2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "hw/sysbus.h"
23 #include "exec/address-spaces.h"
24 #include "intel_iommu_internal.h"
25 #include "hw/pci/pci.h"
27 /*#define DEBUG_INTEL_IOMMU*/
28 #ifdef DEBUG_INTEL_IOMMU
30 DEBUG_GENERAL
, DEBUG_CSR
, DEBUG_INV
, DEBUG_MMU
, DEBUG_FLOG
,
33 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
34 static int vtd_dbgflags
= VTD_DBGBIT(GENERAL
) | VTD_DBGBIT(CSR
);
36 #define VTD_DPRINTF(what, fmt, ...) do { \
37 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
38 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
42 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
45 static void vtd_define_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
,
46 uint64_t wmask
, uint64_t w1cmask
)
48 stq_le_p(&s
->csr
[addr
], val
);
49 stq_le_p(&s
->wmask
[addr
], wmask
);
50 stq_le_p(&s
->w1cmask
[addr
], w1cmask
);
53 static void vtd_define_quad_wo(IntelIOMMUState
*s
, hwaddr addr
, uint64_t mask
)
55 stq_le_p(&s
->womask
[addr
], mask
);
58 static void vtd_define_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
,
59 uint32_t wmask
, uint32_t w1cmask
)
61 stl_le_p(&s
->csr
[addr
], val
);
62 stl_le_p(&s
->wmask
[addr
], wmask
);
63 stl_le_p(&s
->w1cmask
[addr
], w1cmask
);
66 static void vtd_define_long_wo(IntelIOMMUState
*s
, hwaddr addr
, uint32_t mask
)
68 stl_le_p(&s
->womask
[addr
], mask
);
71 /* "External" get/set operations */
72 static void vtd_set_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
74 uint64_t oldval
= ldq_le_p(&s
->csr
[addr
]);
75 uint64_t wmask
= ldq_le_p(&s
->wmask
[addr
]);
76 uint64_t w1cmask
= ldq_le_p(&s
->w1cmask
[addr
]);
77 stq_le_p(&s
->csr
[addr
],
78 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
81 static void vtd_set_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
)
83 uint32_t oldval
= ldl_le_p(&s
->csr
[addr
]);
84 uint32_t wmask
= ldl_le_p(&s
->wmask
[addr
]);
85 uint32_t w1cmask
= ldl_le_p(&s
->w1cmask
[addr
]);
86 stl_le_p(&s
->csr
[addr
],
87 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
90 static uint64_t vtd_get_quad(IntelIOMMUState
*s
, hwaddr addr
)
92 uint64_t val
= ldq_le_p(&s
->csr
[addr
]);
93 uint64_t womask
= ldq_le_p(&s
->womask
[addr
]);
97 static uint32_t vtd_get_long(IntelIOMMUState
*s
, hwaddr addr
)
99 uint32_t val
= ldl_le_p(&s
->csr
[addr
]);
100 uint32_t womask
= ldl_le_p(&s
->womask
[addr
]);
101 return val
& ~womask
;
104 /* "Internal" get/set operations */
105 static uint64_t vtd_get_quad_raw(IntelIOMMUState
*s
, hwaddr addr
)
107 return ldq_le_p(&s
->csr
[addr
]);
110 static uint32_t vtd_get_long_raw(IntelIOMMUState
*s
, hwaddr addr
)
112 return ldl_le_p(&s
->csr
[addr
]);
115 static void vtd_set_quad_raw(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
117 stq_le_p(&s
->csr
[addr
], val
);
120 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState
*s
, hwaddr addr
,
121 uint32_t clear
, uint32_t mask
)
123 uint32_t new_val
= (ldl_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
124 stl_le_p(&s
->csr
[addr
], new_val
);
128 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState
*s
, hwaddr addr
,
129 uint64_t clear
, uint64_t mask
)
131 uint64_t new_val
= (ldq_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
132 stq_le_p(&s
->csr
[addr
], new_val
);
136 /* GHashTable functions */
137 static gboolean
vtd_uint64_equal(gconstpointer v1
, gconstpointer v2
)
139 return *((const uint64_t *)v1
) == *((const uint64_t *)v2
);
142 static guint
vtd_uint64_hash(gconstpointer v
)
144 return (guint
)*(const uint64_t *)v
;
147 static gboolean
vtd_hash_remove_by_domain(gpointer key
, gpointer value
,
150 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
151 uint16_t domain_id
= *(uint16_t *)user_data
;
152 return entry
->domain_id
== domain_id
;
155 static gboolean
vtd_hash_remove_by_page(gpointer key
, gpointer value
,
158 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
159 VTDIOTLBPageInvInfo
*info
= (VTDIOTLBPageInvInfo
*)user_data
;
160 uint64_t gfn
= info
->gfn
& info
->mask
;
161 return (entry
->domain_id
== info
->domain_id
) &&
162 ((entry
->gfn
& info
->mask
) == gfn
);
165 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
166 * IntelIOMMUState to 1.
168 static void vtd_reset_context_cache(IntelIOMMUState
*s
)
170 VTDAddressSpace
*vtd_as
;
172 GHashTableIter bus_it
;
175 g_hash_table_iter_init(&bus_it
, s
->vtd_as_by_busptr
);
177 VTD_DPRINTF(CACHE
, "global context_cache_gen=1");
178 while (g_hash_table_iter_next (&bus_it
, NULL
, (void**)&vtd_bus
)) {
179 for (devfn_it
= 0; devfn_it
< VTD_PCI_DEVFN_MAX
; ++devfn_it
) {
180 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
184 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
187 s
->context_cache_gen
= 1;
190 static void vtd_reset_iotlb(IntelIOMMUState
*s
)
193 g_hash_table_remove_all(s
->iotlb
);
196 static VTDIOTLBEntry
*vtd_lookup_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
201 key
= (addr
>> VTD_PAGE_SHIFT_4K
) |
202 ((uint64_t)(source_id
) << VTD_IOTLB_SID_SHIFT
);
203 return g_hash_table_lookup(s
->iotlb
, &key
);
207 static void vtd_update_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
208 uint16_t domain_id
, hwaddr addr
, uint64_t slpte
,
209 bool read_flags
, bool write_flags
)
211 VTDIOTLBEntry
*entry
= g_malloc(sizeof(*entry
));
212 uint64_t *key
= g_malloc(sizeof(*key
));
213 uint64_t gfn
= addr
>> VTD_PAGE_SHIFT_4K
;
215 VTD_DPRINTF(CACHE
, "update iotlb sid 0x%"PRIx16
" gpa 0x%"PRIx64
216 " slpte 0x%"PRIx64
" did 0x%"PRIx16
, source_id
, addr
, slpte
,
218 if (g_hash_table_size(s
->iotlb
) >= VTD_IOTLB_MAX_SIZE
) {
219 VTD_DPRINTF(CACHE
, "iotlb exceeds size limit, forced to reset");
224 entry
->domain_id
= domain_id
;
225 entry
->slpte
= slpte
;
226 entry
->read_flags
= read_flags
;
227 entry
->write_flags
= write_flags
;
228 *key
= gfn
| ((uint64_t)(source_id
) << VTD_IOTLB_SID_SHIFT
);
229 g_hash_table_replace(s
->iotlb
, key
, entry
);
232 /* Given the reg addr of both the message data and address, generate an
235 static void vtd_generate_interrupt(IntelIOMMUState
*s
, hwaddr mesg_addr_reg
,
236 hwaddr mesg_data_reg
)
241 assert(mesg_data_reg
< DMAR_REG_SIZE
);
242 assert(mesg_addr_reg
< DMAR_REG_SIZE
);
244 addr
= vtd_get_long_raw(s
, mesg_addr_reg
);
245 data
= vtd_get_long_raw(s
, mesg_data_reg
);
247 VTD_DPRINTF(FLOG
, "msi: addr 0x%"PRIx64
" data 0x%"PRIx32
, addr
, data
);
248 address_space_stl_le(&address_space_memory
, addr
, data
,
249 MEMTXATTRS_UNSPECIFIED
, NULL
);
252 /* Generate a fault event to software via MSI if conditions are met.
253 * Notice that the value of FSTS_REG being passed to it should be the one
256 static void vtd_generate_fault_event(IntelIOMMUState
*s
, uint32_t pre_fsts
)
258 if (pre_fsts
& VTD_FSTS_PPF
|| pre_fsts
& VTD_FSTS_PFO
||
259 pre_fsts
& VTD_FSTS_IQE
) {
260 VTD_DPRINTF(FLOG
, "there are previous interrupt conditions "
261 "to be serviced by software, fault event is not generated "
262 "(FSTS_REG 0x%"PRIx32
")", pre_fsts
);
265 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, 0, VTD_FECTL_IP
);
266 if (vtd_get_long_raw(s
, DMAR_FECTL_REG
) & VTD_FECTL_IM
) {
267 VTD_DPRINTF(FLOG
, "Interrupt Mask set, fault event is not generated");
269 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
270 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
274 /* Check if the Fault (F) field of the Fault Recording Register referenced by
277 static bool vtd_is_frcd_set(IntelIOMMUState
*s
, uint16_t index
)
279 /* Each reg is 128-bit */
280 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
281 addr
+= 8; /* Access the high 64-bit half */
283 assert(index
< DMAR_FRCD_REG_NR
);
285 return vtd_get_quad_raw(s
, addr
) & VTD_FRCD_F
;
288 /* Update the PPF field of Fault Status Register.
