BDRV_REQ_MAY_UNMAP
,
3217 nvme_aio_zone_reset_cb
, ctx
);
3219 return NVME_NO_COMPLETE
;
3222 static uint16_t nvme_offline_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3223 NvmeZoneState state
, NvmeRequest
*req
)
3226 case NVME_ZONE_STATE_READ_ONLY
:
3227 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_OFFLINE
);
3229 case NVME_ZONE_STATE_OFFLINE
:
3230 return NVME_SUCCESS
;
3232 return NVME_ZONE_INVAL_TRANSITION
;
3236 static uint16_t nvme_set_zd_ext(NvmeNamespace
*ns
, NvmeZone
*zone
)
3239 uint8_t state
= nvme_get_zone_state(zone
);
3241 if (state
== NVME_ZONE_STATE_EMPTY
) {
3242 status
= nvme_aor_check(ns
, 1, 0);
3246 nvme_aor_inc_active(ns
);
3247 zone
->d
.za
|= NVME_ZA_ZD_EXT_VALID
;
3248 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_CLOSED
);
3249 return NVME_SUCCESS
;
3252 return NVME_ZONE_INVAL_TRANSITION
;
3255 static uint16_t nvme_bulk_proc_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3256 enum NvmeZoneProcessingMask proc_mask
,
3257 op_handler_t op_hndlr
, NvmeRequest
*req
)
3259 uint16_t status
= NVME_SUCCESS
;
3260 NvmeZoneState zs
= nvme_get_zone_state(zone
);
3264 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
3265 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
3266 proc_zone
= proc_mask
& NVME_PROC_OPENED_ZONES
;
3268 case NVME_ZONE_STATE_CLOSED
:
3269 proc_zone
= proc_mask
& NVME_PROC_CLOSED_ZONES
;
3271 case NVME_ZONE_STATE_READ_ONLY
:
3272 proc_zone
= proc_mask
& NVME_PROC_READ_ONLY_ZONES
;
3274 case NVME_ZONE_STATE_FULL
:
3275 proc_zone
= proc_mask
& NVME_PROC_FULL_ZONES
;
3282 status
= op_hndlr(ns
, zone
, zs
, req
);
3288 static uint16_t nvme_do_zone_op(NvmeNamespace
*ns
, NvmeZone
*zone
,
3289 enum NvmeZoneProcessingMask proc_mask
,
3290 op_handler_t op_hndlr
, NvmeRequest
*req
)
3293 uint16_t status
= NVME_SUCCESS
;
3297 status
= op_hndlr(ns
, zone
, nvme_get_zone_state(zone
), req
);
3299 if (proc_mask
& NVME_PROC_CLOSED_ZONES
) {
3300 QTAILQ_FOREACH_SAFE(zone
, &ns
->closed_zones
, entry
, next
) {
3301 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3303 if (status
&& status
!= NVME_NO_COMPLETE
) {
3308 if (proc_mask
& NVME_PROC_OPENED_ZONES
) {
3309 QTAILQ_FOREACH_SAFE(zone
, &ns
->imp_open_zones
, entry
, next
) {
3310 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3312 if (status
&& status
!= NVME_NO_COMPLETE
) {
3317 QTAILQ_FOREACH_SAFE(zone
, &ns
->exp_open_zones
, entry
, next
) {
3318 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3320 if (status
&& status
!= NVME_NO_COMPLETE
) {
3325 if (proc_mask
& NVME_PROC_FULL_ZONES
) {
3326 QTAILQ_FOREACH_SAFE(zone
, &ns
->full_zones
, entry
, next
) {
3327 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3329 if (status
&& status
!= NVME_NO_COMPLETE
) {
3335 if (proc_mask
& NVME_PROC_READ_ONLY_ZONES
) {
3336 for (i
= 0; i
< ns
->num_zones
; i
++, zone
++) {
3337 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3339 if (status
&& status
!= NVME_NO_COMPLETE
) {
3350 static uint16_t nvme_zone_mgmt_send(NvmeCtrl
*n
, NvmeRequest
*req
)
3352 NvmeCmd
*cmd
= (NvmeCmd
*)&req
->cmd
;
3353 NvmeNamespace
*ns
= req
->ns
;
3357 uint32_t dw13
= le32_to_cpu(cmd
->cdw13
);
3359 uint32_t zone_idx
= 0;
3363 enum NvmeZoneProcessingMask proc_mask
= NVME_PROC_CURRENT_ZONE
;
3365 action
= dw13
& 0xff;
3368 req
->status
= NVME_SUCCESS
;
3371 status
= nvme_get_mgmt_zone_slba_idx(ns
, cmd
, &slba
, &zone_idx
);
3377 zone
= &ns
->zone_array
[zone_idx
];
3378 if (slba
!= zone
->d
.zslba
) {
3379 trace_pci_nvme_err_unaligned_zone_cmd(action
, slba
, zone
->d
.zslba
);
3380 return NVME_INVALID_FIELD
| NVME_DNR
;
3385 case NVME_ZONE_ACTION_OPEN
:
3387 proc_mask
= NVME_PROC_CLOSED_ZONES
;
3389 trace_pci_nvme_open_zone(slba
, zone_idx
, all
);
3390 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_open_zone
, req
);
3393 case NVME_ZONE_ACTION_CLOSE
:
3395 proc_mask
= NVME_PROC_OPENED_ZONES
;
3397 trace_pci_nvme_close_zone(slba
, zone_idx
, all
);
3398 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_close_zone
, req
);
3401 case NVME_ZONE_ACTION_FINISH
:
3403 proc_mask
= NVME_PROC_OPENED_ZONES
| NVME_PROC_CLOSED_ZONES
;
3405 trace_pci_nvme_finish_zone(slba
, zone_idx
, all
);
3406 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_finish_zone
, req
);
3409 case NVME_ZONE_ACTION_RESET
:
3410 resets
= (uintptr_t *)&req
->opaque
;
3413 proc_mask
= NVME_PROC_OPENED_ZONES
| NVME_PROC_CLOSED_ZONES
|
3414 NVME_PROC_FULL_ZONES
;
3416 trace_pci_nvme_reset_zone(slba
, zone_idx
, all
);
3420 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_reset_zone
, req
);
3424 return *resets
? NVME_NO_COMPLETE
: req
->status
;
3426 case NVME_ZONE_ACTION_OFFLINE
:
3428 proc_mask
= NVME_PROC_READ_ONLY_ZONES
;
3430 trace_pci_nvme_offline_zone(slba
, zone_idx
, all
);
3431 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_offline_zone
, req
);
3434 case NVME_ZONE_ACTION_SET_ZD_EXT
:
3435 trace_pci_nvme_set_descriptor_extension(slba
, zone_idx
);
3436 if (all
|| !ns
->params
.zd_extension_size
) {
3437 return NVME_INVALID_FIELD
| NVME_DNR
;
3439 zd_ext
= nvme_get_zd_extension(ns
, zone_idx
);
3440 status
= nvme_h2c(n
, zd_ext
, ns
->params
.zd_extension_size
, req
);
3442 trace_pci_nvme_err_zd_extension_map_error(zone_idx
);
3446 status
= nvme_set_zd_ext(ns
, zone
);
3447 if (status
== NVME_SUCCESS
) {
3448 trace_pci_nvme_zd_extension_set(zone_idx
);
3454 trace_pci_nvme_err_invalid_mgmt_action(action
);
3455 status
= NVME_INVALID_FIELD
;
3458 if (status
== NVME_ZONE_INVAL_TRANSITION
) {
3459 trace_pci_nvme_err_invalid_zone_state_transition(action
, slba
,
3469 static bool nvme_zone_matches_filter(uint32_t zafs
, NvmeZone
*zl
)
3471 NvmeZoneState zs
= nvme_get_zone_state(zl
);
3474 case NVME_ZONE_REPORT_ALL
:
3476 case NVME_ZONE_REPORT_EMPTY
:
3477 return zs
== NVME_ZONE_STATE_EMPTY
;
3478 case NVME_ZONE_REPORT_IMPLICITLY_OPEN
:
3479 return zs
== NVME_ZONE_STATE_IMPLICITLY_OPEN
;
3480 case NVME_ZONE_REPORT_EXPLICITLY_OPEN
:
3481 return zs
== NVME_ZONE_STATE_EXPLICITLY_OPEN
;
3482 case NVME_ZONE_REPORT_CLOSED
:
3483 return zs
== NVME_ZONE_STATE_CLOSED
;
3484 case NVME_ZONE_REPORT_FULL
:
3485 return zs
== NVME_ZONE_STATE_FULL
;
3486 case NVME_ZONE_REPORT_READ_ONLY
:
3487 return zs
== NVME_ZONE_STATE_READ_ONLY
;
3488 case NVME_ZONE_REPORT_OFFLINE
:
3489 return zs
== NVME_ZONE_STATE_OFFLINE
;
3495 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl
*n
, NvmeRequest
*req
)
3497 NvmeCmd
*cmd
= (NvmeCmd
*)&req
->cmd
;
3498 NvmeNamespace
*ns
= req
->ns
;
3499 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3500 uint32_t data_size
= (le32_to_cpu(cmd
->cdw12
) + 1) << 2;
3501 uint32_t dw13
= le32_to_cpu(cmd
->cdw13
);
3502 uint32_t zone_idx
, zra
, zrasf
, partial
;
3503 uint64_t max_zones
, nr_zones
= 0;
3508 NvmeZoneReportHeader
*header
;
3510 size_t zone_entry_sz
;
3513 req
->status
= NVME_SUCCESS
;
3515 status
= nvme_get_mgmt_zone_slba_idx(ns
, cmd
, &slba
, &zone_idx
);
3521 if (zra
!= NVME_ZONE_REPORT
&& zra
!= NVME_ZONE_REPORT_EXTENDED
) {
3522 return NVME_INVALID_FIELD
| NVME_DNR
;
3524 if (zra
== NVME_ZONE_REPORT_EXTENDED
&& !ns
->params
.zd_extension_size
) {
3525 return NVME_INVALID_FIELD
| NVME_DNR
;
3528 zrasf
= (dw13
>> 8) & 0xff;
3529 if (zrasf
> NVME_ZONE_REPORT_OFFLINE
) {
3530 return NVME_INVALID_FIELD
| NVME_DNR
;
3533 if (data_size
< sizeof(NvmeZoneReportHeader
)) {
3534 return NVME_INVALID_FIELD
| NVME_DNR
;
3537 status
= nvme_check_mdts(n
, data_size
);
3542 partial
= (dw13
>> 16) & 0x01;
3544 zone_entry_sz
= sizeof(NvmeZoneDescr
);
3545 if (zra
== NVME_ZONE_REPORT_EXTENDED
) {
3546 zone_entry_sz
+= ns
->params
.zd_extension_size
;
3549 max_zones
= (data_size
- sizeof(NvmeZoneReportHeader
)) / zone_entry_sz
;
3550 buf
= g_malloc0(data_size
);
3552 zone
= &ns
->zone_array
[zone_idx
];
3553 for (i
= zone_idx
; i
< ns
->num_zones
; i
++) {
3554 if (partial
&& nr_zones
>= max_zones
) {
3557 if (nvme_zone_matches_filter(zrasf
, zone
++)) {
3561 header
= (NvmeZoneReportHeader
*)buf
;
3562 header
->nr_zones
= cpu_to_le64(nr_zones
);
3564 buf_p
= buf
+ sizeof(NvmeZoneReportHeader
);
3565 for (; zone_idx
< ns
->num_zones
&& max_zones
> 0; zone_idx
++) {
3566 zone
= &ns
->zone_array
[zone_idx
];
3567 if (nvme_zone_matches_filter(zrasf
, zone
)) {
3568 z
= (NvmeZoneDescr
*)buf_p
;
3569 buf_p
+= sizeof(NvmeZoneDescr
);
3573 z
->zcap
= cpu_to_le64(zone
->d
.zcap
);
3574 z
->zslba
= cpu_to_le64(zone
->d
.zslba
);
3577 if (nvme_wp_is_valid(zone
)) {
3578 z
->wp
= cpu_to_le64(zone
->d
.wp
);
3580 z
->wp
= cpu_to_le64(~0ULL);
3583 if (zra
== NVME_ZONE_REPORT_EXTENDED
) {
3584 if (zone
->d
.za
& NVME_ZA_ZD_EXT_VALID
) {
3585 memcpy(buf_p
, nvme_get_zd_extension(ns
, zone_idx
),
3586 ns
->params
.zd_extension_size
);
3588 buf_p
+= ns
->params
.zd_extension_size
;
3595 status
= nvme_c2h(n
, (uint8_t *)buf
, data_size
, req
);
3602 static uint16_t nvme_io_cmd(NvmeCtrl
*n
, NvmeRequest
*req
)
3605 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
3607 trace_pci_nvme_io_cmd(nvme_cid(req
), nsid
, nvme_sqid(req
),
3608 req
->cmd
.opcode
, nvme_io_opc_str(req
->cmd
.opcode
));
3610 if (!nvme_nsid_valid(n
, nsid
)) {
3611 return NVME_INVALID_NSID
| NVME_DNR
;
3615 * In the base NVM command set, Flush may apply to all namespaces
3616 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
3617 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
3619 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
3620 * opcode with a specific command since we cannot determine a unique I/O
3621 * command set. Opcode 0h could have any other meaning than something
3622 * equivalent to flushing and say it DOES have completely different
3623 * semantics in some other command set - does an NSID of FFFFFFFFh then
3624 * mean "for all namespaces, apply whatever command set specific command
3625 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
3626 * whatever command that uses the 0h opcode if, and only if, it allows NSID
3629 * Anyway (and luckily), for now, we do not care about this since the
3630 * device only supports namespace types that includes the NVM Flush command
3631 * (NVM and Zoned), so always do an NVM Flush.
