4 * Software developer's manual:
5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2008 Qumranet
9 * Based on work done by:
10 * Copyright (c) 2007 Dan Aloni
11 * Copyright (c) 2004 Antony T Curtis
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #include "qemu/osdep.h"
29 #include "hw/net/mii.h"
30 #include "hw/pci/pci_device.h"
31 #include "hw/qdev-properties.h"
32 #include "migration/vmstate.h"
35 #include "net/checksum.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/dma.h"
39 #include "qemu/module.h"
40 #include "qemu/range.h"
42 #include "e1000_common.h"
43 #include "e1000x_common.h"
45 #include "qom/object.h"
47 /* #define E1000_DEBUG */
51 DEBUG_GENERAL
, DEBUG_IO
, DEBUG_MMIO
, DEBUG_INTERRUPT
,
52 DEBUG_RX
, DEBUG_TX
, DEBUG_MDIC
, DEBUG_EEPROM
,
53 DEBUG_UNKNOWN
, DEBUG_TXSUM
, DEBUG_TXERR
, DEBUG_RXERR
,
54 DEBUG_RXFILTER
, DEBUG_PHY
, DEBUG_NOTYET
,
56 #define DBGBIT(x) (1<<DEBUG_##x)
57 static int debugflags
= DBGBIT(TXERR
) | DBGBIT(GENERAL
);
59 #define DBGOUT(what, fmt, ...) do { \
60 if (debugflags & DBGBIT(what)) \
61 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
64 #define DBGOUT(what, fmt, ...) do {} while (0)
67 #define IOPORT_SIZE 0x40
68 #define PNPMMIO_SIZE 0x20000
70 #define MAXIMUM_ETHERNET_HDR_LEN (ETH_HLEN + 4)
74 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8
75 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
76 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6
80 struct E1000State_st
{
90 uint32_t mac_reg
[0x8000];
91 uint16_t phy_reg
[0x20];
92 uint16_t eeprom_data
[64];
95 uint32_t rxbuf_min_shift
;
97 unsigned char header
[256];
98 unsigned char vlan_header
[4];
99 /* Fields vlan and data must not be reordered or separated. */
100 unsigned char vlan
[4];
101 unsigned char data
[0x10000];
103 unsigned char vlan_needed
;
104 unsigned char sum_needed
;
106 e1000x_txd_props props
;
107 e1000x_txd_props tso_props
;
113 uint32_t val_in
; /* shifted in from guest driver */
120 QEMUTimer
*autoneg_timer
;
122 QEMUTimer
*mit_timer
; /* Mitigation timer. */
123 bool mit_timer_on
; /* Mitigation timer is running. */
124 bool mit_irq_level
; /* Tracks interrupt pin level. */
125 uint32_t mit_ide
; /* Tracks E1000_TXD_CMD_IDE bit. */
127 QEMUTimer
*flush_queue_timer
;
129 /* Compatibility flags for migration to/from qemu 1.3.0 and older */
130 #define E1000_FLAG_AUTONEG_BIT 0
131 #define E1000_FLAG_MIT_BIT 1
132 #define E1000_FLAG_MAC_BIT 2
133 #define E1000_FLAG_TSO_BIT 3
134 #define E1000_FLAG_VET_BIT 4
135 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
136 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
137 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
138 #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT)
139 #define E1000_FLAG_VET (1 << E1000_FLAG_VET_BIT)
141 uint32_t compat_flags
;
142 bool received_tx_tso
;
143 bool use_tso_for_migration
;
144 e1000x_txd_props mig_props
;
146 typedef struct E1000State_st E1000State
;
148 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x)
150 struct E1000BaseClass
{
151 PCIDeviceClass parent_class
;
154 typedef struct E1000BaseClass E1000BaseClass
;
156 #define TYPE_E1000_BASE "e1000-base"
158 DECLARE_OBJ_CHECKERS(E1000State
, E1000BaseClass
,
159 E1000
, TYPE_E1000_BASE
)
163 e1000_link_up(E1000State
*s
)
165 e1000x_update_regs_on_link_up(s
->mac_reg
, s
->phy_reg
);
167 /* E1000_STATUS_LU is tested by e1000_can_receive() */
168 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
172 e1000_autoneg_done(E1000State
*s
)
174 e1000x_update_regs_on_autoneg_done(s
->mac_reg
, s
->phy_reg
);
176 /* E1000_STATUS_LU is tested by e1000_can_receive() */
177 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
181 have_autoneg(E1000State
*s
)
183 return chkflag(AUTONEG
) && (s
->phy_reg
[MII_BMCR
] & MII_BMCR_AUTOEN
);
187 set_phy_ctrl(E1000State
*s
, int index
, uint16_t val
)
189 /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
190 s
->phy_reg
[MII_BMCR
] = val
& ~(0x3f |
195 * QEMU 1.3 does not support link auto-negotiation emulation, so if we
196 * migrate during auto negotiation, after migration the link will be
199 if (have_autoneg(s
) && (val
& MII_BMCR_ANRESTART
)) {
200 e1000x_restart_autoneg(s
->mac_reg
, s
->phy_reg
, s
->autoneg_timer
);
204 static void (*phyreg_writeops
[])(E1000State
*, int, uint16_t) = {
205 [MII_BMCR
] = set_phy_ctrl
,
208 enum { NPHYWRITEOPS
= ARRAY_SIZE(phyreg_writeops
) };
210 enum { PHY_R
= 1, PHY_W
= 2, PHY_RW
= PHY_R
| PHY_W
};
211 static const char phy_regcap
[0x20] = {
212 [MII_BMSR
] = PHY_R
, [M88E1000_EXT_PHY_SPEC_CTRL
] = PHY_RW
,
213 [MII_PHYID1
] = PHY_R
, [M88E1000_PHY_SPEC_CTRL
] = PHY_RW
,
214 [MII_BMCR
] = PHY_RW
, [MII_CTRL1000
] = PHY_RW
,
215 [MII_ANLPAR
] = PHY_R
, [MII_STAT1000
] = PHY_R
,
216 [MII_ANAR
] = PHY_RW
, [M88E1000_RX_ERR_CNTR
] = PHY_R
,
217 [MII_PHYID2
] = PHY_R
, [M88E1000_PHY_SPEC_STATUS
] = PHY_R
,
221 /* MII_PHYID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
222 static const uint16_t phy_reg_init
[] = {
223 [MII_BMCR
] = MII_BMCR_SPEED1000
|
227 [MII_BMSR
] = MII_BMSR_EXTCAP
|
228 MII_BMSR_LINK_ST
| /* link initially up */
230 /* MII_BMSR_AN_COMP: initially NOT completed */
238 [MII_PHYID1
] = 0x141,
239 /* [MII_PHYID2] configured per DevId, from e1000_reset() */
240 [MII_ANAR
] = MII_ANAR_CSMACD
| MII_ANAR_10
|
241 MII_ANAR_10FD
| MII_ANAR_TX
|
242 MII_ANAR_TXFD
| MII_ANAR_PAUSE
|
244 [MII_ANLPAR
] = MII_ANLPAR_10
| MII_ANLPAR_10FD
|
245 MII_ANLPAR_TX
| MII_ANLPAR_TXFD
,
246 [MII_CTRL1000
] = MII_CTRL1000_FULL
| MII_CTRL1000_PORT
|
248 [MII_STAT1000
] = MII_STAT1000_HALF
| MII_STAT1000_FULL
|
249 MII_STAT1000_ROK
| MII_STAT1000_LOK
,
250 [M88E1000_PHY_SPEC_CTRL
] = 0x360,
251 [M88E1000_PHY_SPEC_STATUS
] = 0xac00,
252 [M88E1000_EXT_PHY_SPEC_CTRL
] = 0x0d60,
255 static const uint32_t mac_reg_init
[] = {
258 [CTRL
] = E1000_CTRL_SWDPIN2
| E1000_CTRL_SWDPIN0
|
259 E1000_CTRL_SPD_1000
| E1000_CTRL_SLU
,
260 [STATUS
] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE
|
261 E1000_STATUS_ASDV
| E1000_STATUS_MTXCKOK
|
262 E1000_STATUS_SPEED_1000
| E1000_STATUS_FD
|
264 [MANC
] = E1000_MANC_EN_MNG2HOST
| E1000_MANC_RCV_TCO_EN
|
265 E1000_MANC_ARP_EN
| E1000_MANC_0298_EN
|
269 /* Helper function, *curr == 0 means the value is not set */
271 mit_update_delay(uint32_t *curr
, uint32_t value
)
273 if (value
&& (*curr
== 0 || value
< *curr
)) {
279 set_interrupt_cause(E1000State
*s
, int index
, uint32_t val
)
281 PCIDevice
*d
= PCI_DEVICE(s
);
282 uint32_t pending_ints
;
285 s
->mac_reg
[ICR
] = val
;
288 * Make sure ICR and ICS registers have the same value.
289 * The spec says that the ICS register is write-only. However in practice,
290 * on real hardware ICS is readable, and for reads it has the same value as
291 * ICR (except that ICS does not have the clear on read behaviour of ICR).
293 * The VxWorks PRO/1000 driver uses this behaviour.
295 s
->mac_reg
[ICS
] = val
;
297 pending_ints
= (s
->mac_reg
[IMS
] & s
->mac_reg
[ICR
]);
298 if (!s
->mit_irq_level
&& pending_ints
) {
300 * Here we detect a potential raising edge. We postpone raising the
301 * interrupt line if we are inside the mitigation delay window
302 * (s->mit_timer_on == 1).
303 * We provide a partial implementation of interrupt mitigation,
304 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
305 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable
306 * RADV; relative timers based on TIDV and RDTR are not implemented.