289 * Should be called whenever change the F field of any fault recording
292 static void vtd_update_fsts_ppf(IntelIOMMUState
*s
)
295 uint32_t ppf_mask
= 0;
297 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
298 if (vtd_is_frcd_set(s
, i
)) {
299 ppf_mask
= VTD_FSTS_PPF
;
303 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_PPF
, ppf_mask
);
304 VTD_DPRINTF(FLOG
, "set PPF of FSTS_REG to %d", ppf_mask
? 1 : 0);
307 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState
*s
, uint16_t index
)
309 /* Each reg is 128-bit */
310 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
311 addr
+= 8; /* Access the high 64-bit half */
313 assert(index
< DMAR_FRCD_REG_NR
);
315 vtd_set_clear_mask_quad(s
, addr
, 0, VTD_FRCD_F
);
316 vtd_update_fsts_ppf(s
);
319 /* Must not update F field now, should be done later */
320 static void vtd_record_frcd(IntelIOMMUState
*s
, uint16_t index
,
321 uint16_t source_id
, hwaddr addr
,
322 VTDFaultReason fault
, bool is_write
)
325 hwaddr frcd_reg_addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
327 assert(index
< DMAR_FRCD_REG_NR
);
329 lo
= VTD_FRCD_FI(addr
);
330 hi
= VTD_FRCD_SID(source_id
) | VTD_FRCD_FR(fault
);
334 vtd_set_quad_raw(s
, frcd_reg_addr
, lo
);
335 vtd_set_quad_raw(s
, frcd_reg_addr
+ 8, hi
);
336 VTD_DPRINTF(FLOG
, "record to FRCD_REG #%"PRIu16
": hi 0x%"PRIx64
337 ", lo 0x%"PRIx64
, index
, hi
, lo
);
340 /* Try to collapse multiple pending faults from the same requester */
341 static bool vtd_try_collapse_fault(IntelIOMMUState
*s
, uint16_t source_id
)
345 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ 8; /* The high 64-bit half */
347 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
348 frcd_reg
= vtd_get_quad_raw(s
, addr
);
349 VTD_DPRINTF(FLOG
, "frcd_reg #%d 0x%"PRIx64
, i
, frcd_reg
);
350 if ((frcd_reg
& VTD_FRCD_F
) &&
351 ((frcd_reg
& VTD_FRCD_SID_MASK
) == source_id
)) {
354 addr
+= 16; /* 128-bit for each */
359 /* Log and report an DMAR (address translation) fault to software */
360 static void vtd_report_dmar_fault(IntelIOMMUState
*s
, uint16_t source_id
,
361 hwaddr addr
, VTDFaultReason fault
,
364 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
366 assert(fault
< VTD_FR_MAX
);
368 if (fault
== VTD_FR_RESERVED_ERR
) {
369 /* This is not a normal fault reason case. Drop it. */
372 VTD_DPRINTF(FLOG
, "sid 0x%"PRIx16
", fault %d, addr 0x%"PRIx64
373 ", is_write %d", source_id
, fault
, addr
, is_write
);
374 if (fsts_reg
& VTD_FSTS_PFO
) {
375 VTD_DPRINTF(FLOG
, "new fault is not recorded due to "
376 "Primary Fault Overflow");
379 if (vtd_try_collapse_fault(s
, source_id
)) {
380 VTD_DPRINTF(FLOG
, "new fault is not recorded due to "
381 "compression of faults");
384 if (vtd_is_frcd_set(s
, s
->next_frcd_reg
)) {
385 VTD_DPRINTF(FLOG
, "Primary Fault Overflow and "
386 "new fault is not recorded, set PFO field");
387 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_PFO
);
391 vtd_record_frcd(s
, s
->next_frcd_reg
, source_id
, addr
, fault
, is_write
);
393 if (fsts_reg
& VTD_FSTS_PPF
) {
394 VTD_DPRINTF(FLOG
, "there are pending faults already, "
395 "fault event is not generated");
396 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
);
398 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
399 s
->next_frcd_reg
= 0;
402 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_FRI_MASK
,
403 VTD_FSTS_FRI(s
->next_frcd_reg
));
404 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
); /* Will set PPF */
406 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
407 s
->next_frcd_reg
= 0;
409 /* This case actually cause the PPF to be Set.
410 * So generate fault event (interrupt).
412 vtd_generate_fault_event(s
, fsts_reg
);
416 /* Handle Invalidation Queue Errors of queued invalidation interface error
419 static void vtd_handle_inv_queue_error(IntelIOMMUState
*s
)
421 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
423 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_IQE
);
424 vtd_generate_fault_event(s
, fsts_reg
);
427 /* Set the IWC field and try to generate an invalidation completion interrupt */
428 static void vtd_generate_completion_event(IntelIOMMUState
*s
)
430 VTD_DPRINTF(INV
, "completes an invalidation wait command with "
432 if (vtd_get_long_raw(s
, DMAR_ICS_REG
) & VTD_ICS_IWC
) {
433 VTD_DPRINTF(INV
, "there is a previous interrupt condition to be "
434 "serviced by software, "
435 "new invalidation event is not generated");
438 vtd_set_clear_mask_long(s
, DMAR_ICS_REG
, 0, VTD_ICS_IWC
);
439 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, 0, VTD_IECTL_IP
);
440 if (vtd_get_long_raw(s
, DMAR_IECTL_REG
) & VTD_IECTL_IM
) {
441 VTD_DPRINTF(INV
, "IM filed in IECTL_REG is set, new invalidation "
442 "event is not generated");
445 /* Generate the interrupt event */
446 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
447 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
451 static inline bool vtd_root_entry_present(VTDRootEntry
*root
)
453 return root
->val
& VTD_ROOT_ENTRY_P
;
456 static int vtd_get_root_entry(IntelIOMMUState
*s
, uint8_t index
,
461 addr
= s
->root
+ index
* sizeof(*re
);
462 if (dma_memory_read(&address_space_memory
, addr
, re
, sizeof(*re
))) {
463 VTD_DPRINTF(GENERAL
, "error: fail to access root-entry at 0x%"PRIx64
464 " + %"PRIu8
, s
->root
, index
);
466 return -VTD_FR_ROOT_TABLE_INV
;
468 re
->val
= le64_to_cpu(re
->val
);
472 static inline bool vtd_context_entry_present(VTDContextEntry
*context
)
474 return context
->lo
& VTD_CONTEXT_ENTRY_P
;
477 static int vtd_get_context_entry_from_root(VTDRootEntry
*root
, uint8_t index
,
482 if (!vtd_root_entry_present(root
)) {
483 VTD_DPRINTF(GENERAL
, "error: root-entry is not present");
484 return -VTD_FR_ROOT_ENTRY_P
;
486 addr
= (root
->val
& VTD_ROOT_ENTRY_CTP
) + index
* sizeof(*ce
);
487 if (dma_memory_read(&address_space_memory
, addr
, ce
, sizeof(*ce
))) {
488 VTD_DPRINTF(GENERAL
, "error: fail to access context-entry at 0x%"PRIx64
490 (uint64_t)(root
->val
& VTD_ROOT_ENTRY_CTP
), index
);
491 return -VTD_FR_CONTEXT_TABLE_INV
;
493 ce
->lo
= le64_to_cpu(ce
->lo
);
494 ce
->hi
= le64_to_cpu(ce
->hi
);
498 static inline dma_addr_t
vtd_get_slpt_base_from_context(VTDContextEntry
*ce
)
500 return ce
->lo
& VTD_CONTEXT_ENTRY_SLPTPTR
;
503 /* The shift of an addr for a certain level of paging structure */
504 static inline uint32_t vtd_slpt_level_shift(uint32_t level
)
506 return VTD_PAGE_SHIFT_4K
+ (level
- 1) * VTD_SL_LEVEL_BITS
;
509 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte
)
511 return slpte
& VTD_SL_PT_BASE_ADDR_MASK
;
514 /* Whether the pte indicates the address of the page frame */
515 static inline bool vtd_is_last_slpte(uint64_t slpte
, uint32_t level
)
517 return level
== VTD_SL_PT_LEVEL
|| (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
);
520 /* Get the content of a spte located in @base_addr[@index] */
521 static uint64_t vtd_get_slpte(dma_addr_t base_addr
, uint32_t index
)
525 assert(index
< VTD_SL_PT_ENTRY_NR
);
527 if (dma_memory_read(&address_space_memory
,
528 base_addr
+ index
* sizeof(slpte
), &slpte
,
530 slpte
= (uint64_t)-1;
533 slpte
= le64_to_cpu(slpte
);
537 /* Given a gpa and the level of paging structure, return the offset of current
540 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa
, uint32_t level
)
542 return (gpa
>> vtd_slpt_level_shift(level
)) &
543 ((1ULL << VTD_SL_LEVEL_BITS
) - 1);
546 /* Check Capability Register to see if the @level of page-table is supported */
547 static inline bool vtd_is_level_supported(IntelIOMMUState
*s
, uint32_t level
)
549 return VTD_CAP_SAGAW_MASK
& s
->cap
&
550 (1ULL << (level
- 2 + VTD_CAP_SAGAW_SHIFT
));
553 /* Get the page-table level that hardware should use for the second-level
554 * page-table walk from the Address Width field of context-entry.