3633 if (req
->cmd
.opcode
== NVME_CMD_FLUSH
) {
3634 return nvme_flush(n
, req
);
3637 ns
= nvme_ns(n
, nsid
);
3638 if (unlikely(!ns
)) {
3639 return NVME_INVALID_FIELD
| NVME_DNR
;
3642 if (!(ns
->iocs
[req
->cmd
.opcode
] & NVME_CMD_EFF_CSUPP
)) {
3643 trace_pci_nvme_err_invalid_opc(req
->cmd
.opcode
);
3644 return NVME_INVALID_OPCODE
| NVME_DNR
;
3653 switch (req
->cmd
.opcode
) {
3654 case NVME_CMD_WRITE_ZEROES
:
3655 return nvme_write_zeroes(n
, req
);
3656 case NVME_CMD_ZONE_APPEND
:
3657 return nvme_zone_append(n
, req
);
3658 case NVME_CMD_WRITE
:
3659 return nvme_write(n
, req
);
3661 return nvme_read(n
, req
);
3662 case NVME_CMD_COMPARE
:
3663 return nvme_compare(n
, req
);
3665 return nvme_dsm(n
, req
);
3666 case NVME_CMD_VERIFY
:
3667 return nvme_verify(n
, req
);
3669 return nvme_copy(n
, req
);
3670 case NVME_CMD_ZONE_MGMT_SEND
:
3671 return nvme_zone_mgmt_send(n
, req
);
3672 case NVME_CMD_ZONE_MGMT_RECV
:
3673 return nvme_zone_mgmt_recv(n
, req
);
3678 return NVME_INVALID_OPCODE
| NVME_DNR
;
3681 static void nvme_free_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
)
3683 n
->sq
[sq
->sqid
] = NULL
;
3684 timer_free(sq
->timer
);
3691 static uint16_t nvme_del_sq(NvmeCtrl
*n
, NvmeRequest
*req
)
3693 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)&req
->cmd
;
3694 NvmeRequest
*r
, *next
;
3697 uint16_t qid
= le16_to_cpu(c
->qid
);
3700 if (unlikely(!qid
|| nvme_check_sqid(n
, qid
))) {
3701 trace_pci_nvme_err_invalid_del_sq(qid
);
3702 return NVME_INVALID_QID
| NVME_DNR
;
3705 trace_pci_nvme_del_sq(qid
);
3708 while (!QTAILQ_EMPTY(&sq
->out_req_list
)) {
3709 r
= QTAILQ_FIRST(&sq
->out_req_list
);
3711 blk_aio_cancel(r
->aiocb
);
3716 * Drain all namespaces if there are still outstanding requests that we
3717 * could not cancel explicitly.
3719 if (!QTAILQ_EMPTY(&sq
->out_req_list
)) {
3720 for (nsid
= 1; nsid
<= NVME_MAX_NAMESPACES
; nsid
++) {
3721 NvmeNamespace
*ns
= nvme_ns(n
, nsid
);
3728 assert(QTAILQ_EMPTY(&sq
->out_req_list
));
3730 if (!nvme_check_cqid(n
, sq
->cqid
)) {
3731 cq
= n
->cq
[sq
->cqid
];
3732 QTAILQ_REMOVE(&cq
->sq_list
, sq
, entry
);
3735 QTAILQ_FOREACH_SAFE(r
, &cq
->req_list
, entry
, next
) {
3737 QTAILQ_REMOVE(&cq
->req_list
, r
, entry
);
3738 QTAILQ_INSERT_TAIL(&sq
->req_list
, r
, entry
);
3743 nvme_free_sq(sq
, n
);
3744 return NVME_SUCCESS
;
3747 static void nvme_init_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
, uint64_t dma_addr
,
3748 uint16_t sqid
, uint16_t cqid
, uint16_t size
)
3754 sq
->dma_addr
= dma_addr
;
3758 sq
->head
= sq
->tail
= 0;
3759 sq
->io_req
= g_new0(NvmeRequest
, sq
->size
);
3761 QTAILQ_INIT(&sq
->req_list
);
3762 QTAILQ_INIT(&sq
->out_req_list
);
3763 for (i
= 0; i
< sq
->size
; i
++) {
3764 sq
->io_req
[i
].sq
= sq
;
3765 QTAILQ_INSERT_TAIL(&(sq
->req_list
), &sq
->io_req
[i
], entry
);
3767 sq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_process_sq
, sq
);
3769 assert(n
->cq
[cqid
]);
3771 QTAILQ_INSERT_TAIL(&(cq
->sq_list
), sq
, entry
);
3775 static uint16_t nvme_create_sq(NvmeCtrl
*n
, NvmeRequest
*req
)
3778 NvmeCreateSq
*c
= (NvmeCreateSq
*)&req
->cmd
;
3780 uint16_t cqid
= le16_to_cpu(c
->cqid
);
3781 uint16_t sqid
= le16_to_cpu(c
->sqid
);
3782 uint16_t qsize
= le16_to_cpu(c
->qsize
);
3783 uint16_t qflags
= le16_to_cpu(c
->sq_flags
);
3784 uint64_t prp1
= le64_to_cpu(c
->prp1
);
3786 trace_pci_nvme_create_sq(prp1
, sqid
, cqid
, qsize
, qflags
);
3788 if (unlikely(!cqid
|| nvme_check_cqid(n
, cqid
))) {
3789 trace_pci_nvme_err_invalid_create_sq_cqid(cqid
);
3790 return NVME_INVALID_CQID
| NVME_DNR
;
3792 if (unlikely(!sqid
|| sqid
> n
->params
.max_ioqpairs
||
3793 n
->sq
[sqid
] != NULL
)) {
3794 trace_pci_nvme_err_invalid_create_sq_sqid(sqid
);
3795 return NVME_INVALID_QID
| NVME_DNR
;
3797 if (unlikely(!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
))) {
3798 trace_pci_nvme_err_invalid_create_sq_size(qsize
);
3799 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
3801 if (unlikely(prp1
& (n
->page_size
- 1))) {
3802 trace_pci_nvme_err_invalid_create_sq_addr(prp1
);
3803 return NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
3805 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags
)))) {
3806 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags
));
3807 return NVME_INVALID_FIELD
| NVME_DNR
;
3809 sq
= g_malloc0(sizeof(*sq
));
3810 nvme_init_sq(sq
, n
, prp1
, sqid
, cqid
, qsize
+ 1);
3811 return NVME_SUCCESS
;
3815 uint64_t units_read
;
3816 uint64_t units_written
;
3817 uint64_t read_commands
;
3818 uint64_t write_commands
;
3821 static void nvme_set_blk_stats(NvmeNamespace
*ns
, struct nvme_stats
*stats
)
3823 BlockAcctStats
*s
= blk_get_stats(ns
->blkconf
.blk
);
3825 stats
->units_read
+= s
->nr_bytes
[BLOCK_ACCT_READ
] >> BDRV_SECTOR_BITS
;
3826 stats
->units_written
+= s
->nr_bytes
[BLOCK_ACCT_WRITE
] >> BDRV_SECTOR_BITS
;
3827 stats
->read_commands
+= s
->nr_ops
[BLOCK_ACCT_READ
];
3828 stats
->write_commands
+= s
->nr_ops
[BLOCK_ACCT_WRITE
];
3831 static uint16_t nvme_smart_info(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
3832 uint64_t off
, NvmeRequest
*req
)
3834 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
3835 struct nvme_stats stats
= { 0 };
3836 NvmeSmartLog smart
= { 0 };
3841 if (off
>= sizeof(smart
)) {
3842 return NVME_INVALID_FIELD
| NVME_DNR
;
3845 if (nsid
!= 0xffffffff) {
3846 ns
= nvme_ns(n
, nsid
);
3848 return NVME_INVALID_NSID
| NVME_DNR
;
3850 nvme_set_blk_stats(ns
, &stats
);
3854 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
3859 nvme_set_blk_stats(ns
, &stats
);
3863 trans_len
= MIN(sizeof(smart
) - off
, buf_len
);
3864 smart
.critical_warning
= n
->smart_critical_warning
;
3866 smart
.data_units_read
[0] = cpu_to_le64(DIV_ROUND_UP(stats
.units_read
,
3868 smart
.data_units_written
[0] = cpu_to_le64(DIV_ROUND_UP(stats
.units_written
,
3870 smart
.host_read_commands
[0] = cpu_to_le64(stats
.read_commands
);
3871 smart
.host_write_commands
[0] = cpu_to_le64(stats
.write_commands
);
3873 smart
.temperature
= cpu_to_le16(n
->temperature
);
3875 if ((n
->temperature
>= n
->features
.temp_thresh_hi
) ||
3876 (n
->temperature
<= n
->features
.temp_thresh_low
)) {
3877 smart
.critical_warning
|= NVME_SMART_TEMPERATURE
;
3880 current_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
3881 smart
.power_on_hours
[0] =
3882 cpu_to_le64((((current_ms
- n
->starttime_ms
) / 1000) / 60) / 60);
3885 nvme_clear_events(n
, NVME_AER_TYPE_SMART
);
3888 return nvme_c2h(n
, (uint8_t *) &smart
+ off
, trans_len
, req
);
3891 static uint16_t nvme_fw_log_info(NvmeCtrl
*n
, uint32_t buf_len
, uint64_t off
,
3895 NvmeFwSlotInfoLog fw_log
= {
3899 if (off
>= sizeof(fw_log
)) {
3900 return NVME_INVALID_FIELD
| NVME_DNR
;
3903 strpadcpy((char *)&fw_log
.frs1
, sizeof(fw_log
.frs1
), "1.0", ' ');
3904 trans_len
= MIN(sizeof(fw_log
) - off
, buf_len
);
3906 return nvme_c2h(n
, (uint8_t *) &fw_log
+ off
, trans_len
, req
);
3909 static uint16_t nvme_error_info(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
3910 uint64_t off
, NvmeRequest
*req
)
3913 NvmeErrorLog errlog
;
3915 if (off
>= sizeof(errlog
)) {
3916 return NVME_INVALID_FIELD
| NVME_DNR
;
3920 nvme_clear_events(n
, NVME_AER_TYPE_ERROR
);
3923 memset(&errlog
, 0x0, sizeof(errlog
));
3924 trans_len
= MIN(sizeof(errlog
) - off
, buf_len
);
3926 return nvme_c2h(n
, (uint8_t *)&errlog
, trans_len
, req
);
3929 static uint16_t nvme_changed_nslist(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
3930 uint64_t off
, NvmeRequest
*req
)
3932 uint32_t nslist
[1024];
3937 memset(nslist
, 0x0, sizeof(nslist
));
3938 trans_len
= MIN(sizeof(nslist
) - off
, buf_len
);
3940 while ((nsid
= find_first_bit(n
->changed_nsids
, NVME_CHANGED_NSID_SIZE
)) !=
3941 NVME_CHANGED_NSID_SIZE
) {
3943 * If more than 1024 namespaces, the first entry in the log page should
3944 * be set to FFFFFFFFh and the others to 0 as spec.
3946 if (i
== ARRAY_SIZE(nslist
)) {
3947 memset(nslist
, 0x0, sizeof(nslist
));
3948 nslist
[0] = 0xffffffff;
3953 clear_bit(nsid
, n
->changed_nsids
);
3957 * Remove all the remaining list entries in case returns directly due to
3958 * more than 1024 namespaces.
