ppc/pnv.c: add a friendly warning when accel=kvm is used
[qemu/kevin.git] / target / arm / op_helper.c
blob70b42b55fd0c6426e64a46bbdfd826ab2c2ca707
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
27 #define SIGNBIT (uint32_t)0x80000000
28 #define SIGNBIT64 ((uint64_t)1 << 63)
30 void raise_exception(CPUARMState *env, uint32_t excp,
31 uint32_t syndrome, uint32_t target_el)
33 CPUState *cs = env_cpu(env);
35 if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
37 * Redirect NS EL1 exceptions to NS EL2. These are reported with
38 * their original syndrome register value, with the exception of
39 * SIMD/FP access traps, which are reported as uncategorized
40 * (see DDI0478C.a D1.10.4)
42 target_el = 2;
43 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
44 syndrome = syn_uncategorized();
48 assert(!excp_is_internal(excp));
49 cs->exception_index = excp;
50 env->exception.syndrome = syndrome;
51 env->exception.target_el = target_el;
52 cpu_loop_exit(cs);
55 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
56 uint32_t target_el, uintptr_t ra)
58 CPUState *cs = env_cpu(env);
61 * restore_state_to_opc() will set env->exception.syndrome, so
62 * we must restore CPU state here before setting the syndrome
63 * the caller passed us, and cannot use cpu_loop_exit_restore().
65 cpu_restore_state(cs, ra, true);
66 raise_exception(env, excp, syndrome, target_el);
69 uint64_t HELPER(neon_tbl)(CPUARMState *env, uint32_t desc,
70 uint64_t ireg, uint64_t def)
72 uint64_t tmp, val = 0;
73 uint32_t maxindex = ((desc & 3) + 1) * 8;
74 uint32_t base_reg = desc >> 2;
75 uint32_t shift, index, reg;
77 for (shift = 0; shift < 64; shift += 8) {
78 index = (ireg >> shift) & 0xff;
79 if (index < maxindex) {
80 reg = base_reg + (index >> 3);
81 tmp = *aa32_vfp_dreg(env, reg);
82 tmp = ((tmp >> ((index & 7) << 3)) & 0xff) << shift;
83 } else {
84 tmp = def & (0xffull << shift);
86 val |= tmp;
88 return val;
91 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
94 * Perform the v8M stack limit check for SP updates from translated code,
95 * raising an exception if the limit is breached.
97 if (newvalue < v7m_sp_limit(env)) {
99 * Stack limit exceptions are a rare case, so rather than syncing
100 * PC/condbits before the call, we use raise_exception_ra() so
101 * that cpu_restore_state() will sort them out.
103 raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
107 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
109 uint32_t res = a + b;
110 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
111 env->QF = 1;
112 return res;
115 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
117 uint32_t res = a + b;
118 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
119 env->QF = 1;
120 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
122 return res;
125 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
127 uint32_t res = a - b;
128 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
129 env->QF = 1;
130 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
132 return res;
135 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
137 uint32_t res = a + b;
138 if (res < a) {
139 env->QF = 1;
140 res = ~0;
142 return res;
145 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
147 uint32_t res = a - b;
148 if (res > a) {
149 env->QF = 1;
150 res = 0;
152 return res;
155 /* Signed saturation. */
156 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
158 int32_t top;
159 uint32_t mask;
161 top = val >> shift;
162 mask = (1u << shift) - 1;
163 if (top > 0) {
164 env->QF = 1;
165 return mask;
166 } else if (top < -1) {
167 env->QF = 1;
168 return ~mask;
170 return val;
173 /* Unsigned saturation. */
174 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
176 uint32_t max;
178 max = (1u << shift) - 1;
179 if (val < 0) {
180 env->QF = 1;
181 return 0;
182 } else if (val > max) {
183 env->QF = 1;
184 return max;
186 return val;
189 /* Signed saturate. */
190 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
192 return do_ssat(env, x, shift);
195 /* Dual halfword signed saturate. */
196 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
198 uint32_t res;
200 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
201 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
202 return res;
205 /* Unsigned saturate. */
206 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
208 return do_usat(env, x, shift);
211 /* Dual halfword unsigned saturate. */
212 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
214 uint32_t res;
216 res = (uint16_t)do_usat(env, (int16_t)x, shift);
217 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
218 return res;
221 void HELPER(setend)(CPUARMState *env)
223 env->uncached_cpsr ^= CPSR_E;
224 arm_rebuild_hflags(env);
227 void HELPER(check_bxj_trap)(CPUARMState *env, uint32_t rm)
230 * Only called if in NS EL0 or EL1 for a BXJ for a v7A CPU;
231 * check if HSTR.TJDBX means we need to trap to EL2.