556 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry
*ce
)
558 return 2 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
);
561 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry
*ce
)
563 return 30 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
) * 9;
566 static const uint64_t vtd_paging_entry_rsvd_field
[] = {
568 /* For not large page */
569 [1] = 0x800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
570 [2] = 0x800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
571 [3] = 0x800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
572 [4] = 0x880ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
574 [5] = 0x800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
575 [6] = 0x1ff800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
576 [7] = 0x3ffff800ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
577 [8] = 0x880ULL
| ~(VTD_HAW_MASK
| VTD_SL_IGN_COM
),
580 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte
, uint32_t level
)
582 if (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
) {
583 /* Maybe large page */
584 return slpte
& vtd_paging_entry_rsvd_field
[level
+ 4];
586 return slpte
& vtd_paging_entry_rsvd_field
[level
];
590 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
591 * of the translation, can be used for deciding the size of large page.
593 static int vtd_gpa_to_slpte(VTDContextEntry
*ce
, uint64_t gpa
, bool is_write
,
594 uint64_t *slptep
, uint32_t *slpte_level
,
595 bool *reads
, bool *writes
)
597 dma_addr_t addr
= vtd_get_slpt_base_from_context(ce
);
598 uint32_t level
= vtd_get_level_from_context_entry(ce
);
601 uint32_t ce_agaw
= vtd_get_agaw_from_context_entry(ce
);
602 uint64_t access_right_check
;
604 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
605 * and AW in context-entry.
607 if (gpa
& ~((1ULL << MIN(ce_agaw
, VTD_MGAW
)) - 1)) {
608 VTD_DPRINTF(GENERAL
, "error: gpa 0x%"PRIx64
" exceeds limits", gpa
);
609 return -VTD_FR_ADDR_BEYOND_MGAW
;
612 /* FIXME: what is the Atomics request here? */
613 access_right_check
= is_write
? VTD_SL_W
: VTD_SL_R
;
616 offset
= vtd_gpa_level_offset(gpa
, level
);
617 slpte
= vtd_get_slpte(addr
, offset
);
619 if (slpte
== (uint64_t)-1) {
620 VTD_DPRINTF(GENERAL
, "error: fail to access second-level paging "
621 "entry at level %"PRIu32
" for gpa 0x%"PRIx64
,
623 if (level
== vtd_get_level_from_context_entry(ce
)) {
624 /* Invalid programming of context-entry */
625 return -VTD_FR_CONTEXT_ENTRY_INV
;
627 return -VTD_FR_PAGING_ENTRY_INV
;
630 *reads
= (*reads
) && (slpte
& VTD_SL_R
);
631 *writes
= (*writes
) && (slpte
& VTD_SL_W
);
632 if (!(slpte
& access_right_check
)) {
633 VTD_DPRINTF(GENERAL
, "error: lack of %s permission for "
634 "gpa 0x%"PRIx64
" slpte 0x%"PRIx64
,
635 (is_write
? "write" : "read"), gpa
, slpte
);
636 return is_write
? -VTD_FR_WRITE
: -VTD_FR_READ
;
638 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
639 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in second "
640 "level paging entry level %"PRIu32
" slpte 0x%"PRIx64
,
642 return -VTD_FR_PAGING_ENTRY_RSVD
;
645 if (vtd_is_last_slpte(slpte
, level
)) {
647 *slpte_level
= level
;
650 addr
= vtd_get_slpte_addr(slpte
);
655 /* Map a device to its corresponding domain (context-entry) */
656 static int vtd_dev_to_context_entry(IntelIOMMUState
*s
, uint8_t bus_num
,
657 uint8_t devfn
, VTDContextEntry
*ce
)
662 ret_fr
= vtd_get_root_entry(s
, bus_num
, &re
);
667 if (!vtd_root_entry_present(&re
)) {
668 VTD_DPRINTF(GENERAL
, "error: root-entry #%"PRIu8
" is not present",
670 return -VTD_FR_ROOT_ENTRY_P
;
671 } else if (re
.rsvd
|| (re
.val
& VTD_ROOT_ENTRY_RSVD
)) {
672 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in root-entry "
673 "hi 0x%"PRIx64
" lo 0x%"PRIx64
, re
.rsvd
, re
.val
);
674 return -VTD_FR_ROOT_ENTRY_RSVD
;
677 ret_fr
= vtd_get_context_entry_from_root(&re
, devfn
, ce
);
682 if (!vtd_context_entry_present(ce
)) {
684 "error: context-entry #%"PRIu8
"(bus #%"PRIu8
") "
685 "is not present", devfn
, bus_num
);
686 return -VTD_FR_CONTEXT_ENTRY_P
;
687 } else if ((ce
->hi
& VTD_CONTEXT_ENTRY_RSVD_HI
) ||
688 (ce
->lo
& VTD_CONTEXT_ENTRY_RSVD_LO
)) {
690 "error: non-zero reserved field in context-entry "
691 "hi 0x%"PRIx64
" lo 0x%"PRIx64
, ce
->hi
, ce
->lo
);
692 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
694 /* Check if the programming of context-entry is valid */
695 if (!vtd_is_level_supported(s
, vtd_get_level_from_context_entry(ce
))) {
696 VTD_DPRINTF(GENERAL
, "error: unsupported Address Width value in "
697 "context-entry hi 0x%"PRIx64
" lo 0x%"PRIx64
,
699 return -VTD_FR_CONTEXT_ENTRY_INV
;
700 } else if (ce
->lo
& VTD_CONTEXT_ENTRY_TT
) {
701 VTD_DPRINTF(GENERAL
, "error: unsupported Translation Type in "
702 "context-entry hi 0x%"PRIx64
" lo 0x%"PRIx64
,
704 return -VTD_FR_CONTEXT_ENTRY_INV
;
709 static inline uint16_t vtd_make_source_id(uint8_t bus_num
, uint8_t devfn
)
711 return ((bus_num
& 0xffUL
) << 8) | (devfn
& 0xffUL
);
714 static const bool vtd_qualified_faults
[] = {
715 [VTD_FR_RESERVED
] = false,
716 [VTD_FR_ROOT_ENTRY_P
] = false,
717 [VTD_FR_CONTEXT_ENTRY_P
] = true,
718 [VTD_FR_CONTEXT_ENTRY_INV
] = true,
719 [VTD_FR_ADDR_BEYOND_MGAW
] = true,
720 [VTD_FR_WRITE
] = true,
721 [VTD_FR_READ
] = true,
722 [VTD_FR_PAGING_ENTRY_INV
] = true,
723 [VTD_FR_ROOT_TABLE_INV
] = false,
724 [VTD_FR_CONTEXT_TABLE_INV
] = false,
725 [VTD_FR_ROOT_ENTRY_RSVD
] = false,
726 [VTD_FR_PAGING_ENTRY_RSVD
] = true,
727 [VTD_FR_CONTEXT_ENTRY_TT
] = true,
728 [VTD_FR_RESERVED_ERR
] = false,
729 [VTD_FR_MAX
] = false,
732 /* To see if a fault condition is "qualified", which is reported to software
733 * only if the FPD field in the context-entry used to process the faulting
736 static inline bool vtd_is_qualified_fault(VTDFaultReason fault
)
738 return vtd_qualified_faults
[fault
];
741 static inline bool vtd_is_interrupt_addr(hwaddr addr
)
743 return VTD_INTERRUPT_ADDR_FIRST
<= addr
&& addr
<= VTD_INTERRUPT_ADDR_LAST
;
746 /* Map dev to context-entry then do a paging-structures walk to do a iommu
749 * Called from RCU critical section.
751 * @bus_num: The bus number
752 * @devfn: The devfn, which is the combined of device and function number
753 * @is_write: The access is a write operation
754 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
756 static void vtd_do_iommu_translate(VTDAddressSpace
*vtd_as
, PCIBus
*bus
,
757 uint8_t devfn
, hwaddr addr
, bool is_write
,
758 IOMMUTLBEntry
*entry
)
760 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
762 uint8_t bus_num
= pci_bus_num(bus
);
763 VTDContextCacheEntry
*cc_entry
= &vtd_as
->context_cache_entry
;
766 uint16_t source_id
= vtd_make_source_id(bus_num
, devfn
);
768 bool is_fpd_set
= false;
771 VTDIOTLBEntry
*iotlb_entry
;
773 /* Check if the request is in interrupt address range */
774 if (vtd_is_interrupt_addr(addr
)) {
776 /* FIXME: since we don't know the length of the access here, we
777 * treat Non-DWORD length write requests without PASID as
778 * interrupt requests, too. Withoud interrupt remapping support,
779 * we just use 1:1 mapping.