3960 if (nslist
[0] == 0xffffffff) {
3961 bitmap_zero(n
->changed_nsids
, NVME_CHANGED_NSID_SIZE
);
3965 nvme_clear_events(n
, NVME_AER_TYPE_NOTICE
);
3968 return nvme_c2h(n
, ((uint8_t *)nslist
) + off
, trans_len
, req
);
3971 static uint16_t nvme_cmd_effects(NvmeCtrl
*n
, uint8_t csi
, uint32_t buf_len
,
3972 uint64_t off
, NvmeRequest
*req
)
3974 NvmeEffectsLog log
= {};
3975 const uint32_t *src_iocs
= NULL
;
3978 if (off
>= sizeof(log
)) {
3979 trace_pci_nvme_err_invalid_log_page_offset(off
, sizeof(log
));
3980 return NVME_INVALID_FIELD
| NVME_DNR
;
3983 switch (NVME_CC_CSS(n
->bar
.cc
)) {
3984 case NVME_CC_CSS_NVM
:
3985 src_iocs
= nvme_cse_iocs_nvm
;
3987 case NVME_CC_CSS_ADMIN_ONLY
:
3989 case NVME_CC_CSS_CSI
:
3992 src_iocs
= nvme_cse_iocs_nvm
;
3994 case NVME_CSI_ZONED
:
3995 src_iocs
= nvme_cse_iocs_zoned
;
4000 memcpy(log
.acs
, nvme_cse_acs
, sizeof(nvme_cse_acs
));
4003 memcpy(log
.iocs
, src_iocs
, sizeof(log
.iocs
));
4006 trans_len
= MIN(sizeof(log
) - off
, buf_len
);
4008 return nvme_c2h(n
, ((uint8_t *)&log
) + off
, trans_len
, req
);
4011 static uint16_t nvme_get_log(NvmeCtrl
*n
, NvmeRequest
*req
)
4013 NvmeCmd
*cmd
= &req
->cmd
;
4015 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
4016 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
4017 uint32_t dw12
= le32_to_cpu(cmd
->cdw12
);
4018 uint32_t dw13
= le32_to_cpu(cmd
->cdw13
);
4019 uint8_t lid
= dw10
& 0xff;
4020 uint8_t lsp
= (dw10
>> 8) & 0xf;
4021 uint8_t rae
= (dw10
>> 15) & 0x1;
4022 uint8_t csi
= le32_to_cpu(cmd
->cdw14
) >> 24;
4023 uint32_t numdl
, numdu
;
4024 uint64_t off
, lpol
, lpou
;
4028 numdl
= (dw10
>> 16);
4029 numdu
= (dw11
& 0xffff);
4033 len
= (((numdu
<< 16) | numdl
) + 1) << 2;
4034 off
= (lpou
<< 32ULL) | lpol
;
4037 return NVME_INVALID_FIELD
| NVME_DNR
;
4040 trace_pci_nvme_get_log(nvme_cid(req
), lid
, lsp
, rae
, len
, off
);
4042 status
= nvme_check_mdts(n
, len
);
4048 case NVME_LOG_ERROR_INFO
:
4049 return nvme_error_info(n
, rae
, len
, off
, req
);
4050 case NVME_LOG_SMART_INFO
:
4051 return nvme_smart_info(n
, rae
, len
, off
, req
);
4052 case NVME_LOG_FW_SLOT_INFO
:
4053 return nvme_fw_log_info(n
, len
, off
, req
);
4054 case NVME_LOG_CHANGED_NSLIST
:
4055 return nvme_changed_nslist(n
, rae
, len
, off
, req
);
4056 case NVME_LOG_CMD_EFFECTS
:
4057 return nvme_cmd_effects(n
, csi
, len
, off
, req
);
4059 trace_pci_nvme_err_invalid_log_page(nvme_cid(req
), lid
);
4060 return NVME_INVALID_FIELD
| NVME_DNR
;
4064 static void nvme_free_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
)
4066 n
->cq
[cq
->cqid
] = NULL
;
4067 timer_free(cq
->timer
);
4068 if (msix_enabled(&n
->parent_obj
)) {
4069 msix_vector_unuse(&n
->parent_obj
, cq
->vector
);
4076 static uint16_t nvme_del_cq(NvmeCtrl
*n
, NvmeRequest
*req
)
4078 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)&req
->cmd
;
4080 uint16_t qid
= le16_to_cpu(c
->qid
);
4082 if (unlikely(!qid
|| nvme_check_cqid(n
, qid
))) {
4083 trace_pci_nvme_err_invalid_del_cq_cqid(qid
);
4084 return NVME_INVALID_CQID
| NVME_DNR
;
4088 if (unlikely(!QTAILQ_EMPTY(&cq
->sq_list
))) {
4089 trace_pci_nvme_err_invalid_del_cq_notempty(qid
);
4090 return NVME_INVALID_QUEUE_DEL
;
4092 nvme_irq_deassert(n
, cq
);
4093 trace_pci_nvme_del_cq(qid
);
4094 nvme_free_cq(cq
, n
);
4095 return NVME_SUCCESS
;
4098 static void nvme_init_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
, uint64_t dma_addr
,
4099 uint16_t cqid
, uint16_t vector
, uint16_t size
,
4100 uint16_t irq_enabled
)
4104 if (msix_enabled(&n
->parent_obj
)) {
4105 ret
= msix_vector_use(&n
->parent_obj
, vector
);
4111 cq
->dma_addr
= dma_addr
;
4113 cq
->irq_enabled
= irq_enabled
;
4114 cq
->vector
= vector
;
4115 cq
->head
= cq
->tail
= 0;
4116 QTAILQ_INIT(&cq
->req_list
);
4117 QTAILQ_INIT(&cq
->sq_list
);
4119 cq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_post_cqes
, cq
);
4122 static uint16_t nvme_create_cq(NvmeCtrl
*n
, NvmeRequest
*req
)
4125 NvmeCreateCq
*c
= (NvmeCreateCq
*)&req
->cmd
;
4126 uint16_t cqid
= le16_to_cpu(c
->cqid
);
4127 uint16_t vector
= le16_to_cpu(c
->irq_vector
);
4128 uint16_t qsize
= le16_to_cpu(c
->qsize
);
4129 uint16_t qflags
= le16_to_cpu(c
->cq_flags
);
4130 uint64_t prp1
= le64_to_cpu(c
->prp1
);
4132 trace_pci_nvme_create_cq(prp1
, cqid
, vector
, qsize
, qflags
,
4133 NVME_CQ_FLAGS_IEN(qflags
) != 0);
4135 if (unlikely(!cqid
|| cqid
> n
->params
.max_ioqpairs
||
4136 n
->cq
[cqid
] != NULL
)) {
4137 trace_pci_nvme_err_invalid_create_cq_cqid(cqid
);
4138 return NVME_INVALID_QID
| NVME_DNR
;
4140 if (unlikely(!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
))) {
4141 trace_pci_nvme_err_invalid_create_cq_size(qsize
);
4142 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
4144 if (unlikely(prp1
& (n
->page_size
- 1))) {
4145 trace_pci_nvme_err_invalid_create_cq_addr(prp1
);
4146 return NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
4148 if (unlikely(!msix_enabled(&n
->parent_obj
) && vector
)) {
4149 trace_pci_nvme_err_invalid_create_cq_vector(vector
);
4150 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
4152 if (unlikely(vector
>= n
->params
.msix_qsize
)) {
4153 trace_pci_nvme_err_invalid_create_cq_vector(vector
);
4154 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
4156 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags
)))) {
4157 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags
));
4158 return NVME_INVALID_FIELD
| NVME_DNR
;
4161 cq
= g_malloc0(sizeof(*cq
));
4162 nvme_init_cq(cq
, n
, prp1
, cqid
, vector
, qsize
+ 1,
4163 NVME_CQ_FLAGS_IEN(qflags
));
4166 * It is only required to set qs_created when creating a completion queue;
4167 * creating a submission queue without a matching completion queue will
4170 n
->qs_created
= true;
4171 return NVME_SUCCESS
;
4174 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl
*n
, NvmeRequest
*req
)
4176 uint8_t id
[NVME_IDENTIFY_DATA_SIZE
] = {};
4178 return nvme_c2h(n
, id
, sizeof(id
), req
);
4181 static inline bool nvme_csi_has_nvm_support(NvmeNamespace
*ns
)
4185 case NVME_CSI_ZONED
:
4191 static uint16_t nvme_identify_ctrl(NvmeCtrl
*n
, NvmeRequest
*req
)
4193 trace_pci_nvme_identify_ctrl();
4195 return nvme_c2h(n
, (uint8_t *)&n
->id_ctrl
, sizeof(n
->id_ctrl
), req
);
4198 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl
*n
, NvmeRequest
*req
)
4200 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4201 uint8_t id
[NVME_IDENTIFY_DATA_SIZE
] = {};
4202 NvmeIdCtrlNvm
*id_nvm
= (NvmeIdCtrlNvm
*)&id
;
4204 trace_pci_nvme_identify_ctrl_csi(c
->csi
);
4208 id_nvm
->vsl
= n
->params
.vsl
;
4209 id_nvm
->dmrsl
= cpu_to_le32(n
->dmrsl
);
4212 case NVME_CSI_ZONED
:
4213 ((NvmeIdCtrlZoned
*)&id
)->zasl
= n
->params
.zasl
;
4217 return NVME_INVALID_FIELD
| NVME_DNR
;
4220 return nvme_c2h(n
, id
, sizeof(id
), req
);
4223 static uint16_t nvme_identify_ns(NvmeCtrl
*n
, NvmeRequest
*req
, bool active
)
4226 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4227 uint32_t nsid
= le32_to_cpu(c
->nsid
);
4229 trace_pci_nvme_identify_ns(nsid
);
4231 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
4232 return NVME_INVALID_NSID
| NVME_DNR
;
4235 ns
= nvme_ns(n
, nsid
);
4236 if (unlikely(!ns
)) {
4238 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
4240 return nvme_rpt_empty_id_struct(n
, req
);
4243 return nvme_rpt_empty_id_struct(n
, req
);
4247 if (c
->csi
== NVME_CSI_NVM
&& nvme_csi_has_nvm_support(ns
)) {
4248 return nvme_c2h(n
, (uint8_t *)&ns
->id_ns
, sizeof(NvmeIdNs
), req
);
4251 return NVME_INVALID_CMD_SET
| NVME_DNR
;
4254 static uint16_t nvme_identify_ns_attached_list(NvmeCtrl
*n
, NvmeRequest
*req
)
4256 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4257 uint16_t min_id
= le16_to_cpu(c
->ctrlid
);
4258 uint16_t list
[NVME_CONTROLLER_LIST_SIZE
] = {};
4259 uint16_t *ids
= &list
[1];
4262 int cntlid
, nr_ids
= 0;
4264 trace_pci_nvme_identify_ns_attached_list(min_id
);
4266 if (c
->nsid
== NVME_NSID_BROADCAST
) {
4267 return NVME_INVALID_FIELD
| NVME_DNR
;
4270 ns
= nvme_subsys_ns(n
->subsys
, c
->nsid
);
4272 return NVME_INVALID_FIELD
| NVME_DNR
;
4275 for (cntlid
= min_id
; cntlid
< ARRAY_SIZE(n
->subsys
->ctrls
); cntlid
++) {
4276 ctrl
= nvme_subsys_ctrl(n
->subsys
, cntlid
);
4281 if (!nvme_ns(ctrl
, c
->nsid
)) {
4285 ids
[nr_ids
++] = cntlid
;
4290 return nvme_c2h(n
, (uint8_t *)list
, sizeof(list
), req
);
4293 static uint16_t nvme_identify_ns_csi(NvmeCtrl
*n
, NvmeRequest
*req
,
4297 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4298 uint32_t nsid
= le32_to_cpu(c
->nsid
);
4300 trace_pci_nvme_identify_ns_csi(nsid
, c
->csi
);
4302 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
4303 return NVME_INVALID_NSID
| NVME_DNR
;
4306 ns
= nvme_ns(n
, nsid
);
4307 if (unlikely(!ns
)) {
4309 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
4311 return nvme_rpt_empty_id_struct(n
, req
);
4314 return nvme_rpt_empty_id_struct(n
, req
);
4318 if (c
->csi
== NVME_CSI_NVM
&& nvme_csi_has_nvm_support(ns
)) {
4319 return nvme_rpt_empty_id_struct(n
, req
);
4320 } else if (c
->csi
== NVME_CSI_ZONED
&& ns
->csi
== NVME_CSI_ZONED
) {
4321 return nvme_c2h(n
, (uint8_t *)ns
->id_ns_zoned
, sizeof(NvmeIdNsZoned
),
4325 return NVME_INVALID_FIELD
| NVME_DNR
;
4328 static uint16_t nvme_identify_nslist(NvmeCtrl
*n
, NvmeRequest
*req
,
4332 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4333 uint32_t min_nsid
= le32_to_cpu(c
->nsid
);
4334 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
4335 static const int data_len
= sizeof(list
);
4336 uint32_t *list_ptr
= (uint32_t *)list
;
4339 trace_pci_nvme_identify_nslist(min_nsid
);
4342 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4343 * since the Active Namespace ID List should return namespaces with ids
4344 * *higher* than the NSID specified in the command. This is also specified
4345 * in the spec (NVM Express v1.3d, Section 5.15.4).
4347 if (min_nsid
>= NVME_NSID_BROADCAST
- 1) {
4348 return NVME_INVALID_NSID
| NVME_DNR
;
4351 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4355 ns
= nvme_subsys_ns(n
->subsys
, i
);
4363 if (ns
->params
.nsid
<= min_nsid
) {
4366 list_ptr
[j
++] = cpu_to_le32(ns
->params
.nsid
);
4367 if (j
== data_len
/ sizeof(uint32_t)) {
4372 return nvme_c2h(n
, list
, data_len
, req
);
4375 static uint16_t nvme_identify_nslist_csi(NvmeCtrl
*n
, NvmeRequest
*req
,
4379 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4380 uint32_t min_nsid
= le32_to_cpu(c
->nsid
);
4381 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
4382 static const int data_len
= sizeof(list
);
4383 uint32_t *list_ptr
= (uint32_t *)list
;
4386 trace_pci_nvme_identify_nslist_csi(min_nsid
, c
->csi
);
4389 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4391 if (min_nsid
>= NVME_NSID_BROADCAST
- 1) {
4392 return NVME_INVALID_NSID
| NVME_DNR
;
4395 if (c
->csi
!= NVME_CSI_NVM
&& c
->csi
!= NVME_CSI_ZONED
) {
4396 return NVME_INVALID_FIELD
| NVME_DNR
;
4399 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4403 ns
= nvme_subsys_ns(n
->subsys
, i
);
4411 if (ns
->params
.nsid
<= min_nsid
|| c
->csi
!= ns
->csi
) {
4414 list_ptr
[j
++] = cpu_to_le32(ns
->params
.nsid
);
4415 if (j
== data_len
/ sizeof(uint32_t)) {
4420 return nvme_c2h(n
, list
, data_len
, req
);
4423 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl
*n
, NvmeRequest
*req
)
4426 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4427 uint32_t nsid
= le32_to_cpu(c
->nsid
);
4428 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
4433 uint8_t v
[NVME_NIDL_UUID
];
4441 struct data
*ns_descrs
= (struct data
*)list
;
4443 trace_pci_nvme_identify_ns_descr_list(nsid
);
4445 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
4446 return NVME_INVALID_NSID
| NVME_DNR
;
4449 ns
= nvme_ns(n
, nsid
);
4450 if (unlikely(!ns
)) {
4451 return NVME_INVALID_FIELD
| NVME_DNR
;
4455 * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
4456 * structure, a Namespace UUID (nidt = 3h) must be reported in the
4457 * Namespace Identification Descriptor. Add the namespace UUID here.