308 if (s
->mit_timer_on
) {
312 /* Compute the next mitigation delay according to pending
313 * interrupts and the current values of RADV (provided
314 * RDTR!=0), TADV and ITR.
315 * Then rearm the timer.
319 (pending_ints
& (E1000_ICR_TXQE
| E1000_ICR_TXDW
))) {
320 mit_update_delay(&mit_delay
, s
->mac_reg
[TADV
] * 4);
322 if (s
->mac_reg
[RDTR
] && (pending_ints
& E1000_ICS_RXT0
)) {
323 mit_update_delay(&mit_delay
, s
->mac_reg
[RADV
] * 4);
325 mit_update_delay(&mit_delay
, s
->mac_reg
[ITR
]);
328 * According to e1000 SPEC, the Ethernet controller guarantees
329 * a maximum observable interrupt rate of 7813 interrupts/sec.
330 * Thus if mit_delay < 500 then the delay should be set to the
331 * minimum delay possible which is 500.
333 mit_delay
= (mit_delay
< 500) ? 500 : mit_delay
;
336 timer_mod(s
->mit_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
342 s
->mit_irq_level
= (pending_ints
!= 0);
343 pci_set_irq(d
, s
->mit_irq_level
);
347 e1000_mit_timer(void *opaque
)
349 E1000State
*s
= opaque
;
352 /* Call set_interrupt_cause to update the irq level (if necessary). */
353 set_interrupt_cause(s
, 0, s
->mac_reg
[ICR
]);
357 set_ics(E1000State
*s
, int index
, uint32_t val
)
359 DBGOUT(INTERRUPT
, "set_ics %x, ICR %x, IMR %x\n", val
, s
->mac_reg
[ICR
],
361 set_interrupt_cause(s
, 0, val
| s
->mac_reg
[ICR
]);
365 e1000_autoneg_timer(void *opaque
)
367 E1000State
*s
= opaque
;
368 if (!qemu_get_queue(s
->nic
)->link_down
) {
369 e1000_autoneg_done(s
);
370 set_ics(s
, 0, E1000_ICS_LSC
); /* signal link status change to guest */
374 static bool e1000_vet_init_need(void *opaque
)
376 E1000State
*s
= opaque
;
381 static void e1000_reset_hold(Object
*obj
)
383 E1000State
*d
= E1000(obj
);
384 E1000BaseClass
*edc
= E1000_GET_CLASS(d
);
385 uint8_t *macaddr
= d
->conf
.macaddr
.a
;
387 timer_del(d
->autoneg_timer
);
388 timer_del(d
->mit_timer
);
389 timer_del(d
->flush_queue_timer
);
391 d
->mit_irq_level
= 0;
393 memset(d
->phy_reg
, 0, sizeof d
->phy_reg
);
394 memcpy(d
->phy_reg
, phy_reg_init
, sizeof phy_reg_init
);
395 d
->phy_reg
[MII_PHYID2
] = edc
->phy_id2
;
396 memset(d
->mac_reg
, 0, sizeof d
->mac_reg
);
397 memcpy(d
->mac_reg
, mac_reg_init
, sizeof mac_reg_init
);
398 d
->rxbuf_min_shift
= 1;
399 memset(&d
->tx
, 0, sizeof d
->tx
);
401 if (qemu_get_queue(d
->nic
)->link_down
) {
402 e1000x_update_regs_on_link_down(d
->mac_reg
, d
->phy_reg
);
405 e1000x_reset_mac_addr(d
->nic
, d
->mac_reg
, macaddr
);
407 if (e1000_vet_init_need(d
)) {
408 d
->mac_reg
[VET
] = ETH_P_VLAN
;
413 set_ctrl(E1000State
*s
, int index
, uint32_t val
)
415 /* RST is self clearing */
416 s
->mac_reg
[CTRL
] = val
& ~E1000_CTRL_RST
;
420 e1000_flush_queue_timer(void *opaque
)
422 E1000State
*s
= opaque
;
424 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
428 set_rx_control(E1000State
*s
, int index
, uint32_t val
)
430 s
->mac_reg
[RCTL
] = val
;
431 s
->rxbuf_size
= e1000x_rxbufsize(val
);
432 s
->rxbuf_min_shift
= ((val
/ E1000_RCTL_RDMTS_QUAT
) & 3) + 1;
433 DBGOUT(RX
, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s
->mac_reg
[RDT
],
435 timer_mod(s
->flush_queue_timer
,
436 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
) + 1000);
440 set_mdic(E1000State
*s
, int index
, uint32_t val
)
442 uint32_t data
= val
& E1000_MDIC_DATA_MASK
;
443 uint32_t addr
= ((val
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
445 if ((val
& E1000_MDIC_PHY_MASK
) >> E1000_MDIC_PHY_SHIFT
!= 1) // phy #
446 val
= s
->mac_reg
[MDIC
] | E1000_MDIC_ERROR
;
447 else if (val
& E1000_MDIC_OP_READ
) {
448 DBGOUT(MDIC
, "MDIC read reg 0x%x\n", addr
);
449 if (!(phy_regcap
[addr
] & PHY_R
)) {
450 DBGOUT(MDIC
, "MDIC read reg %x unhandled\n", addr
);
451 val
|= E1000_MDIC_ERROR
;
453 val
= (val
^ data
) | s
->phy_reg
[addr
];
454 } else if (val
& E1000_MDIC_OP_WRITE
) {
455 DBGOUT(MDIC
, "MDIC write reg 0x%x, value 0x%x\n", addr
, data
);
456 if (!(phy_regcap
[addr
] & PHY_W
)) {
457 DBGOUT(MDIC
, "MDIC write reg %x unhandled\n", addr
);
458 val
|= E1000_MDIC_ERROR
;
460 if (addr
< NPHYWRITEOPS
&& phyreg_writeops
[addr
]) {
461 phyreg_writeops
[addr
](s
, index
, data
);
463 s
->phy_reg
[addr
] = data
;
467 s
->mac_reg
[MDIC
] = val
| E1000_MDIC_READY
;
469 if (val
& E1000_MDIC_INT_EN
) {
470 set_ics(s
, 0, E1000_ICR_MDAC
);
475 get_eecd(E1000State
*s
, int index
)
477 uint32_t ret
= E1000_EECD_PRES
|E1000_EECD_GNT
| s
->eecd_state
.old_eecd
;
479 DBGOUT(EEPROM
, "reading eeprom bit %d (reading %d)\n",
480 s
->eecd_state
.bitnum_out
, s
->eecd_state
.reading
);
481 if (!s
->eecd_state
.reading
||
482 ((s
->eeprom_data
[(s
->eecd_state
.bitnum_out
>> 4) & 0x3f] >>
483 ((s
->eecd_state
.bitnum_out
& 0xf) ^ 0xf))) & 1)
484 ret
|= E1000_EECD_DO
;
489 set_eecd(E1000State
*s
, int index
, uint32_t val
)
491 uint32_t oldval
= s
->eecd_state
.old_eecd
;
493 s
->eecd_state
.old_eecd
= val
& (E1000_EECD_SK
| E1000_EECD_CS
|
494 E1000_EECD_DI
|E1000_EECD_FWE_MASK
|E1000_EECD_REQ
);
495 if (!(E1000_EECD_CS
& val
)) { /* CS inactive; nothing to do */
498 if (E1000_EECD_CS
& (val
^ oldval
)) { /* CS rise edge; reset state */
499 s
->eecd_state
.val_in
= 0;
500 s
->eecd_state
.bitnum_in
= 0;
501 s
->eecd_state
.bitnum_out
= 0;
502 s
->eecd_state
.reading
= 0;
504 if (!(E1000_EECD_SK
& (val
^ oldval
))) { /* no clock edge */
507 if (!(E1000_EECD_SK
& val
)) { /* falling edge */
508 s
->eecd_state
.bitnum_out
++;
511 s
->eecd_state
.val_in
<<= 1;
512 if (val
& E1000_EECD_DI
)
513 s
->eecd_state
.val_in
|= 1;
514 if (++s
->eecd_state
.bitnum_in
== 9 && !s
->eecd_state
.reading
) {
515 s
->eecd_state
.bitnum_out
= ((s
->eecd_state
.val_in
& 0x3f)<<4)-1;
516 s
->eecd_state
.reading
= (((s
->eecd_state
.val_in
>> 6) & 7) ==
517 EEPROM_READ_OPCODE_MICROWIRE
);
519 DBGOUT(EEPROM
, "eeprom bitnum in %d out %d, reading %d\n",
520 s
->eecd_state
.bitnum_in
, s
->eecd_state
.bitnum_out
,
521 s
->eecd_state
.reading
);
525 flash_eerd_read(E1000State
*s
, int x
)
527 unsigned int index
, r
= s
->mac_reg
[EERD
] & ~E1000_EEPROM_RW_REG_START
;
529 if ((s
->mac_reg
[EERD
] & E1000_EEPROM_RW_REG_START
) == 0)
530 return (s
->mac_reg
[EERD
]);
532 if ((index
= r
>> E1000_EEPROM_RW_ADDR_SHIFT
) > EEPROM_CHECKSUM_REG
)
533 return (E1000_EEPROM_RW_REG_DONE
| r
);
535 return ((s
->eeprom_data
[index
] << E1000_EEPROM_RW_REG_DATA
) |
536 E1000_EEPROM_RW_REG_DONE
| r
);
540 putsum(uint8_t *data
, uint32_t n
, uint32_t sloc
, uint32_t css
, uint32_t cse
)
547 sum
= net_checksum_add(n
-css
, data
