intel_iommu: refine iotlb hash calculation
[qemu/kevin.git] / semihosting / arm-compat-semi.c
blob564fe17f75c3f9bedbc7f905c58a0f38fbf63f21
1 /*
2 * Semihosting support for systems modeled on the Arm "Angel"
3 * semihosting syscalls design. This includes Arm and RISC-V processors
5 * Copyright (c) 2005, 2007 CodeSourcery.
6 * Copyright (c) 2019 Linaro
7 * Written by Paul Brook.
9 * Copyright © 2020 by Keith Packard <keithp@keithp.com>
10 * Adapted for systems other than ARM, including RISC-V, by Keith Packard
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <http://www.gnu.org/licenses/>.
25 * ARM Semihosting is documented in:
26 * Semihosting for AArch32 and AArch64 Release 2.0
27 * https://github.com/ARM-software/abi-aa/blob/main/semihosting/semihosting.rst
29 * RISC-V Semihosting is documented in:
30 * RISC-V Semihosting
31 * https://github.com/riscv/riscv-semihosting-spec/blob/main/riscv-semihosting-spec.adoc
34 #include "qemu/osdep.h"
35 #include "qemu/timer.h"
36 #include "exec/gdbstub.h"
37 #include "gdbstub/syscalls.h"
38 #include "semihosting/semihost.h"
39 #include "semihosting/console.h"
40 #include "semihosting/common-semi.h"
41 #include "semihosting/guestfd.h"
42 #include "semihosting/syscalls.h"
44 #ifdef CONFIG_USER_ONLY
45 #include "qemu.h"
47 #define COMMON_SEMI_HEAP_SIZE (128 * 1024 * 1024)
48 #else
49 #include "qemu/cutils.h"
50 #include "hw/loader.h"
51 #include "hw/boards.h"
52 #endif
54 #define TARGET_SYS_OPEN 0x01
55 #define TARGET_SYS_CLOSE 0x02
56 #define TARGET_SYS_WRITEC 0x03
57 #define TARGET_SYS_WRITE0 0x04
58 #define TARGET_SYS_WRITE 0x05
59 #define TARGET_SYS_READ 0x06
60 #define TARGET_SYS_READC 0x07
61 #define TARGET_SYS_ISERROR 0x08
62 #define TARGET_SYS_ISTTY 0x09
63 #define TARGET_SYS_SEEK 0x0a
64 #define TARGET_SYS_FLEN 0x0c
65 #define TARGET_SYS_TMPNAM 0x0d
66 #define TARGET_SYS_REMOVE 0x0e
67 #define TARGET_SYS_RENAME 0x0f
68 #define TARGET_SYS_CLOCK 0x10
69 #define TARGET_SYS_TIME 0x11
70 #define TARGET_SYS_SYSTEM 0x12
71 #define TARGET_SYS_ERRNO 0x13
72 #define TARGET_SYS_GET_CMDLINE 0x15
73 #define TARGET_SYS_HEAPINFO 0x16
74 #define TARGET_SYS_EXIT 0x18
75 #define TARGET_SYS_SYNCCACHE 0x19
76 #define TARGET_SYS_EXIT_EXTENDED 0x20
77 #define TARGET_SYS_ELAPSED 0x30
78 #define TARGET_SYS_TICKFREQ 0x31
80 /* ADP_Stopped_ApplicationExit is used for exit(0),
81 * anything else is implemented as exit(1) */
82 #define ADP_Stopped_ApplicationExit (0x20026)
84 #ifndef O_BINARY
85 #define O_BINARY 0
86 #endif
88 static int gdb_open_modeflags[12] = {
89 GDB_O_RDONLY,
90 GDB_O_RDONLY,
91 GDB_O_RDWR,
92 GDB_O_RDWR,
93 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
94 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
95 GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
96 GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
97 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
98 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
99 GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
100 GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
103 #ifndef CONFIG_USER_ONLY
106 * common_semi_find_bases: find information about ram and heap base
108 * This function attempts to provide meaningful numbers for RAM and
109 * HEAP base addresses. The rambase is simply the lowest addressable
110 * RAM position. For the heapbase we ask the loader to scan the
111 * address space and the largest available gap by querying the "ROM"
112 * regions.
