softmmu/memory: Pass ram_flags to qemu_ram_alloc() and qemu_ram_alloc_internal()
[qemu/kevin.git] / include / exec / ram_addr.h
blob6d4513f8e25a48f0786bf0fc40e96cffe6096123
1 /*
2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "sysemu/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
27 #include "exec/ramblock.h"
29 /**
30 * clear_bmap_size: calculate clear bitmap size
32 * @pages: number of guest pages
33 * @shift: guest page number shift
35 * Returns: number of bits for the clear bitmap
37 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
39 return DIV_ROUND_UP(pages, 1UL << shift);
42 /**
43 * clear_bmap_set: set clear bitmap for the page range
45 * @rb: the ramblock to operate on
46 * @start: the start page number
47 * @size: number of pages to set in the bitmap
49 * Returns: None
51 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
52 uint64_t npages)
54 uint8_t shift = rb->clear_bmap_shift;
56 bitmap_set_atomic(rb->clear_bmap, start >> shift,
57 clear_bmap_size(npages, shift));
60 /**
61 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
63 * @rb: the ramblock to operate on
64 * @page: the page number to check
66 * Returns: true if the bit was set, false otherwise
68 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
70 uint8_t shift = rb->clear_bmap_shift;
72 return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
75 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
77 return (b && b->host && offset < b->used_length) ? true : false;
80 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
82 assert(offset_in_ramblock(block, offset));
83 return (char *)block->host + offset;
86 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
87 RAMBlock *rb)
89 uint64_t host_addr_offset =
90 (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
91 return host_addr_offset >> TARGET_PAGE_BITS;
94 bool ramblock_is_pmem(RAMBlock *rb);
96 long qemu_minrampagesize(void);
97 long qemu_maxrampagesize(void);
99 /**
100 * qemu_ram_alloc_from_file,
101 * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
102 * file or device
104 * Parameters:
105 * @size: the size in bytes of the ram block
106 * @mr: the memory region where the ram block is
107 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM.
108 * @mem_path or @fd: specify the backing file or device
109 * @readonly: true to open @path for reading, false for read/write.
110 * @errp: pointer to Error*, to store an error if it happens
112 * Return:
113 * On success, return a pointer to the ram block.
114 * On failure, return NULL.
116 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
117 uint32_t ram_flags, const char *mem_path,
118 bool readonly, Error **errp);
119 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
120 uint32_t ram_flags, int fd, off_t offset,
121 bool readonly, Error **errp);
123 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
124 MemoryRegion *mr, Error **errp);
125 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, MemoryRegion *mr,
126 Error **errp);
127 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
128 void (*resized)(const char*,
129 uint64_t length,
130 void *host),
131 MemoryRegion *mr, Error **errp);
132 void qemu_ram_free(RAMBlock *block);
134 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
136 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length);
138 /* Clear whole block of mem */
139 static inline void qemu_ram_block_writeback(RAMBlock *block)
141 qemu_ram_msync(block, 0, block->used_length);
144 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
145 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
147 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
149 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
150 ram_addr_t length,
151 unsigned client)
153 DirtyMemoryBlocks *blocks;
154 unsigned long end, page;
155 unsigned long idx, offset, base;
156 bool dirty = false;
158 assert(client < DIRTY_MEMORY_NUM);
160 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
161 page = start >> TARGET_PAGE_BITS;
163 WITH_RCU_READ_LOCK_GUARD() {
164 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
166 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
167 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
168 base = page - offset;
169 while (page < end) {
170 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
171 unsigned long num = next - base;
172 unsigned long found = find_next_bit(blocks->blocks[idx],
173 num, offset);
174 if (found < num) {
175 dirty = true;
176 break;
179 page = next;
180 idx++;
181 offset = 0;
182 base += DIRTY_MEMORY_BLOCK_SIZE;
186 return dirty;
189 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
190 ram_addr_t length,
191 unsigned client)
193 DirtyMemoryBlocks *blocks;
194 unsigned long end, page;
195 unsigned long idx, offset, base;
196 bool dirty = true;
198 assert(client < DIRTY_MEMORY_NUM);
200 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
201 page = start >> TARGET_PAGE_BITS;
203 RCU_READ_LOCK_GUARD();
205 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
207 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
208 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
209 base = page - offset;
210 while (page < end) {
211 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
212 unsigned long num = next - base;
213 unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
214 if (found < num) {
215 dirty = false;
216 break;
219 page = next;
220 idx++;
221 offset = 0;
222 base += DIRTY_MEMORY_BLOCK_SIZE;
225 return dirty;
228 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
229 unsigned client)
231 return cpu_physical_memory_get_dirty(addr, 1, client);
234 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
236 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
237 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
238 bool migration =
239 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
240 return !(vga && code && migration);
243 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
244 ram_addr_t length,
245 uint8_t mask)
247 uint8_t ret = 0;
249 if (mask & (1 << DIRTY_MEMORY_VGA) &&
250 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
251 ret |= (1 << DIRTY_MEMORY_VGA);
253 if (mask & (1 << DIRTY_MEMORY_CODE) &&
254 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
255 ret |= (1 << DIRTY_MEMORY_CODE);
257 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
258 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
259 ret |= (1 << DIRTY_MEMORY_MIGRATION);
261 return ret;
264 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