233 if (env->cp15.hstr_el2 & HSTR_TJDBX) {
235 * We know the condition code check passed, so take the IMPDEF
236 * choice to always report CV=1 COND 0xe
238 uint32_t syn = syn_bxjtrap(1, 0xe, rm);
239 raise_exception_ra(env, EXCP_HYP_TRAP, syn, 2, GETPC());
243 #ifndef CONFIG_USER_ONLY
244 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
245 * The function returns the target EL (1-3) if the instruction is to be trapped;
246 * otherwise it returns 0 indicating it is not trapped.
248 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
250 int cur_el = arm_current_el(env);
251 uint64_t mask;
253 if (arm_feature(env, ARM_FEATURE_M)) {
254 /* M profile cores can never trap WFI/WFE. */
255 return 0;
258 /* If we are currently in EL0 then we need to check if SCTLR is set up for
259 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
261 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
262 int target_el;
264 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
265 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
266 /* Secure EL0 and Secure PL1 is at EL3 */
267 target_el = 3;
268 } else {
269 target_el = 1;
272 if (!(env->cp15.sctlr_el[target_el] & mask)) {
273 return target_el;
277 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
278 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
279 * bits will be zero indicating no trap.
281 if (cur_el < 2) {
282 mask = is_wfe ? HCR_TWE : HCR_TWI;
283 if (arm_hcr_el2_eff(env) & mask) {
284 return 2;
288 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
289 if (cur_el < 3) {
290 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
291 if (env->cp15.scr_el3 & mask) {
292 return 3;
296 return 0;
298 #endif
300 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
302 #ifdef CONFIG_USER_ONLY
304 * WFI in the user-mode emulator is technically permitted but not
305 * something any real-world code would do. AArch64 Linux kernels
306 * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
307 * AArch32 kernels don't trap it so it will delay a bit.
308 * For QEMU, make it NOP here, because trying to raise EXCP_HLT
309 * would trigger an abort.
311 return;
312 #else
313 CPUState *cs = env_cpu(env);
314 int target_el = check_wfx_trap(env, false);
316 if (cpu_has_work(cs)) {
317 /* Don't bother to go into our "low power state" if
318 * we would just wake up immediately.
320 return;
323 if (target_el) {
324 if (env->aarch64) {
325 env->pc -= insn_len;
326 } else {
327 env->regs[15] -= insn_len;
330 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
331 target_el);
334 cs->exception_index = EXCP_HLT;
335 cs->halted = 1;
336 cpu_loop_exit(cs);
337 #endif
340 void HELPER(wfe)(CPUARMState *env)
342 /* This is a hint instruction that is semantically different
343 * from YIELD even though we currently implement it identically.
344 * Don't actually halt the CPU, just yield back to top
345 * level loop. This is not going into a "low power state"
346 * (ie halting until some event occurs), so we never take
347 * a configurable trap to a different exception level.
349 HELPER(yield)(env);
352 void HELPER(yield)(CPUARMState *env)
354 CPUState *cs = env_cpu(env);
356 /* This is a non-trappable hint instruction that generally indicates
357 * that the guest is currently busy-looping. Yield control back to the
358 * top level loop so that a more deserving VCPU has a chance to run.
360 cs->exception_index = EXCP_YIELD;
361 cpu_loop_exit(cs);
364 /* Raise an internal-to-QEMU exception. This is limited to only
365 * those EXCP values which are special cases for QEMU to interrupt
366 * execution and not to be used for exceptions which are passed to
367 * the guest (those must all have syndrome information and thus should
368 * use exception_with_syndrome).