+css
);
548 stw_be_p(data
+ sloc
, net_checksum_finish_nozero(sum
));
553 inc_tx_bcast_or_mcast_count(E1000State
*s
, const unsigned char *arr
)
555 if (is_broadcast_ether_addr(arr
)) {
556 e1000x_inc_reg_if_not_full(s
->mac_reg
, BPTC
);
557 } else if (is_multicast_ether_addr(arr
)) {
558 e1000x_inc_reg_if_not_full(s
->mac_reg
, MPTC
);
563 e1000_send_packet(E1000State
*s
, const uint8_t *buf
, int size
)
565 static const int PTCregs
[6] = { PTC64
, PTC127
, PTC255
, PTC511
,
568 NetClientState
*nc
= qemu_get_queue(s
->nic
);
569 if (s
->phy_reg
[MII_BMCR
] & MII_BMCR_LOOPBACK
) {
570 qemu_receive_packet(nc
, buf
, size
);
572 qemu_send_packet(nc
, buf
, size
);
574 inc_tx_bcast_or_mcast_count(s
, buf
);
575 e1000x_increase_size_stats(s
->mac_reg
, PTCregs
, size
+ 4);
579 xmit_seg(E1000State
*s
)
582 unsigned int frames
= s
->tx
.tso_frames
, css
, sofar
;
583 struct e1000_tx
*tp
= &s
->tx
;
584 struct e1000x_txd_props
*props
= tp
->cptse
? &tp
->tso_props
: &tp
->props
;
588 DBGOUT(TXSUM
, "frames %d size %d ipcss %d\n",
589 frames
, tp
->size
, css
);
590 if (props
->ip
) { /* IPv4 */
591 stw_be_p(tp
->data
+css
+2, tp
->size
- css
);
592 stw_be_p(tp
->data
+css
+4,
593 lduw_be_p(tp
->data
+ css
+ 4) + frames
);
595 stw_be_p(tp
->data
+css
+4, tp
->size
- css
);
598 len
= tp
->size
- css
;
599 DBGOUT(TXSUM
, "tcp %d tucss %d len %d\n", props
->tcp
, css
, len
);
601 sofar
= frames
* props
->mss
;
602 stl_be_p(tp
->data
+css
+4, ldl_be_p(tp
->data
+css
+4)+sofar
); /* seq */
603 if (props
->paylen
- sofar
> props
->mss
) {
604 tp
->data
[css
+ 13] &= ~9; /* PSH, FIN */
606 e1000x_inc_reg_if_not_full(s
->mac_reg
, TSCTC
);
609 stw_be_p(tp
->data
+css
+4, len
);
611 if (tp
->sum_needed
& E1000_TXD_POPTS_TXSM
) {
613 // add pseudo-header length before checksum calculation
614 void *sp
= tp
->data
+ props
->tucso
;
616 phsum
= lduw_be_p(sp
) + len
;
617 phsum
= (phsum
>> 16) + (phsum
& 0xffff);
623 if (tp
->sum_needed
& E1000_TXD_POPTS_TXSM
) {
624 putsum(tp
->data
, tp
->size
, props
->tucso
, props
->tucss
, props
->tucse
);
626 if (tp
->sum_needed
& E1000_TXD_POPTS_IXSM
) {
627 putsum(tp
->data
, tp
->size
, props
->ipcso
, props
->ipcss
, props
->ipcse
);
629 if (tp
->vlan_needed
) {
630 memmove(tp
->vlan
, tp
->data
, 4);
631 memmove(tp
->data
, tp
->data
+ 4, 8);
632 memcpy(tp
->data
+ 8, tp
->vlan_header
, 4);
633 e1000_send_packet(s
, tp
->vlan
, tp
->size
+ 4);
635 e1000_send_packet(s
, tp
->data
, tp
->size
);
638 e1000x_inc_reg_if_not_full(s
->mac_reg
, TPT
);
639 e1000x_grow_8reg_if_not_full(s
->mac_reg
, TOTL
, s
->tx
.size
+ 4);
640 s
->mac_reg
[GPTC
] = s
->mac_reg
[TPT
];
641 s
->mac_reg
[GOTCL
] = s
->mac_reg
[TOTL
];
642 s
->mac_reg
[GOTCH
] = s
->mac_reg
[TOTH
];
646 process_tx_desc(E1000State
*s
, struct e1000_tx_desc
*dp
)
648 PCIDevice
*d
= PCI_DEVICE(s
);
649 uint32_t txd_lower
= le32_to_cpu(dp
->lower
.data
);
650 uint32_t dtype
= txd_lower
& (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
);
651 unsigned int split_size
= txd_lower
& 0xffff, bytes
, sz
;
652 unsigned int msh
= 0xfffff;
654 struct e1000_context_desc
*xp
= (struct e1000_context_desc
*)dp
;
655 struct e1000_tx
*tp
= &s
->tx
;
657 s
->mit_ide
|= (txd_lower
& E1000_TXD_CMD_IDE
);
658 if (dtype
== E1000_TXD_CMD_DEXT
) { /* context descriptor */
659 if (le32_to_cpu(xp
->cmd_and_length
) & E1000_TXD_CMD_TSE
) {
660 e1000x_read_tx_ctx_descr(xp
, &tp
->tso_props
);
661 s
->use_tso_for_migration
= 1;
664 e1000x_read_tx_ctx_descr(xp
, &tp
->props
);
665 s
->use_tso_for_migration
= 0;
668 } else if (dtype
== (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
)) {
671 tp
->sum_needed
= le32_to_cpu(dp
->upper
.data
) >> 8;
673 tp
->cptse
= (txd_lower
& E1000_TXD_CMD_TSE
) ? 1 : 0;
679 if (e1000x_vlan_enabled(s
->mac_reg
) &&
680 e1000x_is_vlan_txd(txd_lower
) &&
681 (tp
->cptse
|| txd_lower
& E1000_TXD_CMD_EOP
)) {
683 stw_be_p(tp
->vlan_header
,
684 le16_to_cpu(s
->mac_reg
[VET
]));
685 stw_be_p(tp
->vlan_header
+ 2,
686 le16_to_cpu(dp
->upper
.fields
.special
));
689 addr
= le64_to_cpu(dp
->buffer_addr
);
691 msh
= tp
->tso_props
.hdr_len
+ tp
->tso_props
.mss
;
694 if (tp
->size
>= msh
) {
697 if (tp
->size
+ bytes
> msh
)
698 bytes
= msh
- tp
->size
;
700 bytes
= MIN(sizeof(tp
->data
) - tp
->size
, bytes
);
701 pci_dma_read(d
, addr
, tp
->data
+ tp
->size
, bytes
);
702 sz
= tp
->size
+ bytes
;
703 if (sz
>= tp
->tso_props
.hdr_len
704 && tp
->size
< tp
->tso_props
.hdr_len
) {
705 memmove(tp
->header
, tp
->data
, tp
->tso_props
.hdr_len
);
711 memmove(tp
->data
, tp
->header
, tp
->tso_props
.hdr_len
);
712 tp
->size
= tp
->tso_props
.hdr_len
;
715 } while (bytes
&& split_size
);
717 split_size
= MIN(sizeof(tp
->data
) - tp
->size
, split_size
);
718 pci_dma_read(d
, addr
, tp
->data
+ tp
->size
, split_size
);
719 tp
->size
+= split_size
;
723 if (!(txd_lower
& E1000_TXD_CMD_EOP
))
725 if (!(tp
->cptse
&& tp
->size
< tp
->tso_props
.hdr_len
)) {
736 txdesc_writeback(E1000State
*s
, dma_addr_t base
, struct e1000_tx_desc
*dp
)
738 PCIDevice
*d
= PCI_DEVICE(s
);
739 uint32_t txd_upper
, txd_lower
= le32_to_cpu(dp
->lower
.data
);
741 if (!(txd_lower
& (E1000_TXD_CMD_RS
|E1000_TXD_CMD_RPS
)))
743 txd_upper
= (le32_to_cpu(dp
->upper
.data
) | E1000_TXD_STAT_DD
) &
744 ~(E1000_TXD_STAT_EC
| E1000_TXD_STAT_LC
| E1000_TXD_STAT_TU
);
745 dp
->upper
.data
= cpu_to_le32(txd_upper
);
746 pci_dma_write(d
, base
+ ((char *)&dp
->upper
- (char *)dp
),
747 &dp
->upper
, sizeof(dp
->upper
));
748 return E1000_ICR_TXDW
;
751 static uint64_t tx_desc_base(E1000State
*s
)
753 uint64_t bah
= s
->mac_reg
[TDBAH
];
754 uint64_t bal
= s
->mac_reg
[TDBAL
] & ~0xf;
756 return (bah
<< 32) + bal
;
760 start_xmit(E1000State
*s
)
762 PCIDevice
*d
= PCI_DEVICE(s
);
764 struct e1000_tx_desc desc
;
765 uint32_t tdh_start
= s
->mac_reg
[TDH
], cause
= E1000_ICS_TXQE
;
767 if (!(s
->mac_reg
[TCTL
] & E1000_TCTL_EN
)) {
768 DBGOUT(TX
, "tx disabled\n");
777 while (s
->mac_reg
[TDH
] != s
->mac_reg
[TDT
]) {
778 base
= tx_desc_base(s
) +
779 sizeof(struct e1000_tx_desc
) * s
->mac_reg
[TDH
];
780 pci_dma_read(d
, base
, &desc
, sizeof(desc
));
782 DBGOUT(TX
, "index %d: %p : %x %x\n", s
->mac_reg
[TDH
],
783 (void *)(intptr_t)desc
.buffer_addr
, desc
.lower
.data
,
786 process_tx_desc(s
, &desc
);
787 cause
|= txdesc_writeback(s
, base
, &desc
);
789 if (++s
->mac_reg
[TDH
] * sizeof(desc
) >= s
->mac_reg
[TDLEN
])
792 * the following could happen only if guest sw assigns
793 * bogus values to TDT/TDLEN.