114 * Returns: a structure with the numbers we need.
117 typedef struct LayoutInfo {
118 target_ulong rambase;
119 size_t ramsize;
120 hwaddr heapbase;
121 hwaddr heaplimit;
122 } LayoutInfo;
124 static bool find_ram_cb(Int128 start, Int128 len, const MemoryRegion *mr,
125 hwaddr offset_in_region, void *opaque)
127 LayoutInfo *info = (LayoutInfo *) opaque;
128 uint64_t size = int128_get64(len);
130 if (!mr->ram || mr->readonly) {
131 return false;
134 if (size > info->ramsize) {
135 info->rambase = int128_get64(start);
136 info->ramsize = size;
139 /* search exhaustively for largest RAM */
140 return false;
143 static LayoutInfo common_semi_find_bases(CPUState *cs)
145 FlatView *fv;
146 LayoutInfo info = { 0, 0, 0, 0 };
148 RCU_READ_LOCK_GUARD();
150 fv = address_space_to_flatview(cs->as);
151 flatview_for_each_range(fv, find_ram_cb, &info);
154 * If we have found the RAM lets iterate through the ROM blobs to
155 * work out the best place for the remainder of RAM and split it
156 * equally between stack and heap.
158 if (info.rambase || info.ramsize > 0) {
159 RomGap gap = rom_find_largest_gap_between(info.rambase, info.ramsize);
160 info.heapbase = gap.base;
161 info.heaplimit = gap.base + gap.size;
164 return info;
167 #endif
169 #include "common-semi-target.h"
172 * Read the input value from the argument block; fail the semihosting
173 * call if the memory read fails. Eventually we could use a generic
174 * CPUState helper function here.
175 * Note that GET_ARG() handles memory access errors by jumping to
176 * do_fault, so must be used as the first thing done in handling a
177 * semihosting call, to avoid accidentally leaking allocated resources.
178 * SET_ARG(), since it unavoidably happens late, instead returns an
179 * error indication (0 on success, non-0 for error) which the caller
180 * should check.
183 #define GET_ARG(n) do { \
184 if (is_64bit_semihosting(env)) { \
185 if (get_user_u64(arg ## n, args + (n) * 8)) { \
186 goto do_fault; \
188 } else { \
189 if (get_user_u32(arg ## n, args + (n) * 4)) { \
190 goto do_fault; \
193 } while (0)
195 #define SET_ARG(n, val) \
196 (is_64bit_semihosting(env) ? \
197 put_user_u64(val, args + (n) * 8) : \
198 put_user_u32(val, args + (n) * 4))
202 * The semihosting API has no concept of its errno being thread-safe,
203 * as the API design predates SMP CPUs and was intended as a simple
204 * real-hardware set of debug functionality. For QEMU, we make the
205 * errno be per-thread in linux-user mode; in softmmu it is a simple
206 * global, and we assume that the guest takes care of avoiding any races.
208 #ifndef CONFIG_USER_ONLY
209 static target_ulong syscall_err;
211 #include "semihosting/softmmu-uaccess.h"
212 #endif
214 static inline uint32_t get_swi_errno(CPUState *cs)
216 #ifdef CONFIG_USER_ONLY
217 TaskState *ts = cs->opaque;
219 return ts->swi_errno;
220 #else
221 return syscall_err;
222 #endif
225 static void common_semi_cb(CPUState *cs, uint64_t ret, int err)
227 if (err) {
228 #ifdef CONFIG_USER_ONLY
229 TaskState *ts = cs->opaque;
230 ts->swi_errno = err;
231 #else
232 syscall_err = err;
233 #endif
235 common_semi_set_ret(cs, ret);
239 * Use 0xdeadbeef as the return value when there isn't a defined
240 * return value for the call.
242 static void common_semi_dead_cb(CPUState *cs, uint64_t ret, int err)
244 common_semi_set_ret(cs, 0xdeadbeef);
248 * SYS_READ and SYS_WRITE always return the number of bytes not read/written.
249 * There is no error condition, other than returning the original length.