781 VTD_DPRINTF(MMU
, "write request to interrupt address "
782 "gpa 0x%"PRIx64
, addr
);
783 entry
->iova
= addr
& VTD_PAGE_MASK_4K
;
784 entry
->translated_addr
= addr
& VTD_PAGE_MASK_4K
;
785 entry
->addr_mask
= ~VTD_PAGE_MASK_4K
;
786 entry
->perm
= IOMMU_WO
;
789 VTD_DPRINTF(GENERAL
, "error: read request from interrupt address "
790 "gpa 0x%"PRIx64
, addr
);
791 vtd_report_dmar_fault(s
, source_id
, addr
, VTD_FR_READ
, is_write
);
795 /* Try to fetch slpte form IOTLB */
796 iotlb_entry
= vtd_lookup_iotlb(s
, source_id
, addr
);
798 VTD_DPRINTF(CACHE
, "hit iotlb sid 0x%"PRIx16
" gpa 0x%"PRIx64
799 " slpte 0x%"PRIx64
" did 0x%"PRIx16
, source_id
, addr
,
800 iotlb_entry
->slpte
, iotlb_entry
->domain_id
);
801 slpte
= iotlb_entry
->slpte
;
802 reads
= iotlb_entry
->read_flags
;
803 writes
= iotlb_entry
->write_flags
;
806 /* Try to fetch context-entry from cache first */
807 if (cc_entry
->context_cache_gen
== s
->context_cache_gen
) {
808 VTD_DPRINTF(CACHE
, "hit context-cache bus %d devfn %d "
809 "(hi %"PRIx64
" lo %"PRIx64
" gen %"PRIu32
")",
810 bus_num
, devfn
, cc_entry
->context_entry
.hi
,
811 cc_entry
->context_entry
.lo
, cc_entry
->context_cache_gen
);
812 ce
= cc_entry
->context_entry
;
813 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
815 ret_fr
= vtd_dev_to_context_entry(s
, bus_num
, devfn
, &ce
);
816 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
819 if (is_fpd_set
&& vtd_is_qualified_fault(ret_fr
)) {
820 VTD_DPRINTF(FLOG
, "fault processing is disabled for DMA "
821 "requests through this context-entry "
824 vtd_report_dmar_fault(s
, source_id
, addr
, ret_fr
, is_write
);
828 /* Update context-cache */
829 VTD_DPRINTF(CACHE
, "update context-cache bus %d devfn %d "
830 "(hi %"PRIx64
" lo %"PRIx64
" gen %"PRIu32
"->%"PRIu32
")",
831 bus_num
, devfn
, ce
.hi
, ce
.lo
,
832 cc_entry
->context_cache_gen
, s
->context_cache_gen
);
833 cc_entry
->context_entry
= ce
;
834 cc_entry
->context_cache_gen
= s
->context_cache_gen
;
837 ret_fr
= vtd_gpa_to_slpte(&ce
, addr
, is_write
, &slpte
, &level
,
841 if (is_fpd_set
&& vtd_is_qualified_fault(ret_fr
)) {
842 VTD_DPRINTF(FLOG
, "fault processing is disabled for DMA requests "
843 "through this context-entry (with FPD Set)");
845 vtd_report_dmar_fault(s
, source_id
, addr
, ret_fr
, is_write
);
850 vtd_update_iotlb(s
, source_id
, VTD_CONTEXT_ENTRY_DID(ce
.hi
), addr
, slpte
,
853 entry
->iova
= addr
& VTD_PAGE_MASK_4K
;
854 entry
->translated_addr
= vtd_get_slpte_addr(slpte
) & VTD_PAGE_MASK_4K
;
855 entry
->addr_mask
= ~VTD_PAGE_MASK_4K
;
856 entry
->perm
= (writes
? 2 : 0) + (reads
? 1 : 0);
859 static void vtd_root_table_setup(IntelIOMMUState
*s
)
861 s
->root
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
862 s
->root_extended
= s
->root
& VTD_RTADDR_RTT
;
863 s
->root
&= VTD_RTADDR_ADDR_MASK
;
865 VTD_DPRINTF(CSR
, "root_table addr 0x%"PRIx64
" %s", s
->root
,
866 (s
->root_extended
? "(extended)" : ""));
869 static void vtd_context_global_invalidate(IntelIOMMUState
*s
)
871 s
->context_cache_gen
++;
872 if (s
->context_cache_gen
== VTD_CONTEXT_CACHE_GEN_MAX
) {
873 vtd_reset_context_cache(s
);
878 /* Find the VTD address space currently associated with a given bus number,
880 static VTDBus
*vtd_find_as_from_bus_num(IntelIOMMUState
*s
, uint8_t bus_num
)
882 VTDBus
*vtd_bus
= s
->vtd_as_by_bus_num
[bus_num
];
884 /* Iterate over the registered buses to find the one
885 * which currently hold this bus number, and update the bus_num lookup table:
889 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
890 while (g_hash_table_iter_next (&iter
, NULL
, (void**)&vtd_bus
)) {
891 if (pci_bus_num(vtd_bus
->bus
) == bus_num
) {
892 s
->vtd_as_by_bus_num
[bus_num
] = vtd_bus
;
900 /* Do a context-cache device-selective invalidation.
901 * @func_mask: FM field after shifting
903 static void vtd_context_device_invalidate(IntelIOMMUState
*s
,
909 VTDAddressSpace
*vtd_as
;
913 switch (func_mask
& 3) {
915 mask
= 0; /* No bits in the SID field masked */
918 mask
= 4; /* Mask bit 2 in the SID field */
921 mask
= 6; /* Mask bit 2:1 in the SID field */
924 mask
= 7; /* Mask bit 2:0 in the SID field */
927 VTD_DPRINTF(INV
, "device-selective invalidation source 0x%"PRIx16
928 " mask %"PRIu16
, source_id
, mask
);
929 vtd_bus
= vtd_find_as_from_bus_num(s
, VTD_SID_TO_BUS(source_id
));
931 devfn
= VTD_SID_TO_DEVFN(source_id
);
932 for (devfn_it
= 0; devfn_it
< VTD_PCI_DEVFN_MAX
; ++devfn_it
) {
933 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
934 if (vtd_as
&& ((devfn_it
& mask
) == (devfn
& mask
))) {
935 VTD_DPRINTF(INV
, "invalidate context-cahce of devfn 0x%"PRIx16
,
937 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
943 /* Context-cache invalidation
944 * Returns the Context Actual Invalidation Granularity.
945 * @val: the content of the CCMD_REG
947 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState
*s
, uint64_t val
)
950 uint64_t type
= val
& VTD_CCMD_CIRG_MASK
;
953 case VTD_CCMD_DOMAIN_INVL
:
954 VTD_DPRINTF(INV
, "domain-selective invalidation domain 0x%"PRIx16
,
955 (uint16_t)VTD_CCMD_DID(val
));
957 case VTD_CCMD_GLOBAL_INVL
:
958 VTD_DPRINTF(INV
, "global invalidation");
959 caig
= VTD_CCMD_GLOBAL_INVL_A
;
960 vtd_context_global_invalidate(s
);
963 case VTD_CCMD_DEVICE_INVL
:
964 caig
= VTD_CCMD_DEVICE_INVL_A
;
965 vtd_context_device_invalidate(s
, VTD_CCMD_SID(val
), VTD_CCMD_FM(val
));
969 VTD_DPRINTF(GENERAL
, "error: invalid granularity");
975 static void vtd_iotlb_global_invalidate(IntelIOMMUState
*s
)
980 static void vtd_iotlb_domain_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
)
982 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_domain
,
986 static void vtd_iotlb_page_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
,
987 hwaddr addr
, uint8_t am
)
989 VTDIOTLBPageInvInfo info
;
991 assert(am
<= VTD_MAMV
);
992 info
.domain_id
= domain_id
;
993 info
.gfn
= addr
>> VTD_PAGE_SHIFT_4K
;
994 info
.mask
= ~((1 << am
) - 1);
995 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_page
, &info
);
999 * Returns the IOTLB Actual Invalidation Granularity.