794 * there's nothing too intelligent we could do about this.
796 if (s
->mac_reg
[TDH
] == tdh_start
||
797 tdh_start
>= s
->mac_reg
[TDLEN
] / sizeof(desc
)) {
798 DBGOUT(TXERR
, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
799 tdh_start
, s
->mac_reg
[TDT
], s
->mac_reg
[TDLEN
]);
804 set_ics(s
, 0, cause
);
808 receive_filter(E1000State
*s
, const uint8_t *buf
, int size
)
810 uint32_t rctl
= s
->mac_reg
[RCTL
];
811 int isbcast
= is_broadcast_ether_addr(buf
);
812 int ismcast
= is_multicast_ether_addr(buf
);
814 if (e1000x_is_vlan_packet(buf
, le16_to_cpu(s
->mac_reg
[VET
])) &&
815 e1000x_vlan_rx_filter_enabled(s
->mac_reg
)) {
816 uint16_t vid
= lduw_be_p(&PKT_GET_VLAN_HDR(buf
)->h_tci
);
818 ldl_le_p((uint32_t *)(s
->mac_reg
+ VFTA
) +
819 ((vid
>> E1000_VFTA_ENTRY_SHIFT
) & E1000_VFTA_ENTRY_MASK
));
820 if ((vfta
& (1 << (vid
& E1000_VFTA_ENTRY_BIT_SHIFT_MASK
))) == 0) {
825 if (!isbcast
&& !ismcast
&& (rctl
& E1000_RCTL_UPE
)) { /* promiscuous ucast */
829 if (ismcast
&& (rctl
& E1000_RCTL_MPE
)) { /* promiscuous mcast */
830 e1000x_inc_reg_if_not_full(s
->mac_reg
, MPRC
);
834 if (isbcast
&& (rctl
& E1000_RCTL_BAM
)) { /* broadcast enabled */
835 e1000x_inc_reg_if_not_full(s
->mac_reg
, BPRC
);
839 return e1000x_rx_group_filter(s
->mac_reg
, buf
);
843 e1000_set_link_status(NetClientState
*nc
)
845 E1000State
*s
= qemu_get_nic_opaque(nc
);
846 uint32_t old_status
= s
->mac_reg
[STATUS
];
849 e1000x_update_regs_on_link_down(s
->mac_reg
, s
->phy_reg
);
851 if (have_autoneg(s
) &&
852 !(s
->phy_reg
[MII_BMSR
] & MII_BMSR_AN_COMP
)) {
853 e1000x_restart_autoneg(s
->mac_reg
, s
->phy_reg
, s
->autoneg_timer
);
859 if (s
->mac_reg
[STATUS
] != old_status
)
860 set_ics(s
, 0, E1000_ICR_LSC
);
863 static bool e1000_has_rxbufs(E1000State
*s
, size_t total_size
)
866 /* Fast-path short packets */
867 if (total_size
<= s
->rxbuf_size
) {
868 return s
->mac_reg
[RDH
] != s
->mac_reg
[RDT
];
870 if (s
->mac_reg
[RDH
] < s
->mac_reg
[RDT
]) {
871 bufs
= s
->mac_reg
[RDT
] - s
->mac_reg
[RDH
];
872 } else if (s
->mac_reg
[RDH
] > s
->mac_reg
[RDT
]) {
873 bufs
= s
->mac_reg
[RDLEN
] / sizeof(struct e1000_rx_desc
) +
874 s
->mac_reg
[RDT
] - s
->mac_reg
[RDH
];
878 return total_size
<= bufs
* s
->rxbuf_size
;
882 e1000_can_receive(NetClientState
*nc
)
884 E1000State
*s
= qemu_get_nic_opaque(nc
);
886 return e1000x_rx_ready(&s
->parent_obj
, s
->mac_reg
) &&
887 e1000_has_rxbufs(s
, 1) && !timer_pending(s
->flush_queue_timer
);
890 static uint64_t rx_desc_base(E1000State
*s
)
892 uint64_t bah
= s
->mac_reg
[RDBAH
];
893 uint64_t bal
= s
->mac_reg
[RDBAL
] & ~0xf;
895 return (bah
<< 32) + bal
;
899 e1000_receiver_overrun(E1000State
*s
, size_t size
)
901 trace_e1000_receiver_overrun(size
, s
->mac_reg
[RDH
], s
->mac_reg
[RDT
]);
902 e1000x_inc_reg_if_not_full(s
->mac_reg
, RNBC
);
903 e1000x_inc_reg_if_not_full(s
->mac_reg
, MPC
);
904 set_ics(s
, 0, E1000_ICS_RXO
);
908 e1000_receive_iov(NetClientState
*nc
, const struct iovec
*iov
, int iovcnt
)
910 E1000State
*s
= qemu_get_nic_opaque(nc
);
911 PCIDevice
*d
= PCI_DEVICE(s
);
912 struct e1000_rx_desc desc
;
916 uint16_t vlan_special
= 0;
917 uint8_t vlan_status
= 0;
918 uint8_t min_buf
[ETH_ZLEN
];
919 struct iovec min_iov
;
920 uint8_t *filter_buf
= iov
->iov_base
;
921 size_t size
= iov_size(iov
, iovcnt
);
927 if (!e1000x_hw_rx_enabled(s
->mac_reg
)) {
931 if (timer_pending(s
->flush_queue_timer
)) {
935 /* Pad to minimum Ethernet frame length */
936 if (size
< sizeof(min_buf
)) {
937 iov_to_buf(iov
, iovcnt
, 0, min_buf
, size
);
938 memset(&min_buf
[size
], 0, sizeof(min_buf
) - size
);
939 min_iov
.iov_base
= filter_buf
= min_buf
;
940 min_iov
.iov_len
= size
= sizeof(min_buf
);
943 } else if (iov
->iov_len
< MAXIMUM_ETHERNET_HDR_LEN
) {
944 /* This is very unlikely, but may happen. */
945 iov_to_buf(iov
, iovcnt
, 0, min_buf
, MAXIMUM_ETHERNET_HDR_LEN
);
946 filter_buf
= min_buf
;
949 /* Discard oversized packets if !LPE and !SBP. */
950 if (e1000x_is_oversized(s
->mac_reg
, size
)) {
954 if (!receive_filter(s
, filter_buf
, size
)) {
958 if (e1000x_vlan_enabled(s
->mac_reg
) &&
959 e1000x_is_vlan_packet(filter_buf
, le16_to_cpu(s
->mac_reg
[VET
]))) {
960 vlan_special
= cpu_to_le16(lduw_be_p(filter_buf
+ 14));
962 if (filter_buf
== iov
->iov_base
) {
963 memmove(filter_buf
+ 4, filter_buf
, 12);
965 iov_from_buf(iov
, iovcnt
, 4, filter_buf
, 12);
966 while (iov
->iov_len
<= iov_ofs
) {
967 iov_ofs
-= iov
->iov_len
;
971 vlan_status
= E1000_RXD_STAT_VP
;
975 rdh_start
= s
->mac_reg
[RDH
];
977 total_size
= size
+ e1000x_fcs_len(s
->mac_reg
);
978 if (!e1000_has_rxbufs(s
, total_size
)) {
979 e1000_receiver_overrun(s
, total_size
);
983 desc_size
= total_size
- desc_offset
;
984 if (desc_size
> s
->rxbuf_size
) {
985 desc_size
= s
->rxbuf_size
;
987 base
= rx_desc_base(s
) + sizeof(desc
) * s
->mac_reg
[RDH
];
988 pci_dma_read(d
, base
, &desc
, sizeof(desc
));
989 desc
.special
= vlan_special
;
990 desc
.status
&= ~E1000_RXD_STAT_DD
;
991 if (desc
.buffer_addr
) {
992 if (desc_offset
< size
) {
994 hwaddr ba
= le64_to_cpu(desc
.buffer_addr
);
995 size_t copy_size
= size
- desc_offset
;
996 if (copy_size
> s
->rxbuf_size
) {
997 copy_size
= s
->rxbuf_size
;
1000 iov_copy
= MIN(copy_size
, iov
->iov_len
- iov_ofs
);
1001 pci_dma_write(d
, ba
, iov
->iov_base
+ iov_ofs
, iov_copy
);
1002 copy_size
-= iov_copy
;
1004 iov_ofs
+= iov_copy
;
1005 if (iov_ofs
== iov
->iov_len
) {
1009 } while (copy_size
);
1011 desc_offset
+= desc_size
;
1012 desc
.length
= cpu_to_le16(desc_size
);
1013 if (desc_offset
>= total_size
) {
1014 desc
.status
|= E1000_RXD_STAT_EOP
| E1000_RXD_STAT_IXSM
;
1016 /* Guest zeroing out status is not a hardware requirement.