251 static void common_semi_rw_cb(CPUState *cs, uint64_t ret, int err)
253 /* Recover the original length from the third argument. */
254 CPUArchState *env G_GNUC_UNUSED = cs->env_ptr;
255 target_ulong args = common_semi_arg(cs, 1);
256 target_ulong arg2;
257 GET_ARG(2);
259 if (err) {
260 do_fault:
261 ret = 0; /* error: no bytes transmitted */
263 common_semi_set_ret(cs, arg2 - ret);
267 * Convert from Posix ret+errno to Arm SYS_ISTTY return values.
268 * With gdbstub, err is only ever set for protocol errors to EIO.
270 static void common_semi_istty_cb(CPUState *cs, uint64_t ret, int err)
272 if (err) {
273 ret = (err == ENOTTY ? 0 : -1);
275 common_semi_cb(cs, ret, err);
279 * SYS_SEEK returns 0 on success, not the resulting offset.
281 static void common_semi_seek_cb(CPUState *cs, uint64_t ret, int err)
283 if (!err) {
284 ret = 0;
286 common_semi_cb(cs, ret, err);
290 * Return an address in target memory of 64 bytes where the remote
291 * gdb should write its stat struct. (The format of this structure
292 * is defined by GDB's remote protocol and is not target-specific.)
293 * We put this on the guest's stack just below SP.
295 static target_ulong common_semi_flen_buf(CPUState *cs)
297 target_ulong sp = common_semi_stack_bottom(cs);
298 return sp - 64;
301 static void
302 common_semi_flen_fstat_cb(CPUState *cs, uint64_t ret, int err)
304 if (!err) {
305 /* The size is always stored in big-endian order, extract the value. */
306 uint64_t size;
307 if (cpu_memory_rw_debug(cs, common_semi_flen_buf(cs) +
308 offsetof(struct gdb_stat, gdb_st_size),
309 &size, 8, 0)) {
310 ret = -1, err = EFAULT;
311 } else {
312 size = be64_to_cpu(size);
313 if (ret != size) {
314 ret = -1, err = EOVERFLOW;
318 common_semi_cb(cs, ret, err);
321 static void
322 common_semi_readc_cb(CPUState *cs, uint64_t ret, int err)
324 if (!err) {
325 CPUArchState *env G_GNUC_UNUSED = cs->env_ptr;
326 uint8_t ch;
328 if (get_user_u8(ch, common_semi_stack_bottom(cs) - 1)) {
329 ret = -1, err = EFAULT;
330 } else {
331 ret = ch;
334 common_semi_cb(cs, ret, err);
337 #define SHFB_MAGIC_0 0x53
338 #define SHFB_MAGIC_1 0x48
339 #define SHFB_MAGIC_2 0x46
340 #define SHFB_MAGIC_3 0x42
342 /* Feature bits reportable in feature byte 0 */
343 #define SH_EXT_EXIT_EXTENDED (1 << 0)
344 #define SH_EXT_STDOUT_STDERR (1 << 1)
346 static const uint8_t featurefile_data[] = {
347 SHFB_MAGIC_0,
348 SHFB_MAGIC_1,
349 SHFB_MAGIC_2,
350 SHFB_MAGIC_3,
351 SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */
355 * Do a semihosting call.
357 * The specification always says that the "return register" either
358 * returns a specific value or is corrupted, so we don't need to
359 * report to our caller whether we are returning a value or trying to
360 * leave the register unchanged.