1000 * @val: the content of the IOTLB_REG
1002 static uint64_t vtd_iotlb_flush(IntelIOMMUState
*s
, uint64_t val
)
1005 uint64_t type
= val
& VTD_TLB_FLUSH_GRANU_MASK
;
1011 case VTD_TLB_GLOBAL_FLUSH
:
1012 VTD_DPRINTF(INV
, "global invalidation");
1013 iaig
= VTD_TLB_GLOBAL_FLUSH_A
;
1014 vtd_iotlb_global_invalidate(s
);
1017 case VTD_TLB_DSI_FLUSH
:
1018 domain_id
= VTD_TLB_DID(val
);
1019 VTD_DPRINTF(INV
, "domain-selective invalidation domain 0x%"PRIx16
,
1021 iaig
= VTD_TLB_DSI_FLUSH_A
;
1022 vtd_iotlb_domain_invalidate(s
, domain_id
);
1025 case VTD_TLB_PSI_FLUSH
:
1026 domain_id
= VTD_TLB_DID(val
);
1027 addr
= vtd_get_quad_raw(s
, DMAR_IVA_REG
);
1028 am
= VTD_IVA_AM(addr
);
1029 addr
= VTD_IVA_ADDR(addr
);
1030 VTD_DPRINTF(INV
, "page-selective invalidation domain 0x%"PRIx16
1031 " addr 0x%"PRIx64
" mask %"PRIu8
, domain_id
, addr
, am
);
1032 if (am
> VTD_MAMV
) {
1033 VTD_DPRINTF(GENERAL
, "error: supported max address mask value is "
1034 "%"PRIu8
, (uint8_t)VTD_MAMV
);
1038 iaig
= VTD_TLB_PSI_FLUSH_A
;
1039 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
1043 VTD_DPRINTF(GENERAL
, "error: invalid granularity");
1049 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState
*s
)
1051 return s
->iq_tail
== 0;
1054 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState
*s
)
1056 return s
->qi_enabled
&& (s
->iq_tail
== s
->iq_head
) &&
1057 (s
->iq_last_desc_type
== VTD_INV_DESC_WAIT
);
1060 static void vtd_handle_gcmd_qie(IntelIOMMUState
*s
, bool en
)
1062 uint64_t iqa_val
= vtd_get_quad_raw(s
, DMAR_IQA_REG
);
1064 VTD_DPRINTF(INV
, "Queued Invalidation Enable %s", (en
? "on" : "off"));
1066 if (vtd_queued_inv_enable_check(s
)) {
1067 s
->iq
= iqa_val
& VTD_IQA_IQA_MASK
;
1068 /* 2^(x+8) entries */
1069 s
->iq_size
= 1UL << ((iqa_val
& VTD_IQA_QS
) + 8);
1070 s
->qi_enabled
= true;
1071 VTD_DPRINTF(INV
, "DMAR_IQA_REG 0x%"PRIx64
, iqa_val
);
1072 VTD_DPRINTF(INV
, "Invalidation Queue addr 0x%"PRIx64
" size %d",
1074 /* Ok - report back to driver */
1075 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_QIES
);
1077 VTD_DPRINTF(GENERAL
, "error: can't enable Queued Invalidation: "
1078 "tail %"PRIu16
, s
->iq_tail
);
1081 if (vtd_queued_inv_disable_check(s
)) {
1082 /* disable Queued Invalidation */
1083 vtd_set_quad_raw(s
, DMAR_IQH_REG
, 0);
1085 s
->qi_enabled
= false;
1086 /* Ok - report back to driver */
1087 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_QIES
, 0);
1089 VTD_DPRINTF(GENERAL
, "error: can't disable Queued Invalidation: "
1090 "head %"PRIu16
", tail %"PRIu16
1091 ", last_descriptor %"PRIu8
,
1092 s
->iq_head
, s
->iq_tail
, s
->iq_last_desc_type
);
1097 /* Set Root Table Pointer */
1098 static void vtd_handle_gcmd_srtp(IntelIOMMUState
*s
)
1100 VTD_DPRINTF(CSR
, "set Root Table Pointer");
1102 vtd_root_table_setup(s
);
1103 /* Ok - report back to driver */
1104 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_RTPS
);
1107 /* Handle Translation Enable/Disable */
1108 static void vtd_handle_gcmd_te(IntelIOMMUState
*s
, bool en
)
1110 VTD_DPRINTF(CSR
, "Translation Enable %s", (en
? "on" : "off"));
1113 s
->dmar_enabled
= true;
1114 /* Ok - report back to driver */
1115 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_TES
);
1117 s
->dmar_enabled
= false;
1119 /* Clear the index of Fault Recording Register */
1120 s
->next_frcd_reg
= 0;
1121 /* Ok - report back to driver */
1122 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_TES
, 0);
1126 /* Handle write to Global Command Register */
1127 static void vtd_handle_gcmd_write(IntelIOMMUState
*s
)
1129 uint32_t status
= vtd_get_long_raw(s
, DMAR_GSTS_REG
);
1130 uint32_t val
= vtd_get_long_raw(s
, DMAR_GCMD_REG
);
1131 uint32_t changed
= status
^ val
;
1133 VTD_DPRINTF(CSR
, "value 0x%"PRIx32
" status 0x%"PRIx32
, val
, status
);
1134 if (changed
& VTD_GCMD_TE
) {
1135 /* Translation enable/disable */
1136 vtd_handle_gcmd_te(s
, val
& VTD_GCMD_TE
);
1138 if (val
& VTD_GCMD_SRTP
) {
1139 /* Set/update the root-table pointer */
1140 vtd_handle_gcmd_srtp(s
);
1142 if (changed
& VTD_GCMD_QIE
) {
1143 /* Queued Invalidation Enable */
1144 vtd_handle_gcmd_qie(s
, val
& VTD_GCMD_QIE
);
1148 /* Handle write to Context Command Register */
1149 static void vtd_handle_ccmd_write(IntelIOMMUState
*s
)
1152 uint64_t val
= vtd_get_quad_raw(s
, DMAR_CCMD_REG
);
1154 /* Context-cache invalidation request */
1155 if (val
& VTD_CCMD_ICC
) {
1156 if (s
->qi_enabled
) {
1157 VTD_DPRINTF(GENERAL
, "error: Queued Invalidation enabled, "
1158 "should not use register-based invalidation");
1161 ret
= vtd_context_cache_invalidate(s
, val
);
1162 /* Invalidation completed. Change something to show */
1163 vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_ICC
, 0ULL);
1164 ret
= vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_CAIG_MASK
,
1166 VTD_DPRINTF(INV
, "CCMD_REG write-back val: 0x%"PRIx64
, ret
);
1170 /* Handle write to IOTLB Invalidation Register */
1171 static void vtd_handle_iotlb_write(IntelIOMMUState
*s
)
1174 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IOTLB_REG
);
1176 /* IOTLB invalidation request */
1177 if (val
& VTD_TLB_IVT
) {
1178 if (s
->qi_enabled
) {
1179 VTD_DPRINTF(GENERAL
, "error: Queued Invalidation enabled, "
1180 "should not use register-based invalidation");
1183 ret
= vtd_iotlb_flush(s
, val
);
1184 /* Invalidation completed. Change something to show */
1185 vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
, VTD_TLB_IVT
, 0ULL);
1186 ret
= vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
,
1187 VTD_TLB_FLUSH_GRANU_MASK_A
, ret
);
1188 VTD_DPRINTF(INV
, "IOTLB_REG write-back val: 0x%"PRIx64
, ret
);
1192 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1193 static bool vtd_get_inv_desc(dma_addr_t base_addr
, uint32_t offset
,
1194 VTDInvDesc
*inv_desc
)
1196 dma_addr_t addr
= base_addr
+ offset
* sizeof(*inv_desc
);
1197 if (dma_memory_read(&address_space_memory
, addr
, inv_desc
,
1198 sizeof(*inv_desc
))) {
1199 VTD_DPRINTF(GENERAL
, "error: fail to fetch Invalidation Descriptor "
1200 "base_addr 0x%"PRIx64
" offset %"PRIu32
, base_addr
, offset
);
1206 inv_desc
->lo
= le64_to_cpu(inv_desc
->lo
);
1207 inv_desc
->hi
= le64_to_cpu(inv_desc
->hi
);
1211 static bool vtd_process_wait_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
1213 if ((inv_desc
->hi
& VTD_INV_DESC_WAIT_RSVD_HI
) ||
1214 (inv_desc
->lo
& VTD_INV_DESC_WAIT_RSVD_LO
)) {
1215 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in Invalidation "
1216 "Wait Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1217 inv_desc
->hi
, inv_desc
->lo
);
1220 if (inv_desc
->lo
& VTD_INV_DESC_WAIT_SW
) {
1222 uint32_t status_data
= (uint32_t)(inv_desc
->lo
>>
1223 VTD_INV_DESC_WAIT_DATA_SHIFT
);
1225 assert(!(inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
));
1227 /* FIXME: need to be masked with HAW? */
1228 dma_addr_t status_addr
= inv_desc
->hi
;
1229 VTD_DPRINTF(INV
, "status data 0x%x, status addr 0x%"PRIx64
,
1230 status_data
, status_addr
);
1231 status_data
= cpu_to_le32(status_data
);
1232 if (dma_memory_write(&address_space_memory
, status_addr
, &status_data
,
1233 sizeof(status_data
))) {
1234 VTD_DPRINTF(GENERAL
, "error: fail to perform a coherent write");