1017 Clear EOP in case guest didn't do it. */
1018 desc
.status
&= ~E1000_RXD_STAT_EOP
;
1020 } else { // as per intel docs; skip descriptors with null buf addr
1021 DBGOUT(RX
, "Null RX descriptor!!\n");
1023 pci_dma_write(d
, base
, &desc
, sizeof(desc
));
1024 desc
.status
|= (vlan_status
| E1000_RXD_STAT_DD
);
1025 pci_dma_write(d
, base
+ offsetof(struct e1000_rx_desc
, status
),
1026 &desc
.status
, sizeof(desc
.status
));
1028 if (++s
->mac_reg
[RDH
] * sizeof(desc
) >= s
->mac_reg
[RDLEN
])
1029 s
->mac_reg
[RDH
] = 0;
1030 /* see comment in start_xmit; same here */
1031 if (s
->mac_reg
[RDH
] == rdh_start
||
1032 rdh_start
>= s
->mac_reg
[RDLEN
] / sizeof(desc
)) {
1033 DBGOUT(RXERR
, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
1034 rdh_start
, s
->mac_reg
[RDT
], s
->mac_reg
[RDLEN
]);
1035 e1000_receiver_overrun(s
, total_size
);
1038 } while (desc_offset
< total_size
);
1040 e1000x_update_rx_total_stats(s
->mac_reg
, size
, total_size
);
1043 if ((rdt
= s
->mac_reg
[RDT
]) < s
->mac_reg
[RDH
])
1044 rdt
+= s
->mac_reg
[RDLEN
] / sizeof(desc
);
1045 if (((rdt
- s
->mac_reg
[RDH
]) * sizeof(desc
)) <= s
->mac_reg
[RDLEN
] >>
1047 n
|= E1000_ICS_RXDMT0
;
1055 e1000_receive(NetClientState
*nc
, const uint8_t *buf
, size_t size
)
1057 const struct iovec iov
= {
1058 .iov_base
= (uint8_t *)buf
,
1062 return e1000_receive_iov(nc
, &iov
, 1);
1066 mac_readreg(E1000State
*s
, int index
)
1068 return s
->mac_reg
[index
];
1072 mac_icr_read(E1000State
*s
, int index
)
1074 uint32_t ret
= s
->mac_reg
[ICR
];
1076 DBGOUT(INTERRUPT
, "ICR read: %x\n", ret
);
1077 set_interrupt_cause(s
, 0, 0);
1082 mac_read_clr4(E1000State
*s
, int index
)
1084 uint32_t ret
= s
->mac_reg
[index
];
1086 s
->mac_reg
[index
] = 0;
1091 mac_read_clr8(E1000State
*s
, int index
)
1093 uint32_t ret
= s
->mac_reg
[index
];
1095 s
->mac_reg
[index
] = 0;
1096 s
->mac_reg
[index
-1] = 0;
1101 mac_writereg(E1000State
*s
, int index
, uint32_t val
)
1103 uint32_t macaddr
[2];
1105 s
->mac_reg
[index
] = val
;
1107 if (index
== RA
+ 1) {
1108 macaddr
[0] = cpu_to_le32(s
->mac_reg
[RA
]);
1109 macaddr
[1] = cpu_to_le32(s
->mac_reg
[RA
+ 1]);
1110 qemu_format_nic_info_str(qemu_get_queue(s
->nic
), (uint8_t *)macaddr
);
1115 set_rdt(E1000State
*s
, int index
, uint32_t val
)
1117 s
->mac_reg
[index
] = val
& 0xffff;
1118 if (e1000_has_rxbufs(s
, 1)) {
1119 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
1123 #define LOW_BITS_SET_FUNC(num) \
1125 set_##num##bit(E1000State *s, int index, uint32_t val) \
1127 s->mac_reg[index] = val & (BIT(num) - 1); \
1130 LOW_BITS_SET_FUNC(4)
1131 LOW_BITS_SET_FUNC(11)
1132 LOW_BITS_SET_FUNC(13)
1133 LOW_BITS_SET_FUNC(16)
1136 set_dlen(E1000State
*s
, int index
, uint32_t val
)
1138 s
->mac_reg
[index
] = val
& 0xfff80;
1142 set_tctl(E1000State
*s
, int index
, uint32_t val
)
1144 s
->mac_reg
[index
] = val
;
1145 s
->mac_reg
[TDT
] &= 0xffff;
1150 set_icr(E1000State
*s
, int index
, uint32_t val
)
1152 DBGOUT(INTERRUPT
, "set_icr %x\n", val
);
1153 set_interrupt_cause(s
, 0, s
->mac_reg
[ICR
] & ~val
);
1157 set_imc(E1000State
*s
, int index
, uint32_t val
)
1159 s
->mac_reg
[IMS
] &= ~val
;
1164 set_ims(E1000State
*s
, int index
, uint32_t val
)
1166 s
->mac_reg
[IMS
] |= val
;
1170 #define getreg(x) [x] = mac_readreg
1171 typedef uint32_t (*readops
)(E1000State
*, int);
1172 static const readops macreg_readops
[] = {
1173 getreg(PBA
), getreg(RCTL
), getreg(TDH
), getreg(TXDCTL
),
1174 getreg(WUFC
), getreg(TDT
), getreg(CTRL
), getreg(LEDCTL
),
1175 getreg(MANC
), getreg(MDIC
), getreg(SWSM
), getreg(STATUS
),
1176 getreg(TORL
), getreg(TOTL
), getreg(IMS
), getreg(TCTL
),
1177 getreg(RDH
), getreg(RDT
), getreg(VET
), getreg(ICS
),
1178 getreg(TDBAL
), getreg(TDBAH
), getreg(RDBAH
), getreg(RDBAL
),
1179 getreg(TDLEN
), getreg(RDLEN
), getreg(RDTR
), getreg(RADV
),
1180 getreg(TADV
), getreg(ITR
), getreg(FCRUC
), getreg(IPAV
),
1181 getreg(WUC
), getreg(WUS
), getreg(SCC
), getreg(ECOL
),
1182 getreg(MCC
), getreg(LATECOL
), getreg(COLC
), getreg(DC
),
1183 getreg(TNCRS
), getreg(SEQEC
), getreg(CEXTERR
), getreg(RLEC
),
1184 getreg(XONRXC
), getreg(XONTXC
), getreg(XOFFRXC
), getreg(XOFFTXC
),
1185 getreg(RFC
), getreg(RJC
), getreg(RNBC
), getreg(TSCTFC
),
1186 getreg(MGTPRC
), getreg(MGTPDC
), getreg(MGTPTC
), getreg(GORCL
),
1187 getreg(GOTCL
), getreg(RDFH
), getreg(RDFT
), getreg(RDFHS
),
1188 getreg(RDFTS
), getreg(RDFPC
), getreg(TDFH
), getreg(TDFT
),
1189 getreg(TDFHS
), getreg(TDFTS
), getreg(TDFPC
), getreg(AIT
),
1191 [TOTH
] = mac_read_clr8
, [TORH
] = mac_read_clr8
,
1192 [GOTCH
] = mac_read_clr8
, [GORCH
] = mac_read_clr8
,
1193 [PRC64
] = mac_read_clr4
, [PRC127
] = mac_read_clr4
,
1194 [PRC255
] = mac_read_clr4
, [PRC511
] = mac_read_clr4
,
1195 [PRC1023
] = mac_read_clr4
, [PRC1522
] = mac_read_clr4
,
1196 [PTC64
] = mac_read_clr4
, [PTC127
] = mac_read_clr4
,
1197 [PTC255
] = mac_read_clr4
, [PTC511
] = mac_read_clr4
,
1198 [PTC1023
] = mac_read_clr4
, [PTC1522
] = mac_read_clr4
,
1199 [GPRC
] = mac_read_clr4
, [GPTC
] = mac_read_clr4
,
1200 [TPT
] = mac_read_clr4
, [TPR
] = mac_read_clr4
,
1201 [RUC
] = mac_read_clr4
, [ROC
] = mac_read_clr4
,
1202 [BPRC
] = mac_read_clr4
, [MPRC
] = mac_read_clr4
,
1203 [TSCTC
] = mac_read_clr4
, [BPTC
] = mac_read_clr4
,
1204 [MPTC
] = mac_read_clr4
,
1205 [ICR
] = mac_icr_read
, [EECD
] = get_eecd
,
1206 [EERD
] = flash_eerd_read
,
1208 [CRCERRS
... MPC
] = &mac_readreg
,
1209 [IP6AT
... IP6AT
+ 3] = &mac_readreg
, [IP4AT
... IP4AT
+ 6] = &mac_readreg
,
1210 [FFLT
... FFLT
+ 6] = &mac_readreg
,
1211 [RA
... RA
+ 31] = &mac_readreg
,
1212 [WUPM
... WUPM
+ 31] = &mac_readreg
,
1213 [MTA
... MTA
+ E1000_MC_TBL_SIZE
- 1] = &mac_readreg
,
1214 [VFTA
... VFTA
+ E1000_VLAN_FILTER_TBL_SIZE
- 1] = &mac_readreg
,
1215 [FFMT
... FFMT
+ 254] = &mac_readreg
,
1216 [FFVT
... FFVT
+ 254] = &mac_readreg
,
1217 [PBM
... PBM
+ 16383] = &mac_readreg
,
1219 enum { NREADOPS
= ARRAY_SIZE(macreg_readops
) };
1221 #define putreg(x) [x] = mac_writereg
1222 typedef void (*writeops
)(E1000State
*, int, uint32_t);
1223 static const writeops macreg_writeops
[] = {
1224 putreg(PBA
), putreg(EERD
), putreg(SWSM
), putreg(WUFC
),
1225 putreg(TDBAL
), putreg(TDBAH
), putreg(TXDCTL
), putreg(RDBAH
),
1226 putreg(RDBAL
), putreg(LEDCTL
), putreg(VET
), putreg(FCRUC
),
1227 putreg(IPAV
), putreg(WUC
),
1230 [TDLEN
] = set_dlen
, [RDLEN
] = set_dlen
, [TCTL
] = set_tctl
,
1231 [TDT
] = set_tctl
, [MDIC
] = set_mdic
, [ICS
] = set_ics
,
1232 [TDH
] = set_16bit
, [RDH
] = set_16bit
, [RDT
] = set_rdt
,
1233 [IMC
] = set_imc
, [IMS
] = set_ims
, [ICR
] = set_icr
,
1234 [EECD
] = set_eecd
, [RCTL
] = set_rx_control
, [CTRL
] = set_ctrl
,
1235 [RDTR
] = set_16bit
, [RADV
] = set_16bit
, [TADV
] = set_16bit
,
1236 [ITR
] = set_16bit
, [TDFH
] = set_11bit
, [TDFT
] = set_11bit
,
1237 [TDFHS
] = set_13bit
, [TDFTS
] = set_13bit
, [TDFPC
] = set_13bit
,
1238 [RDFH
] = set_13bit
, [RDFT
] = set_13bit
, [RDFHS
] = set_13bit
,
1239 [RDFTS
] = set_13bit
, [RDFPC
] = set_13bit