370 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
372 CPUState *cs = env_cpu(env);
374 assert(excp_is_internal(excp));
375 cs->exception_index = excp;
376 cpu_loop_exit(cs);
379 /* Raise an exception with the specified syndrome register value */
380 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
381 uint32_t syndrome, uint32_t target_el)
383 raise_exception(env, excp, syndrome, target_el);
386 /* Raise an EXCP_BKPT with the specified syndrome register value,
387 * targeting the correct exception level for debug exceptions.
389 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
391 int debug_el = arm_debug_target_el(env);
392 int cur_el = arm_current_el(env);
394 /* FSR will only be used if the debug target EL is AArch32. */
395 env->exception.fsr = arm_debug_exception_fsr(env);
396 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
397 * values to the guest that it shouldn't be able to see at its
398 * exception/security level.
400 env->exception.vaddress = 0;
402 * Other kinds of architectural debug exception are ignored if
403 * they target an exception level below the current one (in QEMU
404 * this is checked by arm_generate_debug_exceptions()). Breakpoint
405 * instructions are special because they always generate an exception
406 * to somewhere: if they can't go to the configured debug exception
407 * level they are taken to the current exception level.
409 if (debug_el < cur_el) {
410 debug_el = cur_el;
412 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
415 uint32_t HELPER(cpsr_read)(CPUARMState *env)
417 return cpsr_read(env) & ~CPSR_EXEC;
420 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
422 cpsr_write(env, val, mask, CPSRWriteByInstr);
423 /* TODO: Not all cpsr bits are relevant to hflags. */
424 arm_rebuild_hflags(env);
427 /* Write the CPSR for a 32-bit exception return */
428 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
430 uint32_t mask;
432 qemu_mutex_lock_iothread();
433 arm_call_pre_el_change_hook(env_archcpu(env));
434 qemu_mutex_unlock_iothread();
436 mask = aarch32_cpsr_valid_mask(env->features, &env_archcpu(env)->isar);
437 cpsr_write(env, val, mask, CPSRWriteExceptionReturn);
439 /* Generated code has already stored the new PC value, but
440 * without masking out its low bits, because which bits need
441 * masking depends on whether we're returning to Thumb or ARM
442 * state. Do the masking now.
444 env->regs[15] &= (env->thumb ? ~1 : ~3);
445 arm_rebuild_hflags(env);
447 qemu_mutex_lock_iothread();
448 arm_call_el_change_hook(env_archcpu(env));
449 qemu_mutex_unlock_iothread();
452 /* Access to user mode registers from privileged modes. */
453 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
455 uint32_t val;
457 if (regno == 13) {
458 val = env->banked_r13[BANK_USRSYS];
459 } else if (regno == 14) {
460 val = env->banked_r14[BANK_USRSYS];
461 } else if (regno >= 8
462 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
463 val = env->usr_regs[regno - 8];
464 } else {
465 val = env->regs[regno];
467 return val;
470 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
472 if (regno == 13) {
473 env->banked_r13[BANK_USRSYS] = val;
474 } else if (regno == 14) {
475 env->banked_r14[BANK_USRSYS] = val;
476 } else if (regno >= 8
477 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
478 env->usr_regs[regno - 8] = val;
479 } else {
480 env->regs[regno] = val;
484 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
486 if ((env->uncached_cpsr & CPSR_M) == mode) {
487 env->regs[13] = val;
488 } else {
489 env->banked_r13[bank_number(mode)] = val;
493 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
495 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
496 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
497 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
499 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
500 exception_target_el(env));
503 if ((env->uncached_cpsr & CPSR_M) == mode) {
504 return env->regs[13];
505 } else {
506 return env->banked_r13[bank_number(mode)];
510 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
511 uint32_t regno)
513 /* Raise an exception if the requested access is one of the UNPREDICTABLE
514 * cases; otherwise return. This broadly corresponds to the pseudocode
515 * BankedRegisterAccessValid() and SPSRAccessValid(),
516 * except that we have already handled some cases at translate time.