1237 } else if (inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
) {
1238 /* Interrupt flag */
1239 VTD_DPRINTF(INV
, "Invalidation Wait Descriptor interrupt completion");
1240 vtd_generate_completion_event(s
);
1242 VTD_DPRINTF(GENERAL
, "error: invalid Invalidation Wait Descriptor: "
1243 "hi 0x%"PRIx64
" lo 0x%"PRIx64
, inv_desc
->hi
, inv_desc
->lo
);
1249 static bool vtd_process_context_cache_desc(IntelIOMMUState
*s
,
1250 VTDInvDesc
*inv_desc
)
1252 if ((inv_desc
->lo
& VTD_INV_DESC_CC_RSVD
) || inv_desc
->hi
) {
1253 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in Context-cache "
1254 "Invalidate Descriptor");
1257 switch (inv_desc
->lo
& VTD_INV_DESC_CC_G
) {
1258 case VTD_INV_DESC_CC_DOMAIN
:
1259 VTD_DPRINTF(INV
, "domain-selective invalidation domain 0x%"PRIx16
,
1260 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc
->lo
));
1262 case VTD_INV_DESC_CC_GLOBAL
:
1263 VTD_DPRINTF(INV
, "global invalidation");
1264 vtd_context_global_invalidate(s
);
1267 case VTD_INV_DESC_CC_DEVICE
:
1268 vtd_context_device_invalidate(s
, VTD_INV_DESC_CC_SID(inv_desc
->lo
),
1269 VTD_INV_DESC_CC_FM(inv_desc
->lo
));
1273 VTD_DPRINTF(GENERAL
, "error: invalid granularity in Context-cache "
1274 "Invalidate Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1275 inv_desc
->hi
, inv_desc
->lo
);
1281 static bool vtd_process_iotlb_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
1287 if ((inv_desc
->lo
& VTD_INV_DESC_IOTLB_RSVD_LO
) ||
1288 (inv_desc
->hi
& VTD_INV_DESC_IOTLB_RSVD_HI
)) {
1289 VTD_DPRINTF(GENERAL
, "error: non-zero reserved field in IOTLB "
1290 "Invalidate Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1291 inv_desc
->hi
, inv_desc
->lo
);
1295 switch (inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
) {
1296 case VTD_INV_DESC_IOTLB_GLOBAL
:
1297 VTD_DPRINTF(INV
, "global invalidation");
1298 vtd_iotlb_global_invalidate(s
);
1301 case VTD_INV_DESC_IOTLB_DOMAIN
:
1302 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
1303 VTD_DPRINTF(INV
, "domain-selective invalidation domain 0x%"PRIx16
,
1305 vtd_iotlb_domain_invalidate(s
, domain_id
);
1308 case VTD_INV_DESC_IOTLB_PAGE
:
1309 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
1310 addr
= VTD_INV_DESC_IOTLB_ADDR(inv_desc
->hi
);
1311 am
= VTD_INV_DESC_IOTLB_AM(inv_desc
->hi
);
1312 VTD_DPRINTF(INV
, "page-selective invalidation domain 0x%"PRIx16
1313 " addr 0x%"PRIx64
" mask %"PRIu8
, domain_id
, addr
, am
);
1314 if (am
> VTD_MAMV
) {
1315 VTD_DPRINTF(GENERAL
, "error: supported max address mask value is "
1316 "%"PRIu8
, (uint8_t)VTD_MAMV
);
1319 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
1323 VTD_DPRINTF(GENERAL
, "error: invalid granularity in IOTLB Invalidate "
1324 "Descriptor hi 0x%"PRIx64
" lo 0x%"PRIx64
,
1325 inv_desc
->hi
, inv_desc
->lo
);
1331 static bool vtd_process_inv_desc(IntelIOMMUState
*s
)
1333 VTDInvDesc inv_desc
;
1336 VTD_DPRINTF(INV
, "iq head %"PRIu16
, s
->iq_head
);
1337 if (!vtd_get_inv_desc(s
->iq
, s
->iq_head
, &inv_desc
)) {
1338 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
1341 desc_type
= inv_desc
.lo
& VTD_INV_DESC_TYPE
;
1342 /* FIXME: should update at first or at last? */
1343 s
->iq_last_desc_type
= desc_type
;
1345 switch (desc_type
) {
1346 case VTD_INV_DESC_CC
:
1347 VTD_DPRINTF(INV
, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1348 " lo 0x%"PRIx64
, inv_desc
.hi
, inv_desc
.lo
);
1349 if (!vtd_process_context_cache_desc(s
, &inv_desc
)) {
1354 case VTD_INV_DESC_IOTLB
:
1355 VTD_DPRINTF(INV
, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1356 " lo 0x%"PRIx64
, inv_desc
.hi
, inv_desc
.lo
);
1357 if (!vtd_process_iotlb_desc(s
, &inv_desc
)) {
1362 case VTD_INV_DESC_WAIT
:
1363 VTD_DPRINTF(INV
, "Invalidation Wait Descriptor hi 0x%"PRIx64
1364 " lo 0x%"PRIx64
, inv_desc
.hi
, inv_desc
.lo
);
1365 if (!vtd_process_wait_desc(s
, &inv_desc
)) {
1371 VTD_DPRINTF(GENERAL
, "error: unkonw Invalidation Descriptor type "
1372 "hi 0x%"PRIx64
" lo 0x%"PRIx64
" type %"PRIu8
,
1373 inv_desc
.hi
, inv_desc
.lo
, desc_type
);
1377 if (s
->iq_head
== s
->iq_size
) {
1383 /* Try to fetch and process more Invalidation Descriptors */
1384 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
)
1386 VTD_DPRINTF(INV
, "fetch Invalidation Descriptors");
1387 if (s
->iq_tail
>= s
->iq_size
) {
1388 /* Detects an invalid Tail pointer */
1389 VTD_DPRINTF(GENERAL
, "error: iq_tail is %"PRIu16
1390 " while iq_size is %"PRIu16
, s
->iq_tail
, s
->iq_size
);
1391 vtd_handle_inv_queue_error(s
);
1394 while (s
->iq_head
!= s
->iq_tail
) {
1395 if (!vtd_process_inv_desc(s
)) {
1396 /* Invalidation Queue Errors */
1397 vtd_handle_inv_queue_error(s
);
1400 /* Must update the IQH_REG in time */
1401 vtd_set_quad_raw(s
, DMAR_IQH_REG
,
1402 (((uint64_t)(s
->iq_head
)) << VTD_IQH_QH_SHIFT
) &
1407 /* Handle write to Invalidation Queue Tail Register */
1408 static void vtd_handle_iqt_write(IntelIOMMUState
*s
)
1410 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IQT_REG
);
1412 s
->iq_tail
= VTD_IQT_QT(val
);
1413 VTD_DPRINTF(INV
, "set iq tail %"PRIu16
, s
->iq_tail
);
1414 if (s
->qi_enabled
&& !(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
1415 /* Process Invalidation Queue here */
1416 vtd_fetch_inv_desc(s
);
1420 static void vtd_handle_fsts_write(IntelIOMMUState
*s
)
1422 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
1423 uint32_t fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
1424 uint32_t status_fields
= VTD_FSTS_PFO
| VTD_FSTS_PPF
| VTD_FSTS_IQE
;
1426 if ((fectl_reg
& VTD_FECTL_IP
) && !(fsts_reg
& status_fields
)) {
1427 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
1428 VTD_DPRINTF(FLOG
, "all pending interrupt conditions serviced, clear "
1429 "IP field of FECTL_REG");
1431 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1432 * Descriptors if there are any when Queued Invalidation is enabled?
1436 static void vtd_handle_fectl_write(IntelIOMMUState
*s
)
1439 /* FIXME: when software clears the IM field, check the IP field. But do we
1440 * need to compare the old value and the new value to conclude that
1441 * software clears the IM field? Or just check if the IM field is zero?
1443 fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
1444 if ((fectl_reg
& VTD_FECTL_IP
) && !(fectl_reg
& VTD_FECTL_IM
)) {
1445 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
1446 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
1447 VTD_DPRINTF(FLOG
, "IM field is cleared, generate "
1448 "fault event interrupt");
1452 static void vtd_handle_ics_write(IntelIOMMUState
*s
)
1454 uint32_t ics_reg
= vtd_get_long_raw(s
, DMAR_ICS_REG
);
1455 uint32_t iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
1457 if ((iectl_reg
& VTD_IECTL_IP
) && !(ics_reg
& VTD_ICS_IWC
)) {
1458 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
1459 VTD_DPRINTF(INV
, "pending completion interrupt condition serviced, "
1460 "clear IP field of IECTL_REG");
1464 static void vtd_handle_iectl_write(IntelIOMMUState
*s
)
1467 /* FIXME: when software clears the IM field, check the IP field. But do we
1468 * need to compare the old value and the new value to conclude that
1469 * software clears the IM field? Or just check if the IM field is zero?