4459 ns_descrs
->uuid
.hdr
.nidt
= NVME_NIDT_UUID
;
4460 ns_descrs
->uuid
.hdr
.nidl
= NVME_NIDL_UUID
;
4461 memcpy(&ns_descrs
->uuid
.v
, ns
->params
.uuid
.data
, NVME_NIDL_UUID
);
4463 ns_descrs
->csi
.hdr
.nidt
= NVME_NIDT_CSI
;
4464 ns_descrs
->csi
.hdr
.nidl
= NVME_NIDL_CSI
;
4465 ns_descrs
->csi
.v
= ns
->csi
;
4467 return nvme_c2h(n
, list
, sizeof(list
), req
);
4470 static uint16_t nvme_identify_cmd_set(NvmeCtrl
*n
, NvmeRequest
*req
)
4472 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
4473 static const int data_len
= sizeof(list
);
4475 trace_pci_nvme_identify_cmd_set();
4477 NVME_SET_CSI(*list
, NVME_CSI_NVM
);
4478 NVME_SET_CSI(*list
, NVME_CSI_ZONED
);
4480 return nvme_c2h(n
, list
, data_len
, req
);
4483 static uint16_t nvme_identify(NvmeCtrl
*n
, NvmeRequest
*req
)
4485 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4487 trace_pci_nvme_identify(nvme_cid(req
), c
->cns
, le16_to_cpu(c
->ctrlid
),
4491 case NVME_ID_CNS_NS
:
4492 return nvme_identify_ns(n
, req
, true);
4493 case NVME_ID_CNS_NS_PRESENT
:
4494 return nvme_identify_ns(n
, req
, false);
4495 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST
:
4496 return nvme_identify_ns_attached_list(n
, req
);
4497 case NVME_ID_CNS_CS_NS
:
4498 return nvme_identify_ns_csi(n
, req
, true);
4499 case NVME_ID_CNS_CS_NS_PRESENT
:
4500 return nvme_identify_ns_csi(n
, req
, false);
4501 case NVME_ID_CNS_CTRL
:
4502 return nvme_identify_ctrl(n
, req
);
4503 case NVME_ID_CNS_CS_CTRL
:
4504 return nvme_identify_ctrl_csi(n
, req
);
4505 case NVME_ID_CNS_NS_ACTIVE_LIST
:
4506 return nvme_identify_nslist(n
, req
, true);
4507 case NVME_ID_CNS_NS_PRESENT_LIST
:
4508 return nvme_identify_nslist(n
, req
, false);
4509 case NVME_ID_CNS_CS_NS_ACTIVE_LIST
:
4510 return nvme_identify_nslist_csi(n
, req
, true);
4511 case NVME_ID_CNS_CS_NS_PRESENT_LIST
:
4512 return nvme_identify_nslist_csi(n
, req
, false);
4513 case NVME_ID_CNS_NS_DESCR_LIST
:
4514 return nvme_identify_ns_descr_list(n
, req
);
4515 case NVME_ID_CNS_IO_COMMAND_SET
:
4516 return nvme_identify_cmd_set(n
, req
);
4518 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c
->cns
));
4519 return NVME_INVALID_FIELD
| NVME_DNR
;
4523 static uint16_t nvme_abort(NvmeCtrl
*n
, NvmeRequest
*req
)
4525 uint16_t sqid
= le32_to_cpu(req
->cmd
.cdw10
) & 0xffff;
4527 req
->cqe
.result
= 1;
4528 if (nvme_check_sqid(n
, sqid
)) {
4529 return NVME_INVALID_FIELD
| NVME_DNR
;
4532 return NVME_SUCCESS
;
4535 static inline void nvme_set_timestamp(NvmeCtrl
*n
, uint64_t ts
)
4537 trace_pci_nvme_setfeat_timestamp(ts
);
4539 n
->host_timestamp
= le64_to_cpu(ts
);
4540 n
->timestamp_set_qemu_clock_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
4543 static inline uint64_t nvme_get_timestamp(const NvmeCtrl
*n
)
4545 uint64_t current_time
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
4546 uint64_t elapsed_time
= current_time
- n
->timestamp_set_qemu_clock_ms
;
4548 union nvme_timestamp
{
4550 uint64_t timestamp
:48;
4558 union nvme_timestamp ts
;
4560 ts
.timestamp
= n
->host_timestamp
+ elapsed_time
;
4562 /* If the host timestamp is non-zero, set the timestamp origin */
4563 ts
.origin
= n
->host_timestamp
? 0x01 : 0x00;
4565 trace_pci_nvme_getfeat_timestamp(ts
.all
);
4567 return cpu_to_le64(ts
.all
);
4570 static uint16_t nvme_get_feature_timestamp(NvmeCtrl
*n
, NvmeRequest
*req
)
4572 uint64_t timestamp
= nvme_get_timestamp(n
);
4574 return nvme_c2h(n
, (uint8_t *)×tamp
, sizeof(timestamp
), req
);
4577 static uint16_t nvme_get_feature(NvmeCtrl
*n
, NvmeRequest
*req
)
4579 NvmeCmd
*cmd
= &req
->cmd
;
4580 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
4581 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
4582 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
4584 uint8_t fid
= NVME_GETSETFEAT_FID(dw10
);
4585 NvmeGetFeatureSelect sel
= NVME_GETFEAT_SELECT(dw10
);
4590 static const uint32_t nvme_feature_default
[NVME_FID_MAX
] = {
4591 [NVME_ARBITRATION
] = NVME_ARB_AB_NOLIMIT
,
4594 trace_pci_nvme_getfeat(nvme_cid(req
), nsid
, fid
, sel
, dw11
);
4596 if (!nvme_feature_support
[fid
]) {
4597 return NVME_INVALID_FIELD
| NVME_DNR
;
4600 if (nvme_feature_cap
[fid
] & NVME_FEAT_CAP_NS
) {
4601 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
4603 * The Reservation Notification Mask and Reservation Persistence
4604 * features require a status code of Invalid Field in Command when
4605 * NSID is FFFFFFFFh. Since the device does not support those
4606 * features we can always return Invalid Namespace or Format as we
4607 * should do for all other features.
4609 return NVME_INVALID_NSID
| NVME_DNR
;
4612 if (!nvme_ns(n
, nsid
)) {
4613 return NVME_INVALID_FIELD
| NVME_DNR
;
4618 case NVME_GETFEAT_SELECT_CURRENT
:
4620 case NVME_GETFEAT_SELECT_SAVED
:
4621 /* no features are saveable by the controller; fallthrough */
4622 case NVME_GETFEAT_SELECT_DEFAULT
:
4624 case NVME_GETFEAT_SELECT_CAP
:
4625 result
= nvme_feature_cap
[fid
];
4630 case NVME_TEMPERATURE_THRESHOLD
:
4634 * The controller only implements the Composite Temperature sensor, so
4635 * return 0 for all other sensors.
4637 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
4641 switch (NVME_TEMP_THSEL(dw11
)) {
4642 case NVME_TEMP_THSEL_OVER
:
4643 result
= n
->features
.temp_thresh_hi
;
4645 case NVME_TEMP_THSEL_UNDER
:
4646 result
= n
->features
.temp_thresh_low
;
4650 return NVME_INVALID_FIELD
| NVME_DNR
;
4651 case NVME_ERROR_RECOVERY
:
4652 if (!nvme_nsid_valid(n
, nsid
)) {
4653 return NVME_INVALID_NSID
| NVME_DNR
;
4656 ns
= nvme_ns(n
, nsid
);
4657 if (unlikely(!ns
)) {
4658 return NVME_INVALID_FIELD
| NVME_DNR
;
4661 result
= ns
->features
.err_rec
;
4663 case NVME_VOLATILE_WRITE_CACHE
:
4665 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4671 result
= blk_enable_write_cache(ns
->blkconf
.blk
);
4676 trace_pci_nvme_getfeat_vwcache(result
? "enabled" : "disabled");
4678 case NVME_ASYNCHRONOUS_EVENT_CONF
:
4679 result
= n
->features
.async_config
;
4681 case NVME_TIMESTAMP
:
4682 return nvme_get_feature_timestamp(n
, req
);
4689 case NVME_TEMPERATURE_THRESHOLD
:
4692 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
4696 if (NVME_TEMP_THSEL(dw11
) == NVME_TEMP_THSEL_OVER
) {
4697 result
= NVME_TEMPERATURE_WARNING
;
4701 case NVME_NUMBER_OF_QUEUES
:
4702 result
= (n
->params
.max_ioqpairs
- 1) |
4703 ((n
->params
.max_ioqpairs
- 1) << 16);
4704 trace_pci_nvme_getfeat_numq(result
);
4706 case NVME_INTERRUPT_VECTOR_CONF
:
4708 if (iv
>= n
->params
.max_ioqpairs
+ 1) {
4709 return NVME_INVALID_FIELD
| NVME_DNR
;
4713 if (iv
== n
->admin_cq
.vector
) {
4714 result
|= NVME_INTVC_NOCOALESCING
;
4718 result
= nvme_feature_default
[fid
];
4723 req
->cqe
.result
= cpu_to_le32(result
);
4724 return NVME_SUCCESS
;
4727 static uint16_t nvme_set_feature_timestamp(NvmeCtrl
*n
, NvmeRequest
*req
)
4732 ret
= nvme_h2c(n
, (uint8_t *)×tamp
, sizeof(timestamp
), req
);
4737 nvme_set_timestamp(n
, timestamp
);
4739 return NVME_SUCCESS
;
4742 static uint16_t nvme_set_feature(NvmeCtrl
*n
, NvmeRequest
*req
)
4744 NvmeNamespace
*ns
= NULL
;
4746 NvmeCmd
*cmd
= &req
->cmd
;
4747 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
4748 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
4749 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
4750 uint8_t fid
= NVME_GETSETFEAT_FID(dw10
);
4751 uint8_t save
= NVME_SETFEAT_SAVE(dw10
);
4754 trace_pci_nvme_setfeat(nvme_cid(req
), nsid
, fid
, save
, dw11
);
4756 if (save
&& !(nvme_feature_cap
[fid
] & NVME_FEAT_CAP_SAVE
)) {
4757 return NVME_FID_NOT_SAVEABLE
| NVME_DNR
;
4760 if (!nvme_feature_support
[fid
]) {
4761 return NVME_INVALID_FIELD
| NVME_DNR
;
4764 if (nvme_feature_cap
[fid
] & NVME_FEAT_CAP_NS
) {
4765 if (nsid
!= NVME_NSID_BROADCAST
) {
4766 if (!nvme_nsid_valid(n
, nsid
)) {
4767 return NVME_INVALID_NSID
| NVME_DNR
;
4770 ns
= nvme_ns(n
, nsid
);
4771 if (unlikely(!ns
)) {
4772 return NVME_INVALID_FIELD
| NVME_DNR
;
4775 } else if (nsid
&& nsid
!= NVME_NSID_BROADCAST
) {
4776 if (!nvme_nsid_valid(n
, nsid
)) {
4777 return NVME_INVALID_NSID
| NVME_DNR
;
4780 return NVME_FEAT_NOT_NS_SPEC
| NVME_DNR
;
4783 if (!(nvme_feature_cap
[fid
] & NVME_FEAT_CAP_CHANGE
)) {
4784 return NVME_FEAT_NOT_CHANGEABLE
| NVME_DNR
;
4788 case NVME_TEMPERATURE_THRESHOLD
:
4789 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
4793 switch (NVME_TEMP_THSEL(dw11
)) {
4794 case NVME_TEMP_THSEL_OVER
:
4795 n
->features
.temp_thresh_hi
= NVME_TEMP_TMPTH(dw11
);
4797 case NVME_TEMP_THSEL_UNDER
:
4798 n
->features
.temp_thresh_low
= NVME_TEMP_TMPTH(dw11
);
4801 return NVME_INVALID_FIELD
| NVME_DNR
;
4804 if ((n
->temperature
>= n
->features
.temp_thresh_hi
) ||
4805 (n
->temperature
<= n
->features
.temp_thresh_low
)) {
4806 nvme_smart_event(n
, NVME_AER_INFO_SMART_TEMP_THRESH
);
4810 case NVME_ERROR_RECOVERY
:
4811 if (nsid
== NVME_NSID_BROADCAST
) {
4812 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4819 if (NVME_ID_NS_NSFEAT_DULBE(ns
->id_ns
.nsfeat
)) {
4820 ns
->features
.err_rec
= dw11
;
4828 if (NVME_ID_NS_NSFEAT_DULBE(ns
->id_ns
.nsfeat
)) {
4829 ns
->features
.err_rec
= dw11
;
4832 case NVME_VOLATILE_WRITE_CACHE
:
4833 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4839 if (!(dw11
& 0x1) && blk_enable_write_cache(ns
->blkconf
.blk
)) {
4840 blk_flush(ns
->blkconf
.blk
);
4843 blk_set_enable_write_cache(ns
->blkconf
.blk
, dw11
& 1);
4848 case NVME_NUMBER_OF_QUEUES
:
4849 if (n
->qs_created
) {
4850 return NVME_CMD_SEQ_ERROR
| NVME_DNR
;
4854 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
4857 if ((dw11
& 0xffff) == 0xffff || ((dw11
>> 16) & 0xffff) == 0xffff) {
4858 return NVME_INVALID_FIELD
| NVME_DNR
;
4861 trace_pci_nvme_setfeat_numq((dw11
& 0xffff) + 1,
4862 ((dw11
>> 16) & 0xffff) + 1,
4863 n
->params
.max_ioqpairs
,
4864 n
->params
.max_ioqpairs
);
4865 req
->cqe
.result
= cpu_to_le32((n
->params
.max_ioqpairs
- 1) |
4866 ((n
->params
.max_ioqpairs
- 1) << 16));
4868 case NVME_ASYNCHRONOUS_EVENT_CONF
:
4869 n
->features
.async_config
= dw11
;
4871 case NVME_TIMESTAMP
:
4872 return nvme_set_feature_timestamp(n
, req
);
4873 case NVME_COMMAND_SET_PROFILE
:
4875 trace_pci_nvme_err_invalid_iocsci(dw11
& 0x1ff);
4876 return NVME_CMD_SET_CMB_REJECTED
| NVME_DNR
;
4880 return NVME_FEAT_NOT_CHANGEABLE