518 int curmode = env->uncached_cpsr & CPSR_M;
520 if (regno == 17) {
521 /* ELR_Hyp: a special case because access from tgtmode is OK */
522 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
523 goto undef;
525 return;
528 if (curmode == tgtmode) {
529 goto undef;
532 if (tgtmode == ARM_CPU_MODE_USR) {
533 switch (regno) {
534 case 8 ... 12:
535 if (curmode != ARM_CPU_MODE_FIQ) {
536 goto undef;
538 break;
539 case 13:
540 if (curmode == ARM_CPU_MODE_SYS) {
541 goto undef;
543 break;
544 case 14:
545 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
546 goto undef;
548 break;
549 default:
550 break;
554 if (tgtmode == ARM_CPU_MODE_HYP) {
555 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
556 if (curmode != ARM_CPU_MODE_MON) {
557 goto undef;
561 return;
563 undef:
564 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
565 exception_target_el(env));
568 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
569 uint32_t regno)
571 msr_mrs_banked_exc_checks(env, tgtmode, regno);
573 switch (regno) {
574 case 16: /* SPSRs */
575 env->banked_spsr[bank_number(tgtmode)] = value;
576 break;
577 case 17: /* ELR_Hyp */
578 env->elr_el[2] = value;
579 break;
580 case 13:
581 env->banked_r13[bank_number(tgtmode)] = value;
582 break;
583 case 14:
584 env->banked_r14[r14_bank_number(tgtmode)] = value;
585 break;
586 case 8 ... 12:
587 switch (tgtmode) {
588 case ARM_CPU_MODE_USR:
589 env->usr_regs[regno - 8] = value;
590 break;
591 case ARM_CPU_MODE_FIQ:
592 env->fiq_regs[regno - 8] = value;
593 break;
594 default:
595 g_assert_not_reached();
597 break;
598 default:
599 g_assert_not_reached();
603 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
605 msr_mrs_banked_exc_checks(env, tgtmode, regno);
607 switch (regno) {
608 case 16: /* SPSRs */
609 return env->banked_spsr[bank_number(tgtmode)];
610 case 17: /* ELR_Hyp */
611 return env->elr_el[2];
612 case 13:
613 return env->banked_r13[bank_number(tgtmode)];
614 case 14:
615 return env->banked_r14[r14_bank_number(tgtmode)];
616 case 8 ... 12:
617 switch (tgtmode) {
618 case ARM_CPU_MODE_USR:
619 return env->usr_regs[regno - 8];
620 case ARM_CPU_MODE_FIQ:
621 return env->fiq_regs[regno - 8];
622 default:
623 g_assert_not_reached();
625 default:
626 g_assert_not_reached();
630 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
631 uint32_t isread)
633 const ARMCPRegInfo *ri = rip;
634 int target_el;
636 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
637 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
638 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
642 * Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses
643 * to sysregs non accessible at EL0 to have UNDEF-ed already.
645 if (!is_a64(env) && arm_current_el(env) < 2 && ri->cp == 15 &&
646 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
647 uint32_t mask = 1 << ri->crn;
649 if (ri->type & ARM_CP_64BIT) {
650 mask = 1 << ri->crm;
653 /* T4 and T14 are RES0 */
654 mask &= ~((1 << 4) | (1 << 14));
656 if (env->cp15.hstr_el2 & mask) {
657 target_el = 2;
658 goto exept;
662 if (!ri->accessfn) {
663 return;
666 switch (ri->accessfn(env, ri, isread)) {
667 case CP_ACCESS_OK:
668 return;
669 case CP_ACCESS_TRAP:
670 target_el = exception_target_el(env);
671 break;
672 case CP_ACCESS_TRAP_EL2:
673 /* Requesting a trap to EL2 when we're in EL3 is
674 * a bug in the access function.