, [AIT
] = set_16bit
,
1241 [IP6AT
... IP6AT
+ 3] = &mac_writereg
, [IP4AT
... IP4AT
+ 6] = &mac_writereg
,
1242 [FFLT
... FFLT
+ 6] = &set_11bit
,
1243 [RA
... RA
+ 31] = &mac_writereg
,
1244 [WUPM
... WUPM
+ 31] = &mac_writereg
,
1245 [MTA
... MTA
+ E1000_MC_TBL_SIZE
- 1] = &mac_writereg
,
1246 [VFTA
... VFTA
+ E1000_VLAN_FILTER_TBL_SIZE
- 1] = &mac_writereg
,
1247 [FFMT
... FFMT
+ 254] = &set_4bit
, [FFVT
... FFVT
+ 254] = &mac_writereg
,
1248 [PBM
... PBM
+ 16383] = &mac_writereg
,
1251 enum { NWRITEOPS
= ARRAY_SIZE(macreg_writeops
) };
1253 enum { MAC_ACCESS_PARTIAL
= 1, MAC_ACCESS_FLAG_NEEDED
= 2 };
1255 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
1256 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p]
1257 * f - flag bits (up to 6 possible flags)
1259 * p - partially implenented */
1260 static const uint8_t mac_reg_access
[0x8000] = {
1261 [RDTR
] = markflag(MIT
), [TADV
] = markflag(MIT
),
1262 [RADV
] = markflag(MIT
), [ITR
] = markflag(MIT
),
1264 [IPAV
] = markflag(MAC
), [WUC
] = markflag(MAC
),
1265 [IP6AT
] = markflag(MAC
), [IP4AT
] = markflag(MAC
),
1266 [FFVT
] = markflag(MAC
), [WUPM
] = markflag(MAC
),
1267 [ECOL
] = markflag(MAC
), [MCC
] = markflag(MAC
),
1268 [DC
] = markflag(MAC
), [TNCRS
] = markflag(MAC
),
1269 [RLEC
] = markflag(MAC
), [XONRXC
] = markflag(MAC
),
1270 [XOFFTXC
] = markflag(MAC
), [RFC
] = markflag(MAC
),
1271 [TSCTFC
] = markflag(MAC
), [MGTPRC
] = markflag(MAC
),
1272 [WUS
] = markflag(MAC
), [AIT
] = markflag(MAC
),
1273 [FFLT
] = markflag(MAC
), [FFMT
] = markflag(MAC
),
1274 [SCC
] = markflag(MAC
), [FCRUC
] = markflag(MAC
),
1275 [LATECOL
] = markflag(MAC
), [COLC
] = markflag(MAC
),
1276 [SEQEC
] = markflag(MAC
), [CEXTERR
] = markflag(MAC
),
1277 [XONTXC
] = markflag(MAC
), [XOFFRXC
] = markflag(MAC
),
1278 [RJC
] = markflag(MAC
), [RNBC
] = markflag(MAC
),
1279 [MGTPDC
] = markflag(MAC
), [MGTPTC
] = markflag(MAC
),
1280 [RUC
] = markflag(MAC
), [ROC
] = markflag(MAC
),
1281 [GORCL
] = markflag(MAC
), [GORCH
] = markflag(MAC
),
1282 [GOTCL
] = markflag(MAC
), [GOTCH
] = markflag(MAC
),
1283 [BPRC
] = markflag(MAC
), [MPRC
] = markflag(MAC
),
1284 [TSCTC
] = markflag(MAC
), [PRC64
] = markflag(MAC
),
1285 [PRC127
] = markflag(MAC
), [PRC255
] = markflag(MAC
),
1286 [PRC511
] = markflag(MAC
), [PRC1023
] = markflag(MAC
),
1287 [PRC1522
] = markflag(MAC
), [PTC64
] = markflag(MAC
),
1288 [PTC127
] = markflag(MAC
), [PTC255
] = markflag(MAC
),
1289 [PTC511
] = markflag(MAC
), [PTC1023
] = markflag(MAC
),
1290 [PTC1522
] = markflag(MAC
), [MPTC
] = markflag(MAC
),
1291 [BPTC
] = markflag(MAC
),
1293 [TDFH
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1294 [TDFT
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1295 [TDFHS
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1296 [TDFTS
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1297 [TDFPC
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1298 [RDFH
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1299 [RDFT
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1300 [RDFHS
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1301 [RDFTS
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1302 [RDFPC
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1303 [PBM
] = markflag(MAC
) | MAC_ACCESS_PARTIAL
,
1307 e1000_mmio_write(void *opaque
, hwaddr addr
, uint64_t val
,
1310 E1000State
*s
= opaque
;
1311 unsigned int index
= (addr
& 0x1ffff) >> 2;
1313 if (index
< NWRITEOPS
&& macreg_writeops
[index
]) {
1314 if (!(mac_reg_access
[index
] & MAC_ACCESS_FLAG_NEEDED
)
1315 || (s
->compat_flags
& (mac_reg_access
[index
] >> 2))) {
1316 if (mac_reg_access
[index
] & MAC_ACCESS_PARTIAL
) {
1317 DBGOUT(GENERAL
, "Writing to register at offset: 0x%08x. "
1318 "It is not fully implemented.\n", index
<<2);
1320 macreg_writeops
[index
](s
, index
, val
);
1321 } else { /* "flag needed" bit is set, but the flag is not active */
1322 DBGOUT(MMIO
, "MMIO write attempt to disabled reg. addr=0x%08x\n",
1325 } else if (index
< NREADOPS
&& macreg_readops
[index
]) {
1326 DBGOUT(MMIO
, "e1000_mmio_writel RO %x: 0x%04"PRIx64
"\n",
1329 DBGOUT(UNKNOWN
, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64
"\n",
1335 e1000_mmio_read(void *opaque
, hwaddr addr
, unsigned size
)
1337 E1000State
*s
= opaque
;
1338 unsigned int index
= (addr
& 0x1ffff) >> 2;
1340 if (index
< NREADOPS
&& macreg_readops
[index
]) {
1341 if (!(mac_reg_access
[index
] & MAC_ACCESS_FLAG_NEEDED
)
1342 || (s
->compat_flags
& (mac_reg_access
[index
] >> 2))) {
1343 if (mac_reg_access
[index
] & MAC_ACCESS_PARTIAL
) {
1344 DBGOUT(GENERAL
, "Reading register at offset: 0x%08x. "
1345 "It is not fully implemented.\n", index
<<2);
1347 return macreg_readops
[index
](s
, index
);
1348 } else { /* "flag needed" bit is set, but the flag is not active */
1349 DBGOUT(MMIO
, "MMIO read attempt of disabled reg. addr=0x%08x\n",
1353 DBGOUT(UNKNOWN
, "MMIO unknown read addr=0x%08x\n", index
<<2);
1358 static const MemoryRegionOps e1000_mmio_ops
= {
1359 .read
= e1000_mmio_read
,
1360 .write
= e1000_mmio_write
,
1361 .endianness
= DEVICE_LITTLE_ENDIAN
,
1363 .min_access_size
= 4,
1364 .max_access_size
= 4,
1368 static uint64_t e1000_io_read(void *opaque
, hwaddr addr
,
1371 E1000State
*s
= opaque
;
1377 static void e1000_io_write(void *opaque
, hwaddr addr
,
1378 uint64_t val
, unsigned size
)
1380 E1000State
*s
= opaque
;
1385 static const MemoryRegionOps e1000_io_ops
= {
1386 .read
= e1000_io_read
,
1387 .write
= e1000_io_write
,
1388 .endianness
= DEVICE_LITTLE_ENDIAN
,
1391 static bool is_version_1(void *opaque
, int version_id
)
1393 return version_id
== 1;
1396 static int e1000_pre_save(void *opaque
)
1398 E1000State
*s
= opaque
;
1399 NetClientState
*nc
= qemu_get_queue(s
->nic
);
1402 * If link is down and auto-negotiation is supported and ongoing,
1403 * complete auto-negotiation immediately. This allows us to look
1404 * at MII_BMSR_AN_COMP to infer link status on load.
1406 if (nc
->link_down
&& have_autoneg(s
)) {
1407 s
->phy_reg
[MII_BMSR
] |= MII_BMSR_AN_COMP
;
1410 /* Decide which set of props to migrate in the main structure */
1411 if (chkflag(TSO
) || !s
->use_tso_for_migration
) {
1412 /* Either we're migrating with the extra subsection, in which
1413 * case the mig_props is always 'props' OR
1414 * we've not got the subsection, but 'props' was the last
1417 s
->mig_props
= s
->tx
.props
;
1419 /* We're not using the subsection, and 'tso_props' was
1422 s
->mig_props
= s
->tx
.tso_props
;
1427 static int e1000_post_load(void *opaque
, int version_id
)
1429 E1000State
*s
= opaque
;
1430 NetClientState
*nc
= qemu_get_queue(s
->nic
);
1432 if (!chkflag(MIT
)) {
1433 s
->mac_reg
[ITR
] = s
->mac_reg
[RDTR
] = s
->mac_reg
[RADV
] =
1434 s
->mac_reg
[TADV
] = 0;
1435 s
->mit_irq_level
= false;
1438 s
->mit_timer_on
= true;
1439 timer_mod(s
->mit_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 1);
1441 /* nc.link_down can't be migrated, so infer link_down according
1442 * to link status bit in mac_reg[STATUS].