| NVME_DNR
;
4882 return NVME_SUCCESS
;
4885 static uint16_t nvme_aer(NvmeCtrl
*n
, NvmeRequest
*req
)
4887 trace_pci_nvme_aer(nvme_cid(req
));
4889 if (n
->outstanding_aers
> n
->params
.aerl
) {
4890 trace_pci_nvme_aer_aerl_exceeded();
4891 return NVME_AER_LIMIT_EXCEEDED
;
4894 n
->aer_reqs
[n
->outstanding_aers
] = req
;
4895 n
->outstanding_aers
++;
4897 if (!QTAILQ_EMPTY(&n
->aer_queue
)) {
4898 nvme_process_aers(n
);
4901 return NVME_NO_COMPLETE
;
4904 static void nvme_update_dmrsl(NvmeCtrl
*n
)
4908 for (nsid
= 1; nsid
<= NVME_MAX_NAMESPACES
; nsid
++) {
4909 NvmeNamespace
*ns
= nvme_ns(n
, nsid
);
4914 n
->dmrsl
= MIN_NON_ZERO(n
->dmrsl
,
4915 BDRV_REQUEST_MAX_BYTES
/ nvme_l2b(ns
, 1));
4919 static void nvme_select_iocs_ns(NvmeCtrl
*n
, NvmeNamespace
*ns
)
4921 ns
->iocs
= nvme_cse_iocs_none
;
4924 if (NVME_CC_CSS(n
->bar
.cc
) != NVME_CC_CSS_ADMIN_ONLY
) {
4925 ns
->iocs
= nvme_cse_iocs_nvm
;
4928 case NVME_CSI_ZONED
:
4929 if (NVME_CC_CSS(n
->bar
.cc
) == NVME_CC_CSS_CSI
) {
4930 ns
->iocs
= nvme_cse_iocs_zoned
;
4931 } else if (NVME_CC_CSS(n
->bar
.cc
) == NVME_CC_CSS_NVM
) {
4932 ns
->iocs
= nvme_cse_iocs_nvm
;
4938 static uint16_t nvme_ns_attachment(NvmeCtrl
*n
, NvmeRequest
*req
)
4942 uint16_t list
[NVME_CONTROLLER_LIST_SIZE
] = {};
4943 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
4944 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
4945 bool attach
= !(dw10
& 0xf);
4946 uint16_t *nr_ids
= &list
[0];
4947 uint16_t *ids
= &list
[1];
4951 trace_pci_nvme_ns_attachment(nvme_cid(req
), dw10
& 0xf);
4953 if (!nvme_nsid_valid(n
, nsid
)) {
4954 return NVME_INVALID_NSID
| NVME_DNR
;
4957 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
4959 return NVME_INVALID_FIELD
| NVME_DNR
;
4962 ret
= nvme_h2c(n
, (uint8_t *)list
, 4096, req
);
4968 return NVME_NS_CTRL_LIST_INVALID
| NVME_DNR
;
4971 *nr_ids
= MIN(*nr_ids
, NVME_CONTROLLER_LIST_SIZE
- 1);
4972 for (i
= 0; i
< *nr_ids
; i
++) {
4973 ctrl
= nvme_subsys_ctrl(n
->subsys
, ids
[i
]);
4975 return NVME_NS_CTRL_LIST_INVALID
| NVME_DNR
;
4979 if (nvme_ns(ctrl
, nsid
)) {
4980 return NVME_NS_ALREADY_ATTACHED
| NVME_DNR
;
4983 if (ns
->attached
&& !ns
->params
.shared
) {
4984 return NVME_NS_PRIVATE
| NVME_DNR
;
4987 nvme_attach_ns(ctrl
, ns
);
4988 nvme_select_iocs_ns(ctrl
, ns
);
4990 if (!nvme_ns(ctrl
, nsid
)) {
4991 return NVME_NS_NOT_ATTACHED
| NVME_DNR
;
4994 ctrl
->namespaces
[nsid
] = NULL
;
4997 nvme_update_dmrsl(ctrl
);
5001 * Add namespace id to the changed namespace id list for event clearing
5002 * via Get Log Page command.
5004 if (!test_and_set_bit(nsid
, ctrl
->changed_nsids
)) {
5005 nvme_enqueue_event(ctrl
, NVME_AER_TYPE_NOTICE
,
5006 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED
,
5007 NVME_LOG_CHANGED_NSLIST
);
5011 return NVME_SUCCESS
;
5014 static uint16_t nvme_format_ns(NvmeCtrl
*n
, NvmeNamespace
*ns
, uint8_t lbaf
,
5015 uint8_t mset
, uint8_t pi
, uint8_t pil
,
5018 int64_t len
, offset
;
5019 struct nvme_aio_format_ctx
*ctx
;
5020 BlockBackend
*blk
= ns
->blkconf
.blk
;
5022 uintptr_t *num_formats
= (uintptr_t *)&req
->opaque
;
5025 if (ns
->params
.zoned
) {
5026 return NVME_INVALID_FORMAT
| NVME_DNR
;
5029 trace_pci_nvme_format_ns(nvme_cid(req
), nvme_nsid(ns
), lbaf
, mset
, pi
, pil
);
5031 if (lbaf
> ns
->id_ns
.nlbaf
) {
5032 return NVME_INVALID_FORMAT
| NVME_DNR
;
5035 ms
= ns
->id_ns
.lbaf
[lbaf
].ms
;
5037 if (pi
&& (ms
< sizeof(NvmeDifTuple
))) {
5038 return NVME_INVALID_FORMAT
| NVME_DNR
;
5041 if (pi
&& pi
> NVME_ID_NS_DPS_TYPE_3
) {
5042 return NVME_INVALID_FIELD
| NVME_DNR
;
5046 nvme_ns_shutdown(ns
);
5047 nvme_ns_cleanup(ns
);
5049 ns
->id_ns
.dps
= (pil
<< 3) | pi
;
5050 ns
->id_ns
.flbas
= lbaf
| (mset
<< 4);
5052 nvme_ns_init_format(ns
);
5054 ns
->status
= NVME_FORMAT_IN_PROGRESS
;
5059 count
= g_new(int, 1);
5065 ctx
= g_new(struct nvme_aio_format_ctx
, 1);
5070 size_t bytes
= MIN(BDRV_REQUEST_MAX_BYTES
, len
);
5074 blk_aio_pwrite_zeroes(blk
, offset
, bytes
, BDRV_REQ_MAY_UNMAP
,
5075 nvme_aio_format_cb
, ctx
);
5083 return NVME_NO_COMPLETE
;
5090 return NVME_SUCCESS
;
5093 static uint16_t nvme_format(NvmeCtrl
*n
, NvmeRequest
*req
)
5096 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
5097 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
5098 uint8_t lbaf
= dw10
& 0xf;
5099 uint8_t mset
= (dw10
>> 4) & 0x1;
5100 uint8_t pi
= (dw10
>> 5) & 0x7;
5101 uint8_t pil
= (dw10
>> 8) & 0x1;
5102 uintptr_t *num_formats
= (uintptr_t *)&req
->opaque
;
5106 trace_pci_nvme_format(nvme_cid(req
), nsid
, lbaf
, mset
, pi
, pil
);
5108 /* 1-initialize; see the comment in nvme_dsm */
5111 if (nsid
!= NVME_NSID_BROADCAST
) {
5112 if (!nvme_nsid_valid(n
, nsid
)) {
5113 return NVME_INVALID_NSID
| NVME_DNR
;
5116 ns
= nvme_ns(n
, nsid
);
5118 return NVME_INVALID_FIELD
| NVME_DNR
;
5121 status
= nvme_format_ns(n
, ns
, lbaf
, mset
, pi
, pil
, req
);
5122 if (status
&& status
!= NVME_NO_COMPLETE
) {
5123 req
->status
= status
;
5126 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5132 status
= nvme_format_ns(n
, ns
, lbaf
, mset
, pi
, pil
, req
);
5133 if (status
&& status
!= NVME_NO_COMPLETE
) {
5134 req
->status
= status
;
5140 /* account for the 1-initialization */
5141 if (--(*num_formats
)) {
5142 return NVME_NO_COMPLETE
;
5148 static uint16_t nvme_admin_cmd(NvmeCtrl
*n
, NvmeRequest
*req
)
5150 trace_pci_nvme_admin_cmd(nvme_cid(req
), nvme_sqid(req
), req
->cmd
.opcode
,
5151 nvme_adm_opc_str(req
->cmd
.opcode
));
5153 if (!(nvme_cse_acs
[req
->cmd
.opcode
] & NVME_CMD_EFF_CSUPP
)) {
5154 trace_pci_nvme_err_invalid_admin_opc(req
->cmd
.opcode
);
5155 return NVME_INVALID_OPCODE
| NVME_DNR
;
5158 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
5159 if (NVME_CMD_FLAGS_PSDT(req
->cmd
.flags
) != NVME_PSDT_PRP
) {
5160 return NVME_INVALID_FIELD
| NVME_DNR
;
5163 switch (req
->cmd
.opcode
) {
5164 case NVME_ADM_CMD_DELETE_SQ
:
5165 return nvme_del_sq(n
, req
);
5166 case NVME_ADM_CMD_CREATE_SQ
:
5167 return nvme_create_sq(n
, req
);
5168 case NVME_ADM_CMD_GET_LOG_PAGE
:
5169 return nvme_get_log(n
, req
);
5170 case NVME_ADM_CMD_DELETE_CQ
:
5171 return nvme_del_cq(n
, req
);
5172 case NVME_ADM_CMD_CREATE_CQ
:
5173 return nvme_create_cq(n
, req
);
5174 case NVME_ADM_CMD_IDENTIFY
:
5175 return nvme_identify(n
, req
);
5176 case NVME_ADM_CMD_ABORT
:
5177 return nvme_abort(n
, req
);
5178 case NVME_ADM_CMD_SET_FEATURES
:
5179 return nvme_set_feature(n
, req
);
5180 case NVME_ADM_CMD_GET_FEATURES
:
5181 return nvme_get_feature(n
, req
);
5182 case NVME_ADM_CMD_ASYNC_EV_REQ
:
5183 return nvme_aer(n
, req
);
5184 case NVME_ADM_CMD_NS_ATTACHMENT
:
5185 return nvme_ns_attachment(n
, req
);
5186 case NVME_ADM_CMD_FORMAT_NVM
:
5187 return nvme_format(n
, req
);
5192 return NVME_INVALID_OPCODE
| NVME_DNR
;
5195 static void nvme_process_sq(void *opaque
)
5197 NvmeSQueue
*sq
= opaque
;
5198 NvmeCtrl
*n
= sq
->ctrl
;
5199 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
5206 while (!(nvme_sq_empty(sq
) || QTAILQ_EMPTY(&sq
->req_list
))) {
5207 addr
= sq
->dma_addr
+ sq
->head
* n
->sqe_size
;
5208 if (nvme_addr_read(n
, addr
, (void *)&cmd
, sizeof(cmd
))) {
5209 trace_pci_nvme_err_addr_read(addr
);
5210 trace_pci_nvme_err_cfs();
5211 n
->bar
.csts
= NVME_CSTS_FAILED
;
5214 nvme_inc_sq_head(sq
);
5216 req
= QTAILQ_FIRST(&sq
->req_list
);
5217 QTAILQ_REMOVE(&sq
->req_list
, req
, entry
);
5218 QTAILQ_INSERT_TAIL(&sq
->out_req_list
, req
, entry
);
5219 nvme_req_clear(req
);
5220 req
->cqe
.cid
= cmd
.cid
;
5221 memcpy(&req
->cmd
, &cmd
, sizeof(NvmeCmd
));
5223 status
= sq
->sqid
? nvme_io_cmd(n
, req
) :
5224 nvme_admin_cmd(n
, req
);
5225 if (status
!= NVME_NO_COMPLETE
) {
5226 req
->status
= status
;
5227 nvme_enqueue_req_completion(cq
, req
);
5232 static void nvme_ctrl_reset(NvmeCtrl
*n
)
5237 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5246 for (i
= 0; i
< n
->params
.max_ioqpairs
+ 1; i
++) {
5247 if (n
->sq
[i
] != NULL
) {
5248 nvme_free_sq(n
->sq
[i
], n
);
5251 for (i
= 0; i
< n
->params
.max_ioqpairs
+ 1; i
++) {
5252 if (n
->cq
[i
] != NULL
) {
5253 nvme_free_cq(n
->cq
[i
], n
);
5257 while (!QTAILQ_EMPTY(&n
->aer_queue
)) {
5258 NvmeAsyncEvent
*event
= QTAILQ_FIRST(&n
->aer_queue
);
5259 QTAILQ_REMOVE(&n
->aer_queue
, event
, entry
);
5264 n
->outstanding_aers
= 0;
5265 n
->qs_created
= false;
5270 static void nvme_ctrl_shutdown(NvmeCtrl
*n
)
5276 memory_region_msync(&n
->pmr
.dev
->mr
, 0, n
->pmr
.dev
->size
);
5279 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5285 nvme_ns_shutdown(ns
);
5289 static void nvme_select_iocs(NvmeCtrl
*n
)
5294 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5300 nvme_select_iocs_ns(n
, ns
);
5304 static int nvme_start_ctrl(NvmeCtrl
*n
)
5306 uint32_t page_bits
= NVME_CC_MPS(n
->bar
.cc
) + 12;
5307 uint32_t page_size
= 1 << page_bits
;
5309 if (unlikely(n
->cq
[0])) {
5310 trace_pci_nvme_err_startfail_cq();
5313 if (unlikely(n
->sq
[0])) {
5314 trace_pci_nvme_err_startfail_sq();
5317 if (unlikely(!n
->bar
.asq
)) {
5318 trace_pci_nvme_err_startfail_nbarasq();
5321 if (unlikely(!n
->bar
.acq
)) {
5322 trace_pci_nvme_err_startfail_nbaracq();
5325 if (unlikely(n
->bar
.asq
& (page_size
- 1))) {
5326 trace_pci_nvme_err_startfail_asq_misaligned(n
->bar
.asq
);
5329 if (unlikely(n
->bar
.acq
& (page_size
- 1))) {
5330 trace_pci_nvme_err_startfail_acq_misaligned(n
->bar
.acq
);
5333 if (unlikely(!(NVME_CAP_CSS(n
->bar
.cap
) & (1 << NVME_CC_CSS(n
->bar
.cc
))))) {
5334 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n
->bar
.cc
));
5337 if (unlikely(NVME_CC_MPS(n
->bar
.cc
) <
5338 NVME_CAP_MPSMIN(n
->bar
.cap
))) {
5339 trace_pci_nvme_err_startfail_page_too_small(
5340 NVME_CC_MPS(n
->bar
.cc
),
5341 NVME_CAP_MPSMIN(n
->bar
.cap
));
5344 if (unlikely(NVME_CC_MPS(n
->bar
.cc
) >
5345 NVME_CAP_MPSMAX(n
->bar
.cap
))) {
5346 trace_pci_nvme_err_startfail_page_too_large(
5347 NVME_CC_MPS(n
->bar
.cc
),
5348 NVME_CAP_MPSMAX(n
->bar
.cap
));
5351 if (unlikely(NVME_CC_IOCQES(n
->bar
.cc
) <
5352 NVME_CTRL_CQES_MIN(n
->id_ctrl
.cqes
))) {
5353 trace_pci_nvme_err_startfail_cqent_too_small(
5354 NVME_CC_IOCQES(n
->bar
.cc
),
5355 NVME_CTRL_CQES_MIN(n
->bar
.cap
));
5358 if (unlikely(NVME_CC_IOCQES(n
->bar
.cc
) >
5359 NVME_CTRL_CQES_MAX(n
->id_ctrl
.cqes
))) {