1471 iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
1472 if ((iectl_reg
& VTD_IECTL_IP
) && !(iectl_reg
& VTD_IECTL_IM
)) {
1473 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
1474 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
1475 VTD_DPRINTF(INV
, "IM field is cleared, generate "
1476 "invalidation event interrupt");
1480 static uint64_t vtd_mem_read(void *opaque
, hwaddr addr
, unsigned size
)
1482 IntelIOMMUState
*s
= opaque
;
1485 if (addr
+ size
> DMAR_REG_SIZE
) {
1486 VTD_DPRINTF(GENERAL
, "error: addr outside region: max 0x%"PRIx64
1487 ", got 0x%"PRIx64
" %d",
1488 (uint64_t)DMAR_REG_SIZE
, addr
, size
);
1489 return (uint64_t)-1;
1493 /* Root Table Address Register, 64-bit */
1494 case DMAR_RTADDR_REG
:
1496 val
= s
->root
& ((1ULL << 32) - 1);
1502 case DMAR_RTADDR_REG_HI
:
1504 val
= s
->root
>> 32;
1507 /* Invalidation Queue Address Register, 64-bit */
1509 val
= s
->iq
| (vtd_get_quad(s
, DMAR_IQA_REG
) & VTD_IQA_QS
);
1511 val
= val
& ((1ULL << 32) - 1);
1515 case DMAR_IQA_REG_HI
:
1522 val
= vtd_get_long(s
, addr
);
1524 val
= vtd_get_quad(s
, addr
);
1527 VTD_DPRINTF(CSR
, "addr 0x%"PRIx64
" size %d val 0x%"PRIx64
,
1532 static void vtd_mem_write(void *opaque
, hwaddr addr
,
1533 uint64_t val
, unsigned size
)
1535 IntelIOMMUState
*s
= opaque
;
1537 if (addr
+ size
> DMAR_REG_SIZE
) {
1538 VTD_DPRINTF(GENERAL
, "error: addr outside region: max 0x%"PRIx64
1539 ", got 0x%"PRIx64
" %d",
1540 (uint64_t)DMAR_REG_SIZE
, addr
, size
);
1545 /* Global Command Register, 32-bit */
1547 VTD_DPRINTF(CSR
, "DMAR_GCMD_REG write addr 0x%"PRIx64
1548 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1549 vtd_set_long(s
, addr
, val
);
1550 vtd_handle_gcmd_write(s
);
1553 /* Context Command Register, 64-bit */
1555 VTD_DPRINTF(CSR
, "DMAR_CCMD_REG write addr 0x%"PRIx64
1556 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1558 vtd_set_long(s
, addr
, val
);
1560 vtd_set_quad(s
, addr
, val
);
1561 vtd_handle_ccmd_write(s
);
1565 case DMAR_CCMD_REG_HI
:
1566 VTD_DPRINTF(CSR
, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1567 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1569 vtd_set_long(s
, addr
, val
);
1570 vtd_handle_ccmd_write(s
);
1573 /* IOTLB Invalidation Register, 64-bit */
1574 case DMAR_IOTLB_REG
:
1575 VTD_DPRINTF(INV
, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1576 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1578 vtd_set_long(s
, addr
, val
);
1580 vtd_set_quad(s
, addr
, val
);
1581 vtd_handle_iotlb_write(s
);
1585 case DMAR_IOTLB_REG_HI
:
1586 VTD_DPRINTF(INV
, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1587 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1589 vtd_set_long(s
, addr
, val
);
1590 vtd_handle_iotlb_write(s
);
1593 /* Invalidate Address Register, 64-bit */
1595 VTD_DPRINTF(INV
, "DMAR_IVA_REG write addr 0x%"PRIx64
1596 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1598 vtd_set_long(s
, addr
, val
);
1600 vtd_set_quad(s
, addr
, val
);
1604 case DMAR_IVA_REG_HI
:
1605 VTD_DPRINTF(INV
, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1606 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1608 vtd_set_long(s
, addr
, val
);
1611 /* Fault Status Register, 32-bit */
1613 VTD_DPRINTF(FLOG
, "DMAR_FSTS_REG write addr 0x%"PRIx64
1614 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1616 vtd_set_long(s
, addr
, val
);
1617 vtd_handle_fsts_write(s
);
1620 /* Fault Event Control Register, 32-bit */
1621 case DMAR_FECTL_REG
:
1622 VTD_DPRINTF(FLOG
, "DMAR_FECTL_REG write addr 0x%"PRIx64
1623 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1625 vtd_set_long(s
, addr
, val
);
1626 vtd_handle_fectl_write(s
);
1629 /* Fault Event Data Register, 32-bit */
1630 case DMAR_FEDATA_REG
:
1631 VTD_DPRINTF(FLOG
, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1632 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1634 vtd_set_long(s
, addr
, val
);
1637 /* Fault Event Address Register, 32-bit */
1638 case DMAR_FEADDR_REG
:
1639 VTD_DPRINTF(FLOG
, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1640 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1642 vtd_set_long(s
, addr
, val
);
1645 /* Fault Event Upper Address Register, 32-bit */
1646 case DMAR_FEUADDR_REG
:
1647 VTD_DPRINTF(FLOG
, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1648 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1650 vtd_set_long(s
, addr
, val
);
1653 /* Protected Memory Enable Register, 32-bit */
1655 VTD_DPRINTF(CSR
, "DMAR_PMEN_REG write addr 0x%"PRIx64
1656 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1658 vtd_set_long(s
, addr
, val
);
1661 /* Root Table Address Register, 64-bit */
1662 case DMAR_RTADDR_REG
:
1663 VTD_DPRINTF(CSR
, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1664 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1666 vtd_set_long(s
, addr
, val
);
1668 vtd_set_quad(s
, addr
, val
);
1672 case DMAR_RTADDR_REG_HI
:
1673 VTD_DPRINTF(CSR
, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1674 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1676 vtd_set_long(s
, addr
, val
);
1679 /* Invalidation Queue Tail Register, 64-bit */
1681 VTD_DPRINTF(INV
, "DMAR_IQT_REG write addr 0x%"PRIx64
1682 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1684 vtd_set_long(s
, addr
, val
);
1686 vtd_set_quad(s
, addr
, val
);
1688 vtd_handle_iqt_write(s
);
1691 case DMAR_IQT_REG_HI
:
1692 VTD_DPRINTF(INV
, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1693 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1695 vtd_set_long(s
, addr
, val
);
1696 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1699 /* Invalidation Queue Address Register, 64-bit */
1701 VTD_DPRINTF(INV
, "DMAR_IQA_REG write addr 0x%"PRIx64
1702 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1704 vtd_set_long(s
, addr
, val
);
1706 vtd_set_quad(s
, addr
, val
);
1710 case DMAR_IQA_REG_HI
:
1711 VTD_DPRINTF(INV
, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1712 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1714 vtd_set_long(s
, addr
, val
);
1717 /* Invalidation Completion Status Register, 32-bit */
1719 VTD_DPRINTF(INV
, "DMAR_ICS_REG write addr 0x%"PRIx64
1720 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1722 vtd_set_long(s
, addr
, val
);
1723 vtd_handle_ics_write(s
);
1726 /* Invalidation Event Control Register, 32-bit */
1727 case DMAR_IECTL_REG
:
1728 VTD_DPRINTF(INV
, "DMAR_IECTL_REG write addr 0x%"PRIx64
1729 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1731 vtd_set_long(s
, addr
, val
);
1732 vtd_handle_iectl_write(s
);
1735 /* Invalidation Event Data Register, 32-bit */
1736 case DMAR_IEDATA_REG
:
1737 VTD_DPRINTF(INV
, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1738 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1740 vtd_set_long(s
, addr
, val
);
1743 /* Invalidation Event Address Register, 32-bit */
1744 case DMAR_IEADDR_REG
:
1745 VTD_DPRINTF(INV
, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1746 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1748 vtd_set_long(s
, addr
, val
);
1751 /* Invalidation Event Upper Address Register, 32-bit */
1752 case DMAR_IEUADDR_REG
:
1753 VTD_DPRINTF(INV
, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1754 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1756 vtd_set_long(s
, addr
, val
);
1759 /* Fault Recording Registers, 128-bit */
1760 case DMAR_FRCD_REG_0_0
:
1761 VTD_DPRINTF(FLOG
, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1762 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1764 vtd_set_long(s
, addr
, val
);
1766 vtd_set_quad(s
, addr
, val
);
1770 case DMAR_FRCD_REG_0_1
:
1771 VTD_DPRINTF(FLOG
, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1772 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1774 vtd_set_long(s