676 assert(arm_current_el(env) != 3);
677 target_el = 2;
678 break;
679 case CP_ACCESS_TRAP_EL3:
680 target_el = 3;
681 break;
682 case CP_ACCESS_TRAP_UNCATEGORIZED:
683 target_el = exception_target_el(env);
684 syndrome = syn_uncategorized();
685 break;
686 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
687 target_el = 2;
688 syndrome = syn_uncategorized();
689 break;
690 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
691 target_el = 3;
692 syndrome = syn_uncategorized();
693 break;
694 case CP_ACCESS_TRAP_FP_EL2:
695 target_el = 2;
696 /* Since we are an implementation that takes exceptions on a trapped
697 * conditional insn only if the insn has passed its condition code
698 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
699 * (which is also the required value for AArch64 traps).
701 syndrome = syn_fp_access_trap(1, 0xe, false);
702 break;
703 case CP_ACCESS_TRAP_FP_EL3:
704 target_el = 3;
705 syndrome = syn_fp_access_trap(1, 0xe, false);
706 break;
707 default:
708 g_assert_not_reached();
711 exept:
712 raise_exception(env, EXCP_UDEF, syndrome, target_el);
715 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
717 const ARMCPRegInfo *ri = rip;
719 if (ri->type & ARM_CP_IO) {
720 qemu_mutex_lock_iothread();
721 ri->writefn(env, ri, value);
722 qemu_mutex_unlock_iothread();
723 } else {
724 ri->writefn(env, ri, value);
728 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
730 const ARMCPRegInfo *ri = rip;
731 uint32_t res;
733 if (ri->type & ARM_CP_IO) {
734 qemu_mutex_lock_iothread();
735 res = ri->readfn(env, ri);
736 qemu_mutex_unlock_iothread();
737 } else {
738 res = ri->readfn(env, ri);
741 return res;
744 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
746 const ARMCPRegInfo *ri = rip;
748 if (ri->type & ARM_CP_IO) {
749 qemu_mutex_lock_iothread();
750 ri->writefn(env, ri, value);
751 qemu_mutex_unlock_iothread();
752 } else {
753 ri->writefn(env, ri, value);
757 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
759 const ARMCPRegInfo *ri = rip;
760 uint64_t res;
762 if (ri->type & ARM_CP_IO) {
763 qemu_mutex_lock_iothread();
764 res = ri->readfn(env, ri);
765 qemu_mutex_unlock_iothread();
766 } else {
767 res = ri->readfn(env, ri);
770 return res;
773 void HELPER(pre_hvc)(CPUARMState *env)
775 ARMCPU *cpu = env_archcpu(env);
776 int cur_el = arm_current_el(env);
777 /* FIXME: Use actual secure state. */
778 bool secure = false;
779 bool undef;
781 if (arm_is_psci_call(cpu, EXCP_HVC)) {
782 /* If PSCI is enabled and this looks like a valid PSCI call then
783 * that overrides the architecturally mandated HVC behaviour.
785 return;
788 if (!arm_feature(env, ARM_FEATURE_EL2)) {
789 /* If EL2 doesn't exist, HVC always UNDEFs */
790 undef = true;
791 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
792 /* EL3.HCE has priority over EL2.HCD. */
793 undef = !(env->cp15.scr_el3 & SCR_HCE);
794 } else {
795 undef = env->cp15.hcr_el2 & HCR_HCD;
798 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
799 * For ARMv8/AArch64, HVC is allowed in EL3.
800 * Note that we've already trapped HVC from EL0 at translation
801 * time.
803 if (secure && (!is_a64(env) || cur_el == 1)) {
804 undef = true;
807 if (undef) {
808 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
809 exception_target_el(env));
813 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
815 ARMCPU *cpu = env_archcpu(env);
816 int cur_el = arm_current_el(env);
817 bool secure = arm_is_secure(env);
818 bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
821 * SMC behaviour is summarized in the following table.
822 * This helper handles the "Trap to EL2" and "Undef insn" cases.
823 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
824 * helper.