362 void do_common_semihosting(CPUState *cs)
364 CPUArchState *env = cs->env_ptr;
365 target_ulong args;
366 target_ulong arg0, arg1, arg2, arg3;
367 target_ulong ul_ret;
368 char * s;
369 int nr;
370 uint32_t ret;
371 int64_t elapsed;
373 nr = common_semi_arg(cs, 0) & 0xffffffffU;
374 args = common_semi_arg(cs, 1);
376 switch (nr) {
377 case TARGET_SYS_OPEN:
379 int ret, err = 0;
380 int hostfd;
382 GET_ARG(0);
383 GET_ARG(1);
384 GET_ARG(2);
385 s = lock_user_string(arg0);
386 if (!s) {
387 goto do_fault;
389 if (arg1 >= 12) {
390 unlock_user(s, arg0, 0);
391 common_semi_cb(cs, -1, EINVAL);
392 break;
395 if (strcmp(s, ":tt") == 0) {
397 * We implement SH_EXT_STDOUT_STDERR, so:
398 * open for read == stdin
399 * open for write == stdout
400 * open for append == stderr
402 if (arg1 < 4) {
403 hostfd = STDIN_FILENO;
404 } else if (arg1 < 8) {
405 hostfd = STDOUT_FILENO;
406 } else {
407 hostfd = STDERR_FILENO;
409 ret = alloc_guestfd();
410 associate_guestfd(ret, hostfd);
411 } else if (strcmp(s, ":semihosting-features") == 0) {
412 /* We must fail opens for modes other than 0 ('r') or 1 ('rb') */
413 if (arg1 != 0 && arg1 != 1) {
414 ret = -1;
415 err = EACCES;
416 } else {
417 ret = alloc_guestfd();
418 staticfile_guestfd(ret, featurefile_data,
419 sizeof(featurefile_data));
421 } else {
422 unlock_user(s, arg0, 0);
423 semihost_sys_open(cs, common_semi_cb, arg0, arg2 + 1,
424 gdb_open_modeflags[arg1], 0644);
425 break;
427 unlock_user(s, arg0, 0);
428 common_semi_cb(cs, ret, err);
429 break;
432 case TARGET_SYS_CLOSE:
433 GET_ARG(0);
434 semihost_sys_close(cs, common_semi_cb, arg0);
435 break;
437 case TARGET_SYS_WRITEC:
439 * FIXME: the byte to be written is in a target_ulong slot,
440 * which means this is wrong for a big-endian guest.
442 semihost_sys_write_gf(cs, common_semi_dead_cb,
443 &console_out_gf, args, 1);
444 break;
446 case TARGET_SYS_WRITE0:
448 ssize_t len = target_strlen(args);
449 if (len < 0) {
450 common_semi_dead_cb(cs, -1, EFAULT);
451 } else {
452 semihost_sys_write_gf(cs, common_semi_dead_cb,
453 &console_out_gf, args, len);
456 break;
458 case TARGET_SYS_WRITE:
459 GET_ARG(0);
460 GET_ARG(1);
461 GET_ARG(2);
462 semihost_sys_write(cs, common_semi_rw_cb, arg0, arg1, arg2);
463 break;
465 case TARGET_SYS_READ:
466 GET_ARG(0);
467 GET_ARG(1);
468 GET_ARG(2);
469 semihost_sys_read(cs, common_semi_rw_cb, arg0, arg1, arg2);
470 break;
472 case TARGET_SYS_READC:
473 semihost_sys_read_gf(cs, common_semi_readc_cb, &console_in_gf,
474 common_semi_stack_bottom(cs) - 1, 1);
475 break;
477 case TARGET_SYS_ISERROR:
478 GET_ARG(0);
479 common_semi_set_ret(cs, (target_long)arg0 < 0);
480 break;
482 case TARGET_SYS_ISTTY:
483 GET_ARG(0);
484 semihost_sys_isatty(cs, common_semi_istty_cb, arg0);
485 break;
487 case TARGET_SYS_SEEK:
488 GET_ARG(0);
489 GET_ARG(1);
490 semihost_sys_lseek(cs, common_semi_seek_cb, arg0, arg1, GDB_SEEK_SET);
491 break;
493 case TARGET_SYS_FLEN:
494 GET_ARG(0);
495 semihost_sys_flen(cs, common_semi_flen_fstat_cb, common_semi_cb,
496 arg0, common_semi_flen_buf(cs));
497 break;
499 case TARGET_SYS_TMPNAM:
501 int len;
502 char *p;
504 GET_ARG(0);
505 GET_ARG(1);
506 GET_ARG(2);
507 len = asprintf(&s, "%s/qemu-%x%02x", g_get_tmp_dir(),
508 getpid(), (int)arg1 & 0xff);
509 if (len < 0) {
510 common_semi_set_ret(cs, -1);
511 break;
514 /* Allow for trailing NUL */
515 len++;
516 /* Make sure there's enough space in the buffer */
517 if (len > arg2) {
518 free(s);
519 common_semi_set_ret(cs, -1);
520 break;
522 p = lock_user(VERIFY_WRITE, arg0, len, 0);
523 if (!p) {
524 free(s);