, addr
, val
);
1777 case DMAR_FRCD_REG_0_2
:
1778 VTD_DPRINTF(FLOG
, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1779 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1781 vtd_set_long(s
, addr
, val
);
1783 vtd_set_quad(s
, addr
, val
);
1784 /* May clear bit 127 (Fault), update PPF */
1785 vtd_update_fsts_ppf(s
);
1789 case DMAR_FRCD_REG_0_3
:
1790 VTD_DPRINTF(FLOG
, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1791 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1793 vtd_set_long(s
, addr
, val
);
1794 /* May clear bit 127 (Fault), update PPF */
1795 vtd_update_fsts_ppf(s
);
1799 VTD_DPRINTF(GENERAL
, "error: unhandled reg write addr 0x%"PRIx64
1800 ", size %d, val 0x%"PRIx64
, addr
, size
, val
);
1802 vtd_set_long(s
, addr
, val
);
1804 vtd_set_quad(s
, addr
, val
);
1809 static IOMMUTLBEntry
vtd_iommu_translate(MemoryRegion
*iommu
, hwaddr addr
,
1812 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
1813 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1814 IOMMUTLBEntry ret
= {
1815 .target_as
= &address_space_memory
,
1817 .translated_addr
= 0,
1818 .addr_mask
= ~(hwaddr
)0,
1822 if (!s
->dmar_enabled
) {
1823 /* DMAR disabled, passthrough, use 4k-page*/
1824 ret
.iova
= addr
& VTD_PAGE_MASK_4K
;
1825 ret
.translated_addr
= addr
& VTD_PAGE_MASK_4K
;
1826 ret
.addr_mask
= ~VTD_PAGE_MASK_4K
;
1827 ret
.perm
= IOMMU_RW
;
1831 vtd_do_iommu_translate(vtd_as
, vtd_as
->bus
, vtd_as
->devfn
, addr
,
1834 "bus %"PRIu8
" slot %"PRIu8
" func %"PRIu8
" devfn %"PRIu8
1835 " gpa 0x%"PRIx64
" hpa 0x%"PRIx64
, pci_bus_num(vtd_as
->bus
),
1836 VTD_PCI_SLOT(vtd_as
->devfn
), VTD_PCI_FUNC(vtd_as
->devfn
),
1837 vtd_as
->devfn
, addr
, ret
.translated_addr
);
1841 static const VMStateDescription vtd_vmstate
= {
1842 .name
= "iommu-intel",
1846 static const MemoryRegionOps vtd_mem_ops
= {
1847 .read
= vtd_mem_read
,
1848 .write
= vtd_mem_write
,
1849 .endianness
= DEVICE_LITTLE_ENDIAN
,
1851 .min_access_size
= 4,
1852 .max_access_size
= 8,
1855 .min_access_size
= 4,
1856 .max_access_size
= 8,
1860 static Property vtd_properties
[] = {
1861 DEFINE_PROP_UINT32("version", IntelIOMMUState
, version
, 0),
1862 DEFINE_PROP_END_OF_LIST(),
1866 VTDAddressSpace
*vtd_find_add_as(IntelIOMMUState
*s
, PCIBus
*bus
, int devfn
)
1868 uintptr_t key
= (uintptr_t)bus
;
1869 VTDBus
*vtd_bus
= g_hash_table_lookup(s
->vtd_as_by_busptr
, &key
);
1870 VTDAddressSpace
*vtd_dev_as
;
1873 /* No corresponding free() */
1874 vtd_bus
= g_malloc0(sizeof(VTDBus
) + sizeof(VTDAddressSpace
*) * VTD_PCI_DEVFN_MAX
);
1876 key
= (uintptr_t)bus
;
1877 g_hash_table_insert(s
->vtd_as_by_busptr
, &key
, vtd_bus
);
1880 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
1883 vtd_bus
->dev_as
[devfn
] = vtd_dev_as
= g_malloc0(sizeof(VTDAddressSpace
));
1885 vtd_dev_as
->bus
= bus
;
1886 vtd_dev_as
->devfn
= (uint8_t)devfn
;
1887 vtd_dev_as
->iommu_state
= s
;
1888 vtd_dev_as
->context_cache_entry
.context_cache_gen
= 0;
1889 memory_region_init_iommu(&vtd_dev_as
->iommu
, OBJECT(s
),
1890 &s
->iommu_ops
, "intel_iommu", UINT64_MAX
);
1891 address_space_init(&vtd_dev_as
->as
,
1892 &vtd_dev_as
->iommu
, "intel_iommu");
1897 /* Do the initialization. It will also be called when reset, so pay
1898 * attention when adding new initialization stuff.
1900 static void vtd_init(IntelIOMMUState
*s
)
1902 memset(s
->csr
, 0, DMAR_REG_SIZE
);
1903 memset(s
->wmask
, 0, DMAR_REG_SIZE
);
1904 memset(s
->w1cmask
, 0, DMAR_REG_SIZE
);
1905 memset(s
->womask
, 0, DMAR_REG_SIZE
);
1907 s
->iommu_ops
.translate
= vtd_iommu_translate
;
1909 s
->root_extended
= false;
1910 s
->dmar_enabled
= false;
1915 s
->qi_enabled
= false;
1916 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
1917 s
->next_frcd_reg
= 0;
1918 s
->cap
= VTD_CAP_FRO
| VTD_CAP_NFR
| VTD_CAP_ND
| VTD_CAP_MGAW
|
1919 VTD_CAP_SAGAW
| VTD_CAP_MAMV
| VTD_CAP_PSI
;
1920 s
->ecap
= VTD_ECAP_QI
| VTD_ECAP_IRO
;
1922 vtd_reset_context_cache(s
);
1925 /* Define registers with default values and bit semantics */
1926 vtd_define_long(s
, DMAR_VER_REG
, 0x10UL
, 0, 0);
1927 vtd_define_quad(s
, DMAR_CAP_REG
, s
->cap
, 0, 0);
1928 vtd_define_quad(s
, DMAR_ECAP_REG
, s
->ecap
, 0, 0);
1929 vtd_define_long(s
, DMAR_GCMD_REG
, 0, 0xff800000UL
, 0);
1930 vtd_define_long_wo(s
, DMAR_GCMD_REG
, 0xff800000UL
);
1931 vtd_define_long(s
, DMAR_GSTS_REG
, 0, 0, 0);
1932 vtd_define_quad(s
, DMAR_RTADDR_REG
, 0, 0xfffffffffffff000ULL
, 0);
1933 vtd_define_quad(s
, DMAR_CCMD_REG
, 0, 0xe0000003ffffffffULL
, 0);
1934 vtd_define_quad_wo(s
, DMAR_CCMD_REG
, 0x3ffff0000ULL
);
1936 /* Advanced Fault Logging not supported */
1937 vtd_define_long(s
, DMAR_FSTS_REG
, 0, 0, 0x11UL
);
1938 vtd_define_long(s
, DMAR_FECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
1939 vtd_define_long(s
, DMAR_FEDATA_REG
, 0, 0x0000ffffUL
, 0);
1940 vtd_define_long(s
, DMAR_FEADDR_REG
, 0, 0xfffffffcUL
, 0);
1942 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1943 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1945 vtd_define_long(s
, DMAR_FEUADDR_REG
, 0, 0, 0);
1947 /* Treated as RO for implementations that PLMR and PHMR fields reported
1948 * as Clear in the CAP_REG.
1949 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1951 vtd_define_long(s
, DMAR_PMEN_REG
, 0, 0, 0);
1953 vtd_define_quad(s
, DMAR_IQH_REG
, 0, 0, 0);
1954 vtd_define_quad(s
, DMAR_IQT_REG
, 0, 0x7fff0ULL
, 0);
1955 vtd_define_quad(s
, DMAR_IQA_REG
, 0, 0xfffffffffffff007ULL
, 0);
1956 vtd_define_long(s
, DMAR_ICS_REG
, 0, 0, 0x1UL
);
1957 vtd_define_long(s
, DMAR_IECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
1958 vtd_define_long(s
, DMAR_IEDATA_REG
, 0, 0xffffffffUL
, 0);
1959 vtd_define_long(s
, DMAR_IEADDR_REG
, 0, 0xfffffffcUL
, 0);
1960 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1961 vtd_define_long(s
, DMAR_IEUADDR_REG
, 0, 0, 0);
1963 /* IOTLB registers */
1964 vtd_define_quad(s
, DMAR_IOTLB_REG
, 0, 0Xb003ffff00000000ULL
, 0);
1965 vtd_define_quad(s
, DMAR_IVA_REG
, 0, 0xfffffffffffff07fULL
, 0);
1966 vtd_define_quad_wo(s
, DMAR_IVA_REG
, 0xfffffffffffff07fULL
);
1968 /* Fault Recording Registers, 128-bit */
1969 vtd_define_quad(s
, DMAR_FRCD_REG_0_0
, 0, 0, 0);
1970 vtd_define_quad(s
, DMAR_FRCD_REG_0_2
, 0, 0, 0x8000000000000000ULL
);
1973 /* Should not reset address_spaces when reset because devices will still use
1974 * the address space they got at first (won't ask the bus again).
1976 static void vtd_reset(DeviceState
*dev
)
1978 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
1980 VTD_DPRINTF(GENERAL
, "");
1984 static void vtd_realize(DeviceState
*dev
, Error
**errp
)
1986 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
1988 VTD_DPRINTF(GENERAL
, "");
1989 memset(s
->vtd_as_by_bus_num
, 0, sizeof(s
->vtd_as_by_bus_num
));
1990 memory_region_init_io(&s
->csrmem
, OBJECT(s
), &vtd_mem_ops
, s
,
1991 "intel_iommu", DMAR_REG_SIZE
);
1992 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->csrmem
);
1993 /* No corresponding destroy */
1994 s
->iotlb
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
1996 s
->vtd_as_by_busptr
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
2001 static void vtd_class_init(ObjectClass
*klass
, void *data
)
2003 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2005 dc
->reset
= vtd_reset
;
2006 dc
->realize
= vtd_realize
;
2007 dc
->vmsd
= &vtd_vmstate
;
2008 dc
->props
= vtd_properties
;
2011 static const TypeInfo vtd_info
= {
2012 .name
= TYPE_INTEL_IOMMU_DEVICE
,
2013 .parent
= TYPE_SYS_BUS_DEVICE
,
2014 .instance_size
= sizeof(IntelIOMMUState
),
2015 .class_init
= vtd_class_init
,
2018 static void vtd_register_types(void)
2020 VTD_DPRINTF(GENERAL
, "");
2021 type_register_static(&vtd_info
);
2024 type_init(vtd_register_types
)