5360 trace_pci_nvme_err_startfail_cqent_too_large(
5361 NVME_CC_IOCQES(n
->bar
.cc
),
5362 NVME_CTRL_CQES_MAX(n
->bar
.cap
));
5365 if (unlikely(NVME_CC_IOSQES(n
->bar
.cc
) <
5366 NVME_CTRL_SQES_MIN(n
->id_ctrl
.sqes
))) {
5367 trace_pci_nvme_err_startfail_sqent_too_small(
5368 NVME_CC_IOSQES(n
->bar
.cc
),
5369 NVME_CTRL_SQES_MIN(n
->bar
.cap
));
5372 if (unlikely(NVME_CC_IOSQES(n
->bar
.cc
) >
5373 NVME_CTRL_SQES_MAX(n
->id_ctrl
.sqes
))) {
5374 trace_pci_nvme_err_startfail_sqent_too_large(
5375 NVME_CC_IOSQES(n
->bar
.cc
),
5376 NVME_CTRL_SQES_MAX(n
->bar
.cap
));
5379 if (unlikely(!NVME_AQA_ASQS(n
->bar
.aqa
))) {
5380 trace_pci_nvme_err_startfail_asqent_sz_zero();
5383 if (unlikely(!NVME_AQA_ACQS(n
->bar
.aqa
))) {
5384 trace_pci_nvme_err_startfail_acqent_sz_zero();
5388 n
->page_bits
= page_bits
;
5389 n
->page_size
= page_size
;
5390 n
->max_prp_ents
= n
->page_size
/ sizeof(uint64_t);
5391 n
->cqe_size
= 1 << NVME_CC_IOCQES(n
->bar
.cc
);
5392 n
->sqe_size
= 1 << NVME_CC_IOSQES(n
->bar
.cc
);
5393 nvme_init_cq(&n
->admin_cq
, n
, n
->bar
.acq
, 0, 0,
5394 NVME_AQA_ACQS(n
->bar
.aqa
) + 1, 1);
5395 nvme_init_sq(&n
->admin_sq
, n
, n
->bar
.asq
, 0, 0,
5396 NVME_AQA_ASQS(n
->bar
.aqa
) + 1);
5398 nvme_set_timestamp(n
, 0ULL);
5400 QTAILQ_INIT(&n
->aer_queue
);
5402 nvme_select_iocs(n
);
5407 static void nvme_cmb_enable_regs(NvmeCtrl
*n
)
5409 NVME_CMBLOC_SET_CDPCILS(n
->bar
.cmbloc
, 1);
5410 NVME_CMBLOC_SET_CDPMLS(n
->bar
.cmbloc
, 1);
5411 NVME_CMBLOC_SET_BIR(n
->bar
.cmbloc
, NVME_CMB_BIR
);
5413 NVME_CMBSZ_SET_SQS(n
->bar
.cmbsz
, 1);
5414 NVME_CMBSZ_SET_CQS(n
->bar
.cmbsz
, 0);
5415 NVME_CMBSZ_SET_LISTS(n
->bar
.cmbsz
, 1);
5416 NVME_CMBSZ_SET_RDS(n
->bar
.cmbsz
, 1);
5417 NVME_CMBSZ_SET_WDS(n
->bar
.cmbsz
, 1);
5418 NVME_CMBSZ_SET_SZU(n
->bar
.cmbsz
, 2); /* MBs */
5419 NVME_CMBSZ_SET_SZ(n
->bar
.cmbsz
, n
->params
.cmb_size_mb
);
5422 static void nvme_write_bar(NvmeCtrl
*n
, hwaddr offset
, uint64_t data
,
5425 if (unlikely(offset
& (sizeof(uint32_t) - 1))) {
5426 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32
,
5427 "MMIO write not 32-bit aligned,"
5428 " offset=0x%"PRIx64
"", offset
);
5429 /* should be ignored, fall through for now */
5432 if (unlikely(size
< sizeof(uint32_t))) {
5433 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall
,
5434 "MMIO write smaller than 32-bits,"
5435 " offset=0x%"PRIx64
", size=%u",
5437 /* should be ignored, fall through for now */
5441 case 0xc: /* INTMS */
5442 if (unlikely(msix_enabled(&(n
->parent_obj
)))) {
5443 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix
,
5444 "undefined access to interrupt mask set"
5445 " when MSI-X is enabled");
5446 /* should be ignored, fall through for now */
5448 n
->bar
.intms
|= data
& 0xffffffff;
5449 n
->bar
.intmc
= n
->bar
.intms
;
5450 trace_pci_nvme_mmio_intm_set(data
& 0xffffffff, n
->bar
.intmc
);
5453 case 0x10: /* INTMC */
5454 if (unlikely(msix_enabled(&(n
->parent_obj
)))) {
5455 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix
,
5456 "undefined access to interrupt mask clr"
5457 " when MSI-X is enabled");
5458 /* should be ignored, fall through for now */
5460 n
->bar
.intms
&= ~(data
& 0xffffffff);
5461 n
->bar
.intmc
= n
->bar
.intms
;
5462 trace_pci_nvme_mmio_intm_clr(data
& 0xffffffff, n
->bar
.intmc
);
5466 trace_pci_nvme_mmio_cfg(data
& 0xffffffff);
5467 /* Windows first sends data, then sends enable bit */
5468 if (!NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
) &&
5469 !NVME_CC_SHN(data
) && !NVME_CC_SHN(n
->bar
.cc
))
5474 if (NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
)) {
5476 if (unlikely(nvme_start_ctrl(n
))) {
5477 trace_pci_nvme_err_startfail();
5478 n
->bar
.csts
= NVME_CSTS_FAILED
;
5480 trace_pci_nvme_mmio_start_success();
5481 n
->bar
.csts
= NVME_CSTS_READY
;
5483 } else if (!NVME_CC_EN(data
) && NVME_CC_EN(n
->bar
.cc
)) {
5484 trace_pci_nvme_mmio_stopped();
5486 n
->bar
.csts
&= ~NVME_CSTS_READY
;
5488 if (NVME_CC_SHN(data
) && !(NVME_CC_SHN(n
->bar
.cc
))) {
5489 trace_pci_nvme_mmio_shutdown_set();
5490 nvme_ctrl_shutdown(n
);
5492 n
->bar
.csts
|= NVME_CSTS_SHST_COMPLETE
;
5493 } else if (!NVME_CC_SHN(data
) && NVME_CC_SHN(n
->bar
.cc
)) {
5494 trace_pci_nvme_mmio_shutdown_cleared();
5495 n
->bar
.csts
&= ~NVME_CSTS_SHST_COMPLETE
;
5499 case 0x1c: /* CSTS */
5500 if (data
& (1 << 4)) {
5501 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported
,
5502 "attempted to W1C CSTS.NSSRO"
5503 " but CAP.NSSRS is zero (not supported)");
5504 } else if (data
!= 0) {
5505 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts
,
5506 "attempted to set a read only bit"
5507 " of controller status");
5510 case 0x20: /* NSSR */
5511 if (data
== 0x4e564d65) {
5512 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
5514 /* The spec says that writes of other values have no effect */
5518 case 0x24: /* AQA */
5519 n
->bar
.aqa
= data
& 0xffffffff;
5520 trace_pci_nvme_mmio_aqattr(data
& 0xffffffff);
5522 case 0x28: /* ASQ */
5523 n
->bar
.asq
= size
== 8 ? data
:
5524 (n
->bar
.asq
& ~0xffffffffULL
) | (data
& 0xffffffff);
5525 trace_pci_nvme_mmio_asqaddr(data
);
5527 case 0x2c: /* ASQ hi */
5528 n
->bar
.asq
= (n
->bar
.asq
& 0xffffffff) | (data
<< 32);
5529 trace_pci_nvme_mmio_asqaddr_hi(data
, n
->bar
.asq
);
5531 case 0x30: /* ACQ */
5532 trace_pci_nvme_mmio_acqaddr(data
);
5533 n
->bar
.acq
= size
== 8 ? data
:
5534 (n
->bar
.acq
& ~0xffffffffULL
) | (data
& 0xffffffff);
5536 case 0x34: /* ACQ hi */
5537 n
->bar
.acq
= (n
->bar
.acq
& 0xffffffff) | (data
<< 32);
5538 trace_pci_nvme_mmio_acqaddr_hi(data
, n
->bar
.acq
);
5540 case 0x38: /* CMBLOC */
5541 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved
,
5542 "invalid write to reserved CMBLOC"
5543 " when CMBSZ is zero, ignored");
5545 case 0x3C: /* CMBSZ */
5546 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly
,
5547 "invalid write to read only CMBSZ, ignored");
5549 case 0x50: /* CMBMSC */
5550 if (!NVME_CAP_CMBS(n
->bar
.cap
)) {
5554 n
->bar
.cmbmsc
= size
== 8 ? data
:
5555 (n
->bar
.cmbmsc
& ~0xffffffff) | (data
& 0xffffffff);
5556 n
->cmb
.cmse
= false;
5558 if (NVME_CMBMSC_CRE(data
)) {
5559 nvme_cmb_enable_regs(n
);
5561 if (NVME_CMBMSC_CMSE(data
)) {
5562 hwaddr cba
= NVME_CMBMSC_CBA(data
) << CMBMSC_CBA_SHIFT
;
5563 if (cba
+ int128_get64(n
->cmb
.mem
.size
) < cba
) {
5564 NVME_CMBSTS_SET_CBAI(n
->bar
.cmbsts
, 1);
5577 case 0x54: /* CMBMSC hi */
5578 n
->bar
.cmbmsc
= (n
->bar
.cmbmsc
& 0xffffffff) | (data
<< 32);
5581 case 0xe00: /* PMRCAP */
5582 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly
,
5583 "invalid write to PMRCAP register, ignored");
5585 case 0xe04: /* PMRCTL */
5586 n
->bar
.pmrctl
= data
;
5587 if (NVME_PMRCTL_EN(data
)) {
5588 memory_region_set_enabled(&n
->pmr
.dev
->mr
, true);
5591 memory_region_set_enabled(&n
->pmr
.dev
->mr
, false);
5592 NVME_PMRSTS_SET_NRDY(n
->bar
.pmrsts
, 1);
5593 n
->pmr
.cmse
= false;
5596 case 0xe08: /* PMRSTS */
5597 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly
,
5598 "invalid write to PMRSTS register, ignored");
5600 case 0xe0C: /* PMREBS */
5601 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly
,
5602 "invalid write to PMREBS register, ignored");
5604 case 0xe10: /* PMRSWTP */
5605 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly
,
5606 "invalid write to PMRSWTP register, ignored");
5608 case 0xe14: /* PMRMSCL */
5609 if (!NVME_CAP_PMRS(n
->bar
.cap
)) {
5613 n
->bar
.pmrmsc
= (n
->bar
.pmrmsc
& ~0xffffffff) | (data
& 0xffffffff);
5614 n
->pmr
.cmse
= false;
5616 if (NVME_PMRMSC_CMSE(n
->bar
.pmrmsc
)) {
5617 hwaddr cba
= NVME_PMRMSC_CBA(n
->bar
.pmrmsc
) << PMRMSC_CBA_SHIFT
;
5618 if (cba
+ int128_get64(n
->pmr
.dev
->mr
.size
) < cba
) {
5619 NVME_PMRSTS_SET_CBAI(n
->bar
.pmrsts
, 1);
5628 case 0xe18: /* PMRMSCU */
5629 if (!NVME_CAP_PMRS(n
->bar
.cap
)) {
5633 n
->bar
.pmrmsc
= (n
->bar
.pmrmsc
& 0xffffffff) | (data
<< 32);
5636 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid
,
5637 "invalid MMIO write,"
5638 " offset=0x%"PRIx64
", data=%"PRIx64
"",
5644 static uint64_t nvme_mmio_read(void *opaque
, hwaddr addr
, unsigned size
)
5646 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
5647 uint8_t *ptr
= (uint8_t *)&n
->bar
;
5650 trace_pci_nvme_mmio_read(addr
, size
);
5652 if (unlikely(addr
& (sizeof(uint32_t) - 1))) {
5653 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32
,
5654 "MMIO read not 32-bit aligned,"
5655 " offset=0x%"PRIx64
"", addr
);
5656 /* should RAZ, fall through for now */
5657 } else if (unlikely(size
< sizeof(uint32_t))) {
5658 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall
,
5659 "MMIO read smaller than 32-bits,"
5660 " offset=0x%"PRIx64
"", addr
);
5661 /* should RAZ, fall through for now */
5664 if (addr
< sizeof(n
->bar
)) {
5666 * When PMRWBM bit 1 is set then read from
5667 * from PMRSTS should ensure prior writes
5668 * made it to persistent media
5670 if (addr
== 0xe08 &&
5671 (NVME_PMRCAP_PMRWBM(n
->bar
.pmrcap
) & 0x02)) {
5672 memory_region_msync(&n
->pmr
.dev
->mr
, 0, n
->pmr
.dev
->size
);
5674 memcpy(&val
, ptr
+ addr
, size
);
5676 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs
,
5677 "MMIO read beyond last register,"
5678 " offset=0x%"PRIx64
", returning 0", addr
);
5684 static void nvme_process_db(NvmeCtrl
*n
, hwaddr addr
, int val
)
5688 if (unlikely(addr
& ((1 << 2) - 1))) {
5689 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned
,
5690 "doorbell write not 32-bit aligned,"
5691 " offset=0x%"PRIx64
", ignoring", addr
);
5695 if (((addr
- 0x1000) >> 2) & 1) {
5696 /* Completion queue doorbell write */
5698 uint16_t new_head
= val
& 0xffff;
5702 qid
= (addr
- (0x1000 + (1 << 2))) >> 3;
5703 if (unlikely(nvme_check_cqid(n
, qid
))) {
5704 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq
,
5705 "completion queue doorbell write"
5706 " for nonexistent queue,"
5707 " sqid=%"PRIu32
", ignoring", qid
);
5710 * NVM Express v1.3d, Section 4.1 state: "If host software writes
5711 * an invalid value to the Submission Queue Tail Doorbell or
5712 * Completion Queue Head Doorbell regiter and an Asynchronous Event
5713 * Request command is outstanding, then an asynchronous event is
5714 * posted to the Admin Completion Queue with a status code of
5715 * Invalid Doorbell Write Value."