525 goto do_fault;
527 memcpy(p, s, len);
528 unlock_user(p, arg0, len);
529 free(s);
530 common_semi_set_ret(cs, 0);
531 break;
534 case TARGET_SYS_REMOVE:
535 GET_ARG(0);
536 GET_ARG(1);
537 semihost_sys_remove(cs, common_semi_cb, arg0, arg1 + 1);
538 break;
540 case TARGET_SYS_RENAME:
541 GET_ARG(0);
542 GET_ARG(1);
543 GET_ARG(2);
544 GET_ARG(3);
545 semihost_sys_rename(cs, common_semi_cb, arg0, arg1 + 1, arg2, arg3 + 1);
546 break;
548 case TARGET_SYS_CLOCK:
549 common_semi_set_ret(cs, clock() / (CLOCKS_PER_SEC / 100));
550 break;
552 case TARGET_SYS_TIME:
553 ul_ret = time(NULL);
554 common_semi_cb(cs, ul_ret, ul_ret == -1 ? errno : 0);
555 break;
557 case TARGET_SYS_SYSTEM:
558 GET_ARG(0);
559 GET_ARG(1);
560 semihost_sys_system(cs, common_semi_cb, arg0, arg1 + 1);
561 break;
563 case TARGET_SYS_ERRNO:
564 common_semi_set_ret(cs, get_swi_errno(cs));
565 break;
567 case TARGET_SYS_GET_CMDLINE:
569 /* Build a command-line from the original argv.
571 * The inputs are:
572 * * arg0, pointer to a buffer of at least the size
573 * specified in arg1.
574 * * arg1, size of the buffer pointed to by arg0 in
575 * bytes.
577 * The outputs are:
578 * * arg0, pointer to null-terminated string of the
579 * command line.
580 * * arg1, length of the string pointed to by arg0.
583 char *output_buffer;
584 size_t input_size;
585 size_t output_size;
586 int status = 0;
587 #if !defined(CONFIG_USER_ONLY)
588 const char *cmdline;
589 #else
590 TaskState *ts = cs->opaque;
591 #endif
592 GET_ARG(0);
593 GET_ARG(1);
594 input_size = arg1;
595 /* Compute the size of the output string. */
596 #if !defined(CONFIG_USER_ONLY)
597 cmdline = semihosting_get_cmdline();
598 if (cmdline == NULL) {
599 cmdline = ""; /* Default to an empty line. */
601 output_size = strlen(cmdline) + 1; /* Count terminating 0. */
602 #else
603 unsigned int i;
605 output_size = ts->info->env_strings - ts->info->arg_strings;
606 if (!output_size) {
608 * We special-case the "empty command line" case (argc==0).
609 * Just provide the terminating 0.
611 output_size = 1;
613 #endif
615 if (output_size > input_size) {
616 /* Not enough space to store command-line arguments. */
617 common_semi_cb(cs, -1, E2BIG);
618 break;
621 /* Adjust the command-line length. */
622 if (SET_ARG(1, output_size - 1)) {
623 /* Couldn't write back to argument block */
624 goto do_fault;
627 /* Lock the buffer on the ARM side. */
628 output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0);
629 if (!output_buffer) {
630 goto do_fault;
633 /* Copy the command-line arguments. */
634 #if !defined(CONFIG_USER_ONLY)
635 pstrcpy(output_buffer, output_size, cmdline);
636 #else
637 if (output_size == 1) {
638 /* Empty command-line. */
639 output_buffer[0] = '\0';
640 goto out;
643 if (copy_from_user(output_buffer, ts->info->arg_strings,
644 output_size)) {
645 unlock_user(output_buffer, arg0, 0);
646 goto do_fault;
649 /* Separate arguments by white spaces. */
650 for (i = 0; i < output_size - 1; i++) {
651 if (output_buffer[i] == 0) {
652 output_buffer[i] = ' ';
655 out:
656 #endif
657 /* Unlock the buffer on the ARM side. */
658 unlock_user(output_buffer, arg0, output_size);
659 common_semi_cb(cs, status, 0);
661 break;
663 case TARGET_SYS_HEAPINFO:
665 target_ulong retvals[4];
666 int i;
667 #ifdef CONFIG_USER_ONLY
668 TaskState *ts = cs->opaque;
669 target_ulong limit;
670 #else
671 LayoutInfo info = common_semi_find_bases(cs);
672 #endif
674 GET_ARG(0);
676 #ifdef CONFIG_USER_ONLY
678 * Some C libraries assume the heap immediately follows .bss, so
679 * allocate it using sbrk.