265 unsigned client)
267 unsigned long page, idx, offset;
268 DirtyMemoryBlocks *blocks;
270 assert(client < DIRTY_MEMORY_NUM);
272 page = addr >> TARGET_PAGE_BITS;
273 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
274 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
276 RCU_READ_LOCK_GUARD();
278 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
280 set_bit_atomic(offset, blocks->blocks[idx]);
283 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
284 ram_addr_t length,
285 uint8_t mask)
287 DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
288 unsigned long end, page;
289 unsigned long idx, offset, base;
290 int i;
292 if (!mask && !xen_enabled()) {
293 return;
296 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
297 page = start >> TARGET_PAGE_BITS;
299 WITH_RCU_READ_LOCK_GUARD() {
300 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
301 blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]);
304 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
305 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
306 base = page - offset;
307 while (page < end) {
308 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
310 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
311 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
312 offset, next - page);
314 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
315 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
316 offset, next - page);
318 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
319 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
320 offset, next - page);
323 page = next;
324 idx++;
325 offset = 0;
326 base += DIRTY_MEMORY_BLOCK_SIZE;
330 xen_hvm_modified_memory(start, length);
333 #if !defined(_WIN32)
334 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
335 ram_addr_t start,
336 ram_addr_t pages)
338 unsigned long i, j;
339 unsigned long page_number, c;
340 hwaddr addr;
341 ram_addr_t ram_addr;
342 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
343 unsigned long hpratio = qemu_real_host_page_size / TARGET_PAGE_SIZE;
344 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
346 /* start address is aligned at the start of a word? */
347 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
348 (hpratio == 1)) {
349 unsigned long **blocks[DIRTY_MEMORY_NUM];
350 unsigned long idx;
351 unsigned long offset;
352 long k;
353 long nr = BITS_TO_LONGS(pages);
355 idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
356 offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
357 DIRTY_MEMORY_BLOCK_SIZE);
359 WITH_RCU_READ_LOCK_GUARD() {
360 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
361 blocks[i] =
362 qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
365 for (k = 0; k < nr; k++) {
366 if (bitmap[k]) {
367 unsigned long temp = leul_to_cpu(bitmap[k]);
369 qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
371 if (global_dirty_log) {
372 qatomic_or(
373 &blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
374 temp);
377 if (tcg_enabled()) {
378 qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
379 temp);
383 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
384 offset = 0;
385 idx++;
390 xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
391 } else {
392 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
394 if (!global_dirty_log) {
395 clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
399 * bitmap-traveling is faster than memory-traveling (for addr...)
400 * especially when most of the memory is not dirty.
402 for (i = 0; i < len; i++) {
403 if (bitmap[i] != 0) {
404 c = leul_to_cpu(bitmap[i]);
405 do {
406 j = ctzl(c);
407 c &= ~(1ul << j);
408 page_number = (i * HOST_LONG_BITS + j) * hpratio;
409 addr = page_number * TARGET_PAGE_SIZE;
410 ram_addr = start + addr;
411 cpu_physical_memory_set_dirty_range(ram_addr,
412 TARGET_PAGE_SIZE * hpratio, clients);
413 } while (c != 0);
418 #endif /* not _WIN32 */
420 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
421 ram_addr_t length,
422 unsigned client);
424 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
425 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
427 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
428 ram_addr_t start,
429 ram_addr_t length);
431 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
432 ram_addr_t length)
434 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
435 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
436 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
440 /* Called with RCU critical section */
441 static inline
442 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
443 ram_addr_t start,
444 ram_addr_t length)
446 ram_addr_t addr;
447 unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
448 uint64_t num_dirty = 0;
449 unsigned long *dest = rb->bmap;
451 /* start address and length is aligned at the start of a word? */
452 if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
453 (start + rb->offset) &&
454 !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
455 int k;
456 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
457 unsigned long * const *src;
458 unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
459 unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
460 DIRTY_MEMORY_BLOCK_SIZE);
461 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
463 src = qatomic_rcu_read(
464 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
466 for (k = page; k < page + nr; k++) {
467 if (src[idx][offset]) {
468 unsigned long bits = qatomic_xchg(&src[idx][offset], 0);
469 unsigned long new_dirty;
470 new_dirty = ~dest[k];
471 dest[k] |= bits;
472 new_dirty &= bits;
473 num_dirty += ctpopl(new_dirty);
476 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
477 offset = 0;
478 idx++;
482 if (rb->clear_bmap) {
484 * Postpone the dirty bitmap clear to the point before we
485 * really send the pages, also we will split the clear
486 * dirty procedure into smaller chunks.
488 clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
489 length >> TARGET_PAGE_BITS);
490 } else {
491 /* Slow path - still do that in a huge chunk */
492 memory_region_clear_dirty_bitmap(rb->mr, start, length);
494 } else {
495 ram_addr_t offset = rb->offset;
497 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
498 if (cpu_physical_memory_test_and_clear_dirty(
499 start + addr + offset,
500 TARGET_PAGE_SIZE,
501 DIRTY_MEMORY_MIGRATION)) {
502 long k = (start + addr) >> TARGET_PAGE_BITS;
503 if (!test_and_set_bit(k, dest)) {
504 num_dirty++;
510 return num_dirty;
512 #endif
513 #endif