5717 * Also note that the spec includes the "Invalid Doorbell Register"
5718 * status code, but nowhere does it specify when to use it.
5719 * However, it seems reasonable to use it here in a similar
5722 if (n
->outstanding_aers
) {
5723 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
5724 NVME_AER_INFO_ERR_INVALID_DB_REGISTER
,
5725 NVME_LOG_ERROR_INFO
);
5732 if (unlikely(new_head
>= cq
->size
)) {
5733 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead
,
5734 "completion queue doorbell write value"
5735 " beyond queue size, sqid=%"PRIu32
","
5736 " new_head=%"PRIu16
", ignoring",
5739 if (n
->outstanding_aers
) {
5740 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
5741 NVME_AER_INFO_ERR_INVALID_DB_VALUE
,
5742 NVME_LOG_ERROR_INFO
);
5748 trace_pci_nvme_mmio_doorbell_cq(cq
->cqid
, new_head
);
5750 start_sqs
= nvme_cq_full(cq
) ? 1 : 0;
5751 cq
->head
= new_head
;
5754 QTAILQ_FOREACH(sq
, &cq
->sq_list
, entry
) {
5755 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
5757 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
5760 if (cq
->tail
== cq
->head
) {
5761 nvme_irq_deassert(n
, cq
);
5764 /* Submission queue doorbell write */
5766 uint16_t new_tail
= val
& 0xffff;
5769 qid
= (addr
- 0x1000) >> 3;
5770 if (unlikely(nvme_check_sqid(n
, qid
))) {
5771 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq
,
5772 "submission queue doorbell write"
5773 " for nonexistent queue,"
5774 " sqid=%"PRIu32
", ignoring", qid
);
5776 if (n
->outstanding_aers
) {
5777 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
5778 NVME_AER_INFO_ERR_INVALID_DB_REGISTER
,
5779 NVME_LOG_ERROR_INFO
);
5786 if (unlikely(new_tail
>= sq
->size
)) {
5787 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail
,
5788 "submission queue doorbell write value"
5789 " beyond queue size, sqid=%"PRIu32
","
5790 " new_tail=%"PRIu16
", ignoring",
5793 if (n
->outstanding_aers
) {
5794 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
5795 NVME_AER_INFO_ERR_INVALID_DB_VALUE
,
5796 NVME_LOG_ERROR_INFO
);
5802 trace_pci_nvme_mmio_doorbell_sq(sq
->sqid
, new_tail
);
5804 sq
->tail
= new_tail
;
5805 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
5809 static void nvme_mmio_write(void *opaque
, hwaddr addr
, uint64_t data
,
5812 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
5814 trace_pci_nvme_mmio_write(addr
, data
, size
);
5816 if (addr
< sizeof(n
->bar
)) {
5817 nvme_write_bar(n
, addr
, data
, size
);
5819 nvme_process_db(n
, addr
, data
);
5823 static const MemoryRegionOps nvme_mmio_ops
= {
5824 .read
= nvme_mmio_read
,
5825 .write
= nvme_mmio_write
,
5826 .endianness
= DEVICE_LITTLE_ENDIAN
,
5828 .min_access_size
= 2,
5829 .max_access_size
= 8,
5833 static void nvme_cmb_write(void *opaque
, hwaddr addr
, uint64_t data
,
5836 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
5837 stn_le_p(&n
->cmb
.buf
[addr
], size
, data
);
5840 static uint64_t nvme_cmb_read(void *opaque
, hwaddr addr
, unsigned size
)
5842 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
5843 return ldn_le_p(&n
->cmb
.buf
[addr
], size
);
5846 static const MemoryRegionOps nvme_cmb_ops
= {
5847 .read
= nvme_cmb_read
,
5848 .write
= nvme_cmb_write
,
5849 .endianness
= DEVICE_LITTLE_ENDIAN
,
5851 .min_access_size
= 1,
5852 .max_access_size
= 8,
5856 static void nvme_check_constraints(NvmeCtrl
*n
, Error
**errp
)
5858 NvmeParams
*params
= &n
->params
;
5860 if (params
->num_queues
) {
5861 warn_report("num_queues is deprecated; please use max_ioqpairs "
5864 params
->max_ioqpairs
= params
->num_queues
- 1;
5867 if (n
->namespace.blkconf
.blk
&& n
->subsys
) {
5868 error_setg(errp
, "subsystem support is unavailable with legacy "
5869 "namespace ('drive' property)");
5873 if (params
->max_ioqpairs
< 1 ||
5874 params
->max_ioqpairs
> NVME_MAX_IOQPAIRS
) {
5875 error_setg(errp
, "max_ioqpairs must be between 1 and %d",
5880 if (params
->msix_qsize
< 1 ||
5881 params
->msix_qsize
> PCI_MSIX_FLAGS_QSIZE
+ 1) {
5882 error_setg(errp
, "msix_qsize must be between 1 and %d",
5883 PCI_MSIX_FLAGS_QSIZE
+ 1);
5887 if (!params
->serial
) {
5888 error_setg(errp
, "serial property not set");
5893 if (host_memory_backend_is_mapped(n
->pmr
.dev
)) {
5894 error_setg(errp
, "can't use already busy memdev: %s",
5895 object_get_canonical_path_component(OBJECT(n
->pmr
.dev
)));
5899 if (!is_power_of_2(n
->pmr
.dev
->size
)) {
5900 error_setg(errp
, "pmr backend size needs to be power of 2 in size");
5904 host_memory_backend_set_mapped(n
->pmr
.dev
, true);
5907 if (n
->params
.zasl
> n
->params
.mdts
) {
5908 error_setg(errp
, "zoned.zasl (Zone Append Size Limit) must be less "
5909 "than or equal to mdts (Maximum Data Transfer Size)");
5913 if (!n
->params
.vsl
) {
5914 error_setg(errp
, "vsl must be non-zero");
5919 static void nvme_init_state(NvmeCtrl
*n
)
5921 /* add one to max_ioqpairs to account for the admin queue pair */
5922 n
->reg_size
= pow2ceil(sizeof(NvmeBar
) +
5923 2 * (n
->params
.max_ioqpairs
+ 1) * NVME_DB_SIZE
);
5924 n
->sq
= g_new0(NvmeSQueue
*, n
->params
.max_ioqpairs
+ 1);
5925 n
->cq
= g_new0(NvmeCQueue
*, n
->params
.max_ioqpairs
+ 1);
5926 n
->temperature
= NVME_TEMPERATURE
;
5927 n
->features
.temp_thresh_hi
= NVME_TEMPERATURE_WARNING
;
5928 n
->starttime_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
5929 n
->aer_reqs
= g_new0(NvmeRequest
*, n
->params
.aerl
+ 1);
5932 static void nvme_init_cmb(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
5934 uint64_t cmb_size
= n
->params
.cmb_size_mb
* MiB
;
5936 n
->cmb
.buf
= g_malloc0(cmb_size
);
5937 memory_region_init_io(&n
->cmb
.mem
, OBJECT(n
), &nvme_cmb_ops
, n
,
5938 "nvme-cmb", cmb_size
);
5939 pci_register_bar(pci_dev
, NVME_CMB_BIR
,
5940 PCI_BASE_ADDRESS_SPACE_MEMORY
|
5941 PCI_BASE_ADDRESS_MEM_TYPE_64
|
5942 PCI_BASE_ADDRESS_MEM_PREFETCH
, &n
->cmb
.mem
);
5944 NVME_CAP_SET_CMBS(n
->bar
.cap
, 1);
5946 if (n
->params
.legacy_cmb
) {
5947 nvme_cmb_enable_regs(n
);
5952 static void nvme_init_pmr(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
5954 NVME_PMRCAP_SET_RDS(n
->bar
.pmrcap
, 1);
5955 NVME_PMRCAP_SET_WDS(n
->bar
.pmrcap
, 1);
5956 NVME_PMRCAP_SET_BIR(n
->bar
.pmrcap
, NVME_PMR_BIR
);
5957 /* Turn on bit 1 support */
5958 NVME_PMRCAP_SET_PMRWBM(n
->bar
.pmrcap
, 0x02);
5959 NVME_PMRCAP_SET_CMSS(n
->bar
.pmrcap
, 1);
5961 pci_register_bar(pci_dev
, NVME_PMRCAP_BIR(n
->bar
.pmrcap
),
5962 PCI_BASE_ADDRESS_SPACE_MEMORY
|
5963 PCI_BASE_ADDRESS_MEM_TYPE_64
|
5964 PCI_BASE_ADDRESS_MEM_PREFETCH
, &n
->pmr
.dev
->mr
);
5966 memory_region_set_enabled(&n
->pmr
.dev
->mr
, false);
5969 static int nvme_init_pci(NvmeCtrl
*n
, PCIDevice
*pci_dev
, Error
**errp
)
5971 uint8_t *pci_conf
= pci_dev
->config
;
5972 uint64_t bar_size
, msix_table_size
, msix_pba_size
;
5973 unsigned msix_table_offset
, msix_pba_offset
;
5978 pci_conf
[PCI_INTERRUPT_PIN
] = 1;
5979 pci_config_set_prog_interface(pci_conf
, 0x2);
5981 if (n
->params
.use_intel_id
) {
5982 pci_config_set_vendor_id(pci_conf
, PCI_VENDOR_ID_INTEL
);
5983 pci_config_set_device_id(pci_conf
, 0x5845);
5985 pci_config_set_vendor_id(pci_conf
, PCI_VENDOR_ID_REDHAT
);
5986 pci_config_set_device_id(pci_conf
, PCI_DEVICE_ID_REDHAT_NVME
);
5989 pci_config_set_class(pci_conf
, PCI_CLASS_STORAGE_EXPRESS
);
5990 pcie_endpoint_cap_init(pci_dev
, 0x80);
5992 bar_size
= QEMU_ALIGN_UP(n
->reg_size
, 4 * KiB
);
5993 msix_table_offset
= bar_size
;
5994 msix_table_size
= PCI_MSIX_ENTRY_SIZE
* n
->params
.msix_qsize
;
5996 bar_size
+= msix_table_size
;
5997 bar_size
= QEMU_ALIGN_UP(bar_size
, 4 * KiB
);
5998 msix_pba_offset
= bar_size
;
5999 msix_pba_size
= QEMU_ALIGN_UP(n
->params
.msix_qsize
, 64) / 8;
6001 bar_size
+= msix_pba_size
;
6002 bar_size
= pow2ceil(bar_size
);
6004 memory_region_init(&n
->bar0
, OBJECT(n
), "nvme-bar0", bar_size
);
6005 memory_region_init_io(&n
->iomem
, OBJECT(n
), &nvme_mmio_ops
, n
, "nvme",
6007 memory_region_add_subregion(&n
->bar0
, 0, &n
->iomem
);
6009 pci_register_bar(pci_dev
, 0, PCI_BASE_ADDRESS_SPACE_MEMORY
|
6010 PCI_BASE_ADDRESS_MEM_TYPE_64
, &n
->bar0
);
6011 ret
= msix_init(pci_dev
, n
->params
.msix_qsize
,
6012 &n
->bar0
, 0, msix_table_offset
,
6013 &n
->bar0
, 0, msix_pba_offset
, 0, &err
);
6015 if (ret
== -ENOTSUP
) {
6016 warn_report_err(err
);
6018 error_propagate(errp
, err
);
6023 if (n
->params
.cmb_size_mb
) {
6024 nvme_init_cmb(n
, pci_dev
);
6028 nvme_init_pmr(n
, pci_dev
);
6034 static void nvme_init_subnqn(NvmeCtrl
*n
)
6036 NvmeSubsystem
*subsys
= n
->subsys
;
6037 NvmeIdCtrl
*id
= &n
->id_ctrl
;
6040 snprintf((char *)id
->subnqn
, sizeof(id
->subnqn
),
6041 "nqn.2019-08.org.qemu:%s", n
->params
.serial
);
6043 pstrcpy((char *)id
->subnqn
, sizeof(id
->subnqn
), (char*)subsys
->subnqn
);
6047 static void nvme_init_ctrl(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
6049 NvmeIdCtrl
*id
= &n
->id_ctrl
;
6050 uint8_t *pci_conf
= pci_dev
->config
;
6052 id
->vid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_VENDOR_ID
));
6053 id
->ssvid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_SUBSYSTEM_VENDOR_ID
));
6054 strpadcpy((char *)id
->mn
, sizeof(id
->mn
), "QEMU NVMe Ctrl", ' ');
6055 strpadcpy((char *)id
->fr
, sizeof(id
->fr
), "1.0", ' ');
6056 strpadcpy((char *)id
->sn
, sizeof(id
->sn
), n
->params
.serial
, ' ');
6058 id
->cntlid
= cpu_to_le16(n
->cntlid
);
6060 id
->oaes
= cpu_to_le32(NVME_OAES_NS_ATTR
);
6064 if (n
->params
.use_intel_id
) {
6074 id
->mdts
= n
->params
.mdts
;
6075 id
->ver
= cpu_to_le32(NVME_SPEC_VER
);
6076 id
->oacs
= cpu_to_le16(NVME_OACS_NS_MGMT
| NVME_OACS_FORMAT
);
6077 id
->cntrltype
= 0x1;
6080 * Because the controller always completes the Abort command immediately,
6081 * there can never be more than one concurrently executing Abort command,
6082 * so this value is never used for anything. Note that there can easily be
6083 * many Abort commands in the queues, but they are not considered
6084 * "executing" until processed by nvme_abort.