826 * -> ARM_FEATURE_EL3 and !SMD
827 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
829 * Conduit SMC, valid call Trap to EL2 PSCI Call
830 * Conduit SMC, inval call Trap to EL2 Trap to EL3
831 * Conduit not SMC Trap to EL2 Trap to EL3
834 * -> ARM_FEATURE_EL3 and SMD
835 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
837 * Conduit SMC, valid call Trap to EL2 PSCI Call
838 * Conduit SMC, inval call Trap to EL2 Undef insn
839 * Conduit not SMC Trap to EL2 Undef insn
842 * -> !ARM_FEATURE_EL3
843 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
845 * Conduit SMC, valid call Trap to EL2 PSCI Call
846 * Conduit SMC, inval call Trap to EL2 Undef insn
847 * Conduit not SMC Undef insn Undef insn
850 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
851 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
852 * extensions, SMD only applies to NS state.
853 * On ARMv7 without the Virtualization extensions, the SMD bit
854 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
855 * so we need not special case this here.
857 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
858 : smd_flag && !secure;
860 if (!arm_feature(env, ARM_FEATURE_EL3) &&
861 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
862 /* If we have no EL3 then SMC always UNDEFs and can't be
863 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
864 * firmware within QEMU, and we want an EL2 guest to be able
865 * to forbid its EL1 from making PSCI calls into QEMU's
866 * "firmware" via HCR.TSC, so for these purposes treat
867 * PSCI-via-SMC as implying an EL3.
868 * This handles the very last line of the previous table.
870 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
871 exception_target_el(env));
874 if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
875 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
876 * We also want an EL2 guest to be able to forbid its EL1 from
877 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
878 * This handles all the "Trap to EL2" cases of the previous table.
880 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
883 /* Catch the two remaining "Undef insn" cases of the previous table:
884 * - PSCI conduit is SMC but we don't have a valid PCSI call,
885 * - We don't have EL3 or SMD is set.
887 if (!arm_is_psci_call(cpu, EXCP_SMC) &&
888 (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
889 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
890 exception_target_el(env));
894 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
895 The only way to do that in TCG is a conditional branch, which clobbers
896 all our temporaries. For now implement these as helper functions. */
898 /* Similarly for variable shift instructions. */
900 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
902 int shift = i & 0xff;
903 if (shift >= 32) {
904 if (shift == 32)
905 env->CF = x & 1;
906 else
907 env->CF = 0;
908 return 0;
909 } else if (shift != 0) {
910 env->CF = (x >> (32 - shift)) & 1;
911 return x << shift;
913 return x;
916 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
918 int shift = i & 0xff;
919 if (shift >= 32) {
920 if (shift == 32)
921 env->CF = (x >> 31) & 1;
922 else
923 env->CF = 0;
924 return 0;
925 } else if (shift != 0) {
926 env->CF = (x >> (shift - 1)) & 1;
927 return x >> shift;
929 return x;
932 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
934 int shift = i & 0xff;
935 if (shift >= 32) {
936 env->CF = (x >> 31) & 1;
937 return (int32_t)x >> 31;
938 } else if (shift != 0) {
939 env->CF = (x >> (shift - 1)) & 1;
940 return (int32_t)x >> shift;
942 return x;
945 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
947 int shift1, shift;
948 shift1 = i & 0xff;
949 shift = shift1 & 0x1f;
950 if (shift == 0) {
951 if (shift1 != 0)
952 env->CF = (x >> 31) & 1;
953 return x;
954 } else {
955 env->CF = (x >> (shift - 1)) & 1;
956 return ((uint32_t)x >> shift) | (x << (32 - shift));
960 void HELPER(probe_access)(CPUARMState *env, target_ulong ptr,
961 uint32_t access_type, uint32_t mmu_idx,
962 uint32_t size)
964 uint32_t in_page = -((uint32_t)ptr | TARGET_PAGE_SIZE);
965 uintptr_t ra = GETPC();
967 if (likely(size <= in_page)) {
968 probe_access(env, ptr, size, access_type, mmu_idx, ra);
969 } else {
970 probe_access(env, ptr, in_page, access_type, mmu_idx, ra);
971 probe_access(env, ptr + in_page, size - in_page,
972 access_type, mmu_idx, ra);