1443 * Alternatively, restart link negotiation if it was in progress. */
1444 nc
->link_down
= (s
->mac_reg
[STATUS
] & E1000_STATUS_LU
) == 0;
1446 if (have_autoneg(s
) && !(s
->phy_reg
[MII_BMSR
] & MII_BMSR_AN_COMP
)) {
1447 nc
->link_down
= false;
1448 timer_mod(s
->autoneg_timer
,
1449 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
) + 500);
1452 s
->tx
.props
= s
->mig_props
;
1453 if (!s
->received_tx_tso
) {
1454 /* We received only one set of offload data (tx.props)
1455 * and haven't got tx.tso_props. The best we can do
1458 s
->tx
.tso_props
= s
->mig_props
;
1463 static int e1000_tx_tso_post_load(void *opaque
, int version_id
)
1465 E1000State
*s
= opaque
;
1466 s
->received_tx_tso
= true;
1470 static bool e1000_mit_state_needed(void *opaque
)
1472 E1000State
*s
= opaque
;
1474 return chkflag(MIT
);
1477 static bool e1000_full_mac_needed(void *opaque
)
1479 E1000State
*s
= opaque
;
1481 return chkflag(MAC
);
1484 static bool e1000_tso_state_needed(void *opaque
)
1486 E1000State
*s
= opaque
;
1488 return chkflag(TSO
);
1491 static const VMStateDescription vmstate_e1000_mit_state
= {
1492 .name
= "e1000/mit_state",
1494 .minimum_version_id
= 1,
1495 .needed
= e1000_mit_state_needed
,
1496 .fields
= (VMStateField
[]) {
1497 VMSTATE_UINT32(mac_reg
[RDTR
], E1000State
),
1498 VMSTATE_UINT32(mac_reg
[RADV
], E1000State
),
1499 VMSTATE_UINT32(mac_reg
[TADV
], E1000State
),
1500 VMSTATE_UINT32(mac_reg
[ITR
], E1000State
),
1501 VMSTATE_BOOL(mit_irq_level
, E1000State
),
1502 VMSTATE_END_OF_LIST()
1506 static const VMStateDescription vmstate_e1000_full_mac_state
= {
1507 .name
= "e1000/full_mac_state",
1509 .minimum_version_id
= 1,
1510 .needed
= e1000_full_mac_needed
,
1511 .fields
= (VMStateField
[]) {
1512 VMSTATE_UINT32_ARRAY(mac_reg
, E1000State
, 0x8000),
1513 VMSTATE_END_OF_LIST()
1517 static const VMStateDescription vmstate_e1000_tx_tso_state
= {
1518 .name
= "e1000/tx_tso_state",
1520 .minimum_version_id
= 1,
1521 .needed
= e1000_tso_state_needed
,
1522 .post_load
= e1000_tx_tso_post_load
,
1523 .fields
= (VMStateField
[]) {
1524 VMSTATE_UINT8(tx
.tso_props
.ipcss
, E1000State
),
1525 VMSTATE_UINT8(tx
.tso_props
.ipcso
, E1000State
),
1526 VMSTATE_UINT16(tx
.tso_props
.ipcse
, E1000State
),
1527 VMSTATE_UINT8(tx
.tso_props
.tucss
, E1000State
),
1528 VMSTATE_UINT8(tx
.tso_props
.tucso
, E1000State
),
1529 VMSTATE_UINT16(tx
.tso_props
.tucse
, E1000State
),
1530 VMSTATE_UINT32(tx
.tso_props
.paylen
, E1000State
),
1531 VMSTATE_UINT8(tx
.tso_props
.hdr_len
, E1000State
),
1532 VMSTATE_UINT16(tx
.tso_props
.mss
, E1000State
),
1533 VMSTATE_INT8(tx
.tso_props
.ip
, E1000State
),
1534 VMSTATE_INT8(tx
.tso_props
.tcp
, E1000State
),
1535 VMSTATE_END_OF_LIST()
1539 static const VMStateDescription vmstate_e1000
= {
1542 .minimum_version_id
= 1,
1543 .pre_save
= e1000_pre_save
,
1544 .post_load
= e1000_post_load
,
1545 .fields
= (VMStateField
[]) {
1546 VMSTATE_PCI_DEVICE(parent_obj
, E1000State
),
1547 VMSTATE_UNUSED_TEST(is_version_1
, 4), /* was instance id */
1548 VMSTATE_UNUSED(4), /* Was mmio_base. */
1549 VMSTATE_UINT32(rxbuf_size
, E1000State
),
1550 VMSTATE_UINT32(rxbuf_min_shift
, E1000State
),
1551 VMSTATE_UINT32(eecd_state
.val_in
, E1000State
),
1552 VMSTATE_UINT16(eecd_state
.bitnum_in
, E1000State
),
1553 VMSTATE_UINT16(eecd_state
.bitnum_out
, E1000State
),
1554 VMSTATE_UINT16(eecd_state
.reading
, E1000State
),
1555 VMSTATE_UINT32(eecd_state
.old_eecd
, E1000State
),
1556 VMSTATE_UINT8(mig_props
.ipcss
, E1000State
),
1557 VMSTATE_UINT8(mig_props
.ipcso
, E1000State
),
1558 VMSTATE_UINT16(mig_props
.ipcse
, E1000State
),
1559 VMSTATE_UINT8(mig_props
.tucss
, E1000State
),
1560 VMSTATE_UINT8(mig_props
.tucso
, E1000State
),
1561 VMSTATE_UINT16(mig_props
.tucse
, E1000State
),
1562 VMSTATE_UINT32(mig_props
.paylen
, E1000State
),
1563 VMSTATE_UINT8(mig_props
.hdr_len
, E1000State
),
1564 VMSTATE_UINT16(mig_props
.mss
, E1000State
),
1565 VMSTATE_UINT16(tx
.size
, E1000State
),
1566 VMSTATE_UINT16(tx
.tso_frames
, E1000State
),
1567 VMSTATE_UINT8(tx
.sum_needed
, E1000State
),
1568 VMSTATE_INT8(mig_props
.ip
, E1000State
),
1569 VMSTATE_INT8(mig_props
.tcp
, E1000State
),
1570 VMSTATE_BUFFER(tx
.header
, E1000State
),
1571 VMSTATE_BUFFER(tx
.data
, E1000State
),
1572 VMSTATE_UINT16_ARRAY(eeprom_data
, E1000State
, 64),
1573 VMSTATE_UINT16_ARRAY(phy_reg
, E1000State
, 0x20),
1574 VMSTATE_UINT32(mac_reg
[CTRL
], E1000State
),
1575 VMSTATE_UINT32(mac_reg
[EECD
], E1000State
),
1576 VMSTATE_UINT32(mac_reg
[EERD
], E1000State
),
1577 VMSTATE_UINT32(mac_reg
[GPRC
], E1000State
),
1578 VMSTATE_UINT32(mac_reg
[GPTC
], E1000State
),
1579 VMSTATE_UINT32(mac_reg
[ICR
], E1000State
),
1580 VMSTATE_UINT32(mac_reg
[ICS
], E1000State
),
1581 VMSTATE_UINT32(mac_reg
[IMC
], E1000State
),
1582 VMSTATE_UINT32(mac_reg
[IMS
], E1000State
),
1583 VMSTATE_UINT32(mac_reg
[LEDCTL
], E1000State
),
1584 VMSTATE_UINT32(mac_reg
[MANC
], E1000State
),
1585 VMSTATE_UINT32(mac_reg
[MDIC
], E1000State
),
1586 VMSTATE_UINT32(mac_reg
[MPC
], E1000State
),
1587 VMSTATE_UINT32(mac_reg
[PBA
], E1000State
),
1588 VMSTATE_UINT32(mac_reg
[RCTL
], E1000State
),
1589 VMSTATE_UINT32(mac_reg
[RDBAH
], E1000State
),
1590 VMSTATE_UINT32(mac_reg
[RDBAL
], E1000State
),
1591 VMSTATE_UINT32(mac_reg
[RDH
], E1000State
),
1592 VMSTATE_UINT32(mac_reg
[RDLEN
], E1000State
),
1593 VMSTATE_UINT32(mac_reg
[RDT
], E1000State
),
1594 VMSTATE_UINT32(mac_reg
[STATUS
], E1000State
),
1595 VMSTATE_UINT32(mac_reg
[SWSM
], E1000State
),
1596 VMSTATE_UINT32(mac_reg
[TCTL
], E1000State
),
1597 VMSTATE_UINT32(mac_reg
[TDBAH
], E1000State
),
1598 VMSTATE_UINT32(mac_reg
[TDBAL
], E1000State
),
1599 VMSTATE_UINT32(mac_reg
[TDH
], E1000State
),
1600 VMSTATE_UINT32(mac_reg
[TDLEN
], E1000State
),
1601 VMSTATE_UINT32(mac_reg
[TDT
], E1000State
),
1602 VMSTATE_UINT32(mac_reg
[TORH
], E1000State
),
1603 VMSTATE_UINT32(mac_reg
[TORL
], E1000State
),
1604 VMSTATE_UINT32(mac_reg
[TOTH
], E1000State
),
1605 VMSTATE_UINT32(mac_reg
[TOTL
], E1000State
),
1606 VMSTATE_UINT32(mac_reg
[TPR
], E1000State
),
1607 VMSTATE_UINT32(mac_reg
[TPT
], E1000State
),
1608 VMSTATE_UINT32(mac_reg
[TXDCTL
], E1000State
),
1609 VMSTATE_UINT32(mac_reg
[WUFC
], E1000State
),
1610 VMSTATE_UINT32(mac_reg
[VET
], E1000State
),
1611 VMSTATE_UINT32_SUB_ARRAY(mac_reg
, E1000State
, RA
, 32),
1612 VMSTATE_UINT32_SUB_ARRAY(mac_reg
, E1000State
, MTA
, E1000_MC_TBL_SIZE
),
1613 VMSTATE_UINT32_SUB_ARRAY(mac_reg
, E1000State
, VFTA
,
1614 E1000_VLAN_FILTER_TBL_SIZE
),
1615 VMSTATE_END_OF_LIST()
1617 .subsections
= (const VMStateDescription
*[]) {
1618 &vmstate_e1000_mit_state
,
1619 &vmstate_e1000_full_mac_state
,
1620 &vmstate_e1000_tx_tso_state
,
1626 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
1627 * Note: A valid DevId will be inserted during pci_e1000_realize().