6086 * The specification recommends a value of 3 for Abort Command Limit (four
6087 * concurrently outstanding Abort commands), so lets use that though it is
6091 id
->aerl
= n
->params
.aerl
;
6092 id
->frmw
= (NVME_NUM_FW_SLOTS
<< 1) | NVME_FRMW_SLOT1_RO
;
6093 id
->lpa
= NVME_LPA_NS_SMART
| NVME_LPA_CSE
| NVME_LPA_EXTENDED
;
6095 /* recommended default value (~70 C) */
6096 id
->wctemp
= cpu_to_le16(NVME_TEMPERATURE_WARNING
);
6097 id
->cctemp
= cpu_to_le16(NVME_TEMPERATURE_CRITICAL
);
6099 id
->sqes
= (0x6 << 4) | 0x6;
6100 id
->cqes
= (0x4 << 4) | 0x4;
6101 id
->nn
= cpu_to_le32(NVME_MAX_NAMESPACES
);
6102 id
->oncs
= cpu_to_le16(NVME_ONCS_WRITE_ZEROES
| NVME_ONCS_TIMESTAMP
|
6103 NVME_ONCS_FEATURES
| NVME_ONCS_DSM
|
6104 NVME_ONCS_COMPARE
| NVME_ONCS_COPY
);
6107 * NOTE: If this device ever supports a command set that does NOT use 0x0
6108 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
6109 * should probably be removed.
6111 * See comment in nvme_io_cmd.
6113 id
->vwc
= NVME_VWC_NSID_BROADCAST_SUPPORT
| NVME_VWC_PRESENT
;
6115 id
->ocfs
= cpu_to_le16(NVME_OCFS_COPY_FORMAT_0
);
6116 id
->sgls
= cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN
|
6117 NVME_CTRL_SGLS_BITBUCKET
);
6119 nvme_init_subnqn(n
);
6121 id
->psd
[0].mp
= cpu_to_le16(0x9c4);
6122 id
->psd
[0].enlat
= cpu_to_le32(0x10);
6123 id
->psd
[0].exlat
= cpu_to_le32(0x4);
6126 id
->cmic
|= NVME_CMIC_MULTI_CTRL
;
6129 NVME_CAP_SET_MQES(n
->bar
.cap
, 0x7ff);
6130 NVME_CAP_SET_CQR(n
->bar
.cap
, 1);
6131 NVME_CAP_SET_TO(n
->bar
.cap
, 0xf);
6132 NVME_CAP_SET_CSS(n
->bar
.cap
, NVME_CAP_CSS_NVM
);
6133 NVME_CAP_SET_CSS(n
->bar
.cap
, NVME_CAP_CSS_CSI_SUPP
);
6134 NVME_CAP_SET_CSS(n
->bar
.cap
, NVME_CAP_CSS_ADMIN_ONLY
);
6135 NVME_CAP_SET_MPSMAX(n
->bar
.cap
, 4);
6136 NVME_CAP_SET_CMBS(n
->bar
.cap
, n
->params
.cmb_size_mb
? 1 : 0);
6137 NVME_CAP_SET_PMRS(n
->bar
.cap
, n
->pmr
.dev
? 1 : 0);
6139 n
->bar
.vs
= NVME_SPEC_VER
;
6140 n
->bar
.intmc
= n
->bar
.intms
= 0;
6143 static int nvme_init_subsys(NvmeCtrl
*n
, Error
**errp
)
6151 cntlid
= nvme_subsys_register_ctrl(n
, errp
);
6161 void nvme_attach_ns(NvmeCtrl
*n
, NvmeNamespace
*ns
)
6163 uint32_t nsid
= ns
->params
.nsid
;
6164 assert(nsid
&& nsid
<= NVME_MAX_NAMESPACES
);
6166 n
->namespaces
[nsid
] = ns
;
6169 n
->dmrsl
= MIN_NON_ZERO(n
->dmrsl
,
6170 BDRV_REQUEST_MAX_BYTES
/ nvme_l2b(ns
, 1));
6173 static void nvme_realize(PCIDevice
*pci_dev
, Error
**errp
)
6175 NvmeCtrl
*n
= NVME(pci_dev
);
6177 Error
*local_err
= NULL
;
6179 nvme_check_constraints(n
, &local_err
);
6181 error_propagate(errp
, local_err
);
6185 qbus_create_inplace(&n
->bus
, sizeof(NvmeBus
), TYPE_NVME_BUS
,
6186 &pci_dev
->qdev
, n
->parent_obj
.qdev
.id
);
6189 if (nvme_init_pci(n
, pci_dev
, errp
)) {
6193 if (nvme_init_subsys(n
, errp
)) {
6194 error_propagate(errp
, local_err
);
6197 nvme_init_ctrl(n
, pci_dev
);
6199 /* setup a namespace if the controller drive property was given */
6200 if (n
->namespace.blkconf
.blk
) {
6202 ns
->params
.nsid
= 1;
6204 if (nvme_ns_setup(n
, ns
, errp
)) {
6208 nvme_attach_ns(n
, ns
);
6212 static void nvme_exit(PCIDevice
*pci_dev
)
6214 NvmeCtrl
*n
= NVME(pci_dev
);
6220 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
6226 nvme_ns_cleanup(ns
);
6231 g_free(n
->aer_reqs
);
6233 if (n
->params
.cmb_size_mb
) {
6238 host_memory_backend_set_mapped(n
->pmr
.dev
, false);
6240 msix_uninit(pci_dev
, &n
->bar0
, &n
->bar0
);
6241 memory_region_del_subregion(&n
->bar0
, &n
->iomem
);
6244 static Property nvme_props
[] = {
6245 DEFINE_BLOCK_PROPERTIES(NvmeCtrl
, namespace.blkconf
),
6246 DEFINE_PROP_LINK("pmrdev", NvmeCtrl
, pmr
.dev
, TYPE_MEMORY_BACKEND
,
6247 HostMemoryBackend
*),
6248 DEFINE_PROP_LINK("subsys", NvmeCtrl
, subsys
, TYPE_NVME_SUBSYS
,
6250 DEFINE_PROP_STRING("serial", NvmeCtrl
, params
.serial
),
6251 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl
, params
.cmb_size_mb
, 0),
6252 DEFINE_PROP_UINT32("num_queues", NvmeCtrl
, params
.num_queues
, 0),
6253 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl
, params
.max_ioqpairs
, 64),
6254 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl
, params
.msix_qsize
, 65),
6255 DEFINE_PROP_UINT8("aerl", NvmeCtrl
, params
.aerl
, 3),
6256 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl
, params
.aer_max_queued
, 64),
6257 DEFINE_PROP_UINT8("mdts", NvmeCtrl
, params
.mdts
, 7),
6258 DEFINE_PROP_UINT8("vsl", NvmeCtrl
, params
.vsl
, 7),
6259 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl
, params
.use_intel_id
, false),
6260 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl
, params
.legacy_cmb
, false),
6261 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl
, params
.zasl
, 0),
6262 DEFINE_PROP_END_OF_LIST(),
6265 static void nvme_get_smart_warning(Object
*obj
, Visitor
*v
, const char *name
,
6266 void *opaque
, Error
**errp
)
6268 NvmeCtrl
*n
= NVME(obj
);
6269 uint8_t value
= n
->smart_critical_warning
;
6271 visit_type_uint8(v
, name
, &value
, errp
);
6274 static void nvme_set_smart_warning(Object
*obj
, Visitor
*v
, const char *name
,
6275 void *opaque
, Error
**errp
)
6277 NvmeCtrl
*n
= NVME(obj
);
6278 uint8_t value
, old_value
, cap
= 0, index
, event
;
6280 if (!visit_type_uint8(v
, name
, &value
, errp
)) {
6284 cap
= NVME_SMART_SPARE
| NVME_SMART_TEMPERATURE
| NVME_SMART_RELIABILITY
6285 | NVME_SMART_MEDIA_READ_ONLY
| NVME_SMART_FAILED_VOLATILE_MEDIA
;
6286 if (NVME_CAP_PMRS(n
->bar
.cap
)) {
6287 cap
|= NVME_SMART_PMR_UNRELIABLE
;
6290 if ((value
& cap
) != value
) {
6291 error_setg(errp
, "unsupported smart critical warning bits: 0x%x",
6296 old_value
= n
->smart_critical_warning
;
6297 n
->smart_critical_warning
= value
;
6299 /* only inject new bits of smart critical warning */
6300 for (index
= 0; index
< NVME_SMART_WARN_MAX
; index
++) {
6302 if (value
& ~old_value
& event
)
6303 nvme_smart_event(n
, event
);
6307 static const VMStateDescription nvme_vmstate
= {
6312 static void nvme_class_init(ObjectClass
*oc
, void *data
)
6314 DeviceClass
*dc
= DEVICE_CLASS(oc
);
6315 PCIDeviceClass
*pc
= PCI_DEVICE_CLASS(oc
);
6317 pc
->realize
= nvme_realize
;
6318 pc
->exit
= nvme_exit
;
6319 pc
->class_id
= PCI_CLASS_STORAGE_EXPRESS
;
6322 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
6323 dc
->desc
= "Non-Volatile Memory Express";
6324 device_class_set_props(dc
, nvme_props
);
6325 dc
->vmsd
= &nvme_vmstate
;
6328 static void nvme_instance_init(Object
*obj
)
6330 NvmeCtrl
*n
= NVME(obj
);
6332 device_add_bootindex_property(obj
, &n
->namespace.blkconf
.bootindex
,
6333 "bootindex", "/namespace@1,0",
6336 object_property_add(obj
, "smart_critical_warning", "uint8",
6337 nvme_get_smart_warning
,
6338 nvme_set_smart_warning
, NULL
, NULL
);
6341 static const TypeInfo nvme_info
= {
6343 .parent
= TYPE_PCI_DEVICE
,
6344 .instance_size
= sizeof(NvmeCtrl
),
6345 .instance_init
= nvme_instance_init
,
6346 .class_init
= nvme_class_init
,
6347 .interfaces
= (InterfaceInfo
[]) {
6348 { INTERFACE_PCIE_DEVICE
},
6353 static const TypeInfo nvme_bus_info
= {
6354 .name
= TYPE_NVME_BUS
,
6356 .instance_size
= sizeof(NvmeBus
),
6359 static void nvme_register_types(void)
6361 type_register_static(&nvme_info
);
6362 type_register_static(&nvme_bus_info
);
6365 type_init(nvme_register_types
)