681 if (!ts->heap_limit) {
682 abi_ulong ret;
684 ts->heap_base = do_brk(0);
685 limit = ts->heap_base + COMMON_SEMI_HEAP_SIZE;
686 /* Try a big heap, and reduce the size if that fails. */
687 for (;;) {
688 ret = do_brk(limit);
689 if (ret >= limit) {
690 break;
692 limit = (ts->heap_base >> 1) + (limit >> 1);
694 ts->heap_limit = limit;
697 retvals[0] = ts->heap_base;
698 retvals[1] = ts->heap_limit;
699 retvals[2] = ts->stack_base;
700 retvals[3] = 0; /* Stack limit. */
701 #else
702 retvals[0] = info.heapbase; /* Heap Base */
703 retvals[1] = info.heaplimit; /* Heap Limit */
704 retvals[2] = info.heaplimit; /* Stack base */
705 retvals[3] = info.heapbase; /* Stack limit. */
706 #endif
708 for (i = 0; i < ARRAY_SIZE(retvals); i++) {
709 bool fail;
711 if (is_64bit_semihosting(env)) {
712 fail = put_user_u64(retvals[i], arg0 + i * 8);
713 } else {
714 fail = put_user_u32(retvals[i], arg0 + i * 4);
717 if (fail) {
718 /* Couldn't write back to argument block */
719 goto do_fault;
722 common_semi_set_ret(cs, 0);
724 break;
726 case TARGET_SYS_EXIT:
727 case TARGET_SYS_EXIT_EXTENDED:
728 if (common_semi_sys_exit_extended(cs, nr)) {
730 * The A64 version of SYS_EXIT takes a parameter block,
731 * so the application-exit type can return a subcode which
732 * is the exit status code from the application.
733 * SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function
734 * which allows A32/T32 guests to also provide a status code.
736 GET_ARG(0);
737 GET_ARG(1);
739 if (arg0 == ADP_Stopped_ApplicationExit) {
740 ret = arg1;
741 } else {
742 ret = 1;
744 } else {
746 * The A32/T32 version of SYS_EXIT specifies only
747 * Stopped_ApplicationExit as normal exit, but does not
748 * allow the guest to specify the exit status code.
749 * Everything else is considered an error.
751 ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1;
753 gdb_exit(ret);
754 exit(ret);
756 case TARGET_SYS_ELAPSED:
757 elapsed = get_clock() - clock_start;
758 if (sizeof(target_ulong) == 8) {
759 if (SET_ARG(0, elapsed)) {
760 goto do_fault;
762 } else {
763 if (SET_ARG(0, (uint32_t) elapsed) ||
764 SET_ARG(1, (uint32_t) (elapsed >> 32))) {
765 goto do_fault;
768 common_semi_set_ret(cs, 0);
769 break;
771 case TARGET_SYS_TICKFREQ:
772 /* qemu always uses nsec */
773 common_semi_set_ret(cs, 1000000000);
774 break;
776 case TARGET_SYS_SYNCCACHE:
778 * Clean the D-cache and invalidate the I-cache for the specified
779 * virtual address range. This is a nop for us since we don't
780 * implement caches. This is only present on A64.
782 if (common_semi_has_synccache(env)) {
783 common_semi_set_ret(cs, 0);
784 break;
786 /* fall through */
787 default:
788 fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
789 cpu_dump_state(cs, stderr, 0);
790 abort();
792 do_fault:
793 common_semi_cb(cs, -1, EFAULT);
794 break;