1629 static const uint16_t e1000_eeprom_template
[64] = {
1630 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1631 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
1632 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1633 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1634 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1635 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1636 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1637 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1643 e1000_mmio_setup(E1000State
*d
)
1646 const uint32_t excluded_regs
[] = {
1647 E1000_MDIC
, E1000_ICR
, E1000_ICS
, E1000_IMS
,
1648 E1000_IMC
, E1000_TCTL
, E1000_TDT
, PNPMMIO_SIZE
1651 memory_region_init_io(&d
->mmio
, OBJECT(d
), &e1000_mmio_ops
, d
,
1652 "e1000-mmio", PNPMMIO_SIZE
);
1653 memory_region_add_coalescing(&d
->mmio
, 0, excluded_regs
[0]);
1654 for (i
= 0; excluded_regs
[i
] != PNPMMIO_SIZE
; i
++)
1655 memory_region_add_coalescing(&d
->mmio
, excluded_regs
[i
] + 4,
1656 excluded_regs
[i
+1] - excluded_regs
[i
] - 4);
1657 memory_region_init_io(&d
->io
, OBJECT(d
), &e1000_io_ops
, d
, "e1000-io", IOPORT_SIZE
);
1661 pci_e1000_uninit(PCIDevice
*dev
)
1663 E1000State
*d
= E1000(dev
);
1665 timer_free(d
->autoneg_timer
);
1666 timer_free(d
->mit_timer
);
1667 timer_free(d
->flush_queue_timer
);
1668 qemu_del_nic(d
->nic
);
1671 static NetClientInfo net_e1000_info
= {
1672 .type
= NET_CLIENT_DRIVER_NIC
,
1673 .size
= sizeof(NICState
),
1674 .can_receive
= e1000_can_receive
,
1675 .receive
= e1000_receive
,
1676 .receive_iov
= e1000_receive_iov
,
1677 .link_status_changed
= e1000_set_link_status
,
1680 static void e1000_write_config(PCIDevice
*pci_dev
, uint32_t address
,
1681 uint32_t val
, int len
)
1683 E1000State
*s
= E1000(pci_dev
);
1685 pci_default_write_config(pci_dev
, address
, val
, len
);
1687 if (range_covers_byte(address
, len
, PCI_COMMAND
) &&
1688 (pci_dev
->config
[PCI_COMMAND
] & PCI_COMMAND_MASTER
)) {
1689 qemu_flush_queued_packets(qemu_get_queue(s
->nic
));
1693 static void pci_e1000_realize(PCIDevice
*pci_dev
, Error
**errp
)
1695 DeviceState
*dev
= DEVICE(pci_dev
);
1696 E1000State
*d
= E1000(pci_dev
);
1700 pci_dev
->config_write
= e1000_write_config
;
1702 pci_conf
= pci_dev
->config
;
1704 /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1705 pci_conf
[PCI_CACHE_LINE_SIZE
] = 0x10;
1707 pci_conf
[PCI_INTERRUPT_PIN
] = 1; /* interrupt pin A */
1709 e1000_mmio_setup(d
);
1711 pci_register_bar(pci_dev
, 0, PCI_BASE_ADDRESS_SPACE_MEMORY
, &d
->mmio
);
1713 pci_register_bar(pci_dev
, 1, PCI_BASE_ADDRESS_SPACE_IO
, &d
->io
);
1715 qemu_macaddr_default_if_unset(&d
->conf
.macaddr
);
1716 macaddr
= d
->conf
.macaddr
.a
;
1718 e1000x_core_prepare_eeprom(d
->eeprom_data
,
1719 e1000_eeprom_template
,
1720 sizeof(e1000_eeprom_template
),
1721 PCI_DEVICE_GET_CLASS(pci_dev
)->device_id
,
1724 d
->nic
= qemu_new_nic(&net_e1000_info
, &d
->conf
,
1725 object_get_typename(OBJECT(d
)), dev
->id
, d
);
1727 qemu_format_nic_info_str(qemu_get_queue(d
->nic
), macaddr
);
1729 d
->autoneg_timer
= timer_new_ms(QEMU_CLOCK_VIRTUAL
, e1000_autoneg_timer
, d
);
1730 d
->mit_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, e1000_mit_timer
, d
);
1731 d
->flush_queue_timer
= timer_new_ms(QEMU_CLOCK_VIRTUAL
,
1732 e1000_flush_queue_timer
, d
);
1735 static Property e1000_properties
[] = {
1736 DEFINE_NIC_PROPERTIES(E1000State
, conf
),
1737 DEFINE_PROP_BIT("autonegotiation", E1000State
,
1738 compat_flags
, E1000_FLAG_AUTONEG_BIT
, true),
1739 DEFINE_PROP_BIT("mitigation", E1000State
,
1740 compat_flags
, E1000_FLAG_MIT_BIT
, true),
1741 DEFINE_PROP_BIT("extra_mac_registers", E1000State
,
1742 compat_flags
, E1000_FLAG_MAC_BIT
, true),
1743 DEFINE_PROP_BIT("migrate_tso_props", E1000State
,
1744 compat_flags
, E1000_FLAG_TSO_BIT
, true),
1745 DEFINE_PROP_BIT("init-vet", E1000State
,
1746 compat_flags
, E1000_FLAG_VET_BIT
, true),
1747 DEFINE_PROP_END_OF_LIST(),
1750 typedef struct E1000Info
{
1757 static void e1000_class_init(ObjectClass
*klass
, void *data
)
1759 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1760 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
1761 PCIDeviceClass
*k
= PCI_DEVICE_CLASS(klass
);
1762 E1000BaseClass
*e
= E1000_CLASS(klass
);
1763 const E1000Info
*info
= data
;
1765 k
->realize
= pci_e1000_realize
;
1766 k
->exit
= pci_e1000_uninit
;
1767 k
->romfile
= "efi-e1000.rom";
1768 k
->vendor_id
= PCI_VENDOR_ID_INTEL
;
1769 k
->device_id
= info
->device_id
;
1770 k
->revision
= info
->revision
;
1771 e
->phy_id2
= info
->phy_id2
;
1772 k
->class_id
= PCI_CLASS_NETWORK_ETHERNET
;
1773 rc
->phases
.hold
= e1000_reset_hold
;
1774 set_bit(DEVICE_CATEGORY_NETWORK
, dc
->categories
);
1775 dc
->desc
= "Intel Gigabit Ethernet";
1776 dc
->vmsd
= &vmstate_e1000
;
1777 device_class_set_props(dc
, e1000_properties
);
1780 static void e1000_instance_init(Object
*obj
)
1782 E1000State
*n
= E1000(obj
);
1783 device_add_bootindex_property(obj
, &n
->conf
.bootindex
,
1784 "bootindex", "/ethernet-phy@0",
1788 static const TypeInfo e1000_base_info
= {
1789 .name
= TYPE_E1000_BASE
,
1790 .parent
= TYPE_PCI_DEVICE
,
1791 .instance_size
= sizeof(E1000State
),
1792 .instance_init
= e1000_instance_init
,
1793 .class_size
= sizeof(E1000BaseClass
),
1795 .interfaces
= (InterfaceInfo
[]) {
1796 { INTERFACE_CONVENTIONAL_PCI_DEVICE
},
1801 static const E1000Info e1000_devices
[] = {
1804 .device_id
= E1000_DEV_ID_82540EM
,
1806 .phy_id2
= E1000_PHY_ID2_8254xx_DEFAULT
,
1809 .name
= "e1000-82544gc",
1810 .device_id
= E1000_DEV_ID_82544GC_COPPER
,
1812 .phy_id2
= E1000_PHY_ID2_82544x
,
1815 .name
= "e1000-82545em",
1816 .device_id
= E1000_DEV_ID_82545EM_COPPER
,
1818 .phy_id2
= E1000_PHY_ID2_8254xx_DEFAULT
,
1822 static void e1000_register_types(void)
1826 type_register_static(&e1000_base_info
);
1827 for (i
= 0; i
< ARRAY_SIZE(e1000_devices
); i
++) {
1828 const E1000Info
*info
= &e1000_devices
[i
];
1829 TypeInfo type_info
= {};
1831 type_info
.name
= info
->name
;
1832 type_info
.parent
= TYPE_E1000_BASE
;
1833 type_info
.class_data
= (void *)info
;
1834 type_info
.class_init
= e1000_class_init
;
1836 type_register(&type_info
);
1840 type_init(e1000_register_types
)