nbd: Simplify meta-context parsing
[qemu/kevin.git] / hw / ssi / xilinx_spi.c
blobfec8817d9463183a06a7d735b45e9de003006c8c
1 /*
2 * QEMU model of the Xilinx SPI Controller
4 * Copyright (C) 2010 Edgar E. Iglesias.
5 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
6 * Copyright (C) 2012 PetaLogix
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "hw/sysbus.h"
29 #include "migration/vmstate.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "qemu/fifo8.h"
34 #include "hw/irq.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/ssi/ssi.h"
37 #include "qom/object.h"
39 #ifdef XILINX_SPI_ERR_DEBUG
40 #define DB_PRINT(...) do { \
41 fprintf(stderr, ": %s: ", __func__); \
42 fprintf(stderr, ## __VA_ARGS__); \
43 } while (0)
44 #else
45 #define DB_PRINT(...)
46 #endif
48 #define R_DGIER (0x1c / 4)
49 #define R_DGIER_IE (1 << 31)
51 #define R_IPISR (0x20 / 4)
52 #define IRQ_DRR_NOT_EMPTY (1 << (31 - 23))
53 #define IRQ_DRR_OVERRUN (1 << (31 - 26))
54 #define IRQ_DRR_FULL (1 << (31 - 27))
55 #define IRQ_TX_FF_HALF_EMPTY (1 << 6)
56 #define IRQ_DTR_UNDERRUN (1 << 3)
57 #define IRQ_DTR_EMPTY (1 << (31 - 29))
59 #define R_IPIER (0x28 / 4)
60 #define R_SRR (0x40 / 4)
61 #define R_SPICR (0x60 / 4)
62 #define R_SPICR_TXFF_RST (1 << 5)
63 #define R_SPICR_RXFF_RST (1 << 6)
64 #define R_SPICR_MTI (1 << 8)
66 #define R_SPISR (0x64 / 4)
67 #define SR_TX_FULL (1 << 3)
68 #define SR_TX_EMPTY (1 << 2)
69 #define SR_RX_FULL (1 << 1)
70 #define SR_RX_EMPTY (1 << 0)
72 #define R_SPIDTR (0x68 / 4)
73 #define R_SPIDRR (0x6C / 4)
74 #define R_SPISSR (0x70 / 4)
75 #define R_TX_FF_OCY (0x74 / 4)
76 #define R_RX_FF_OCY (0x78 / 4)
77 #define R_MAX (0x7C / 4)
79 #define FIFO_CAPACITY 256
81 #define TYPE_XILINX_SPI "xlnx.xps-spi"
82 OBJECT_DECLARE_SIMPLE_TYPE(XilinxSPI, XILINX_SPI)
84 struct XilinxSPI {
85 SysBusDevice parent_obj;
87 MemoryRegion mmio;
89 qemu_irq irq;
90 int irqline;
92 uint8_t num_cs;
93 qemu_irq *cs_lines;
95 SSIBus *spi;
97 Fifo8 rx_fifo;
98 Fifo8 tx_fifo;
100 uint32_t regs[R_MAX];
103 static void txfifo_reset(XilinxSPI *s)
105 fifo8_reset(&s->tx_fifo);
107 s->regs[R_SPISR] &= ~SR_TX_FULL;
108 s->regs[R_SPISR] |= SR_TX_EMPTY;
111 static void rxfifo_reset(XilinxSPI *s)
113 fifo8_reset(&s->rx_fifo);
115 s->regs[R_SPISR] |= SR_RX_EMPTY;
116 s->regs[R_SPISR] &= ~SR_RX_FULL;
119 static void xlx_spi_update_cs(XilinxSPI *s)
121 int i;
123 for (i = 0; i < s->num_cs; ++i) {
124 qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i));
128 static void xlx_spi_update_irq(XilinxSPI *s)
130 uint32_t pending;
132 s->regs[R_IPISR] |=
133 (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) |
134 (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0);
136 pending = s->regs[R_IPISR] & s->regs[R_IPIER];
138 pending = pending && (s->regs[R_DGIER] & R_DGIER_IE);
139 pending = !!pending;
141 /* This call lies right in the data paths so don't call the
142 irq chain unless things really changed. */
143 if (pending != s->irqline) {
144 s->irqline = pending;
145 DB_PRINT("irq_change of state %d ISR:%x IER:%X\n",
146 pending, s->regs[R_IPISR], s->regs[R_IPIER]);
147 qemu_set_irq(s->irq, pending);
152 static void xlx_spi_do_reset(XilinxSPI *s)
154 memset(s->regs, 0, sizeof s->regs);
156 rxfifo_reset(s);
157 txfifo_reset(s);
159 s->regs[R_SPISSR] = ~0;
160 xlx_spi_update_irq(s);
161 xlx_spi_update_cs(s);
164 static void xlx_spi_reset(DeviceState *d)
166 xlx_spi_do_reset(XILINX_SPI(d));
169 static inline int spi_master_enabled(XilinxSPI *s)
171 return !(s->regs[R_SPICR] & R_SPICR_MTI);
174 static void spi_flush_txfifo(XilinxSPI *s)
176 uint32_t tx;
177 uint32_t rx;
179 while (!fifo8_is_empty(&s->tx_fifo)) {
180 tx = (uint32_t)fifo8_pop(&s->tx_fifo);
181 DB_PRINT("data tx:%x\n", tx);
182 rx = ssi_transfer(s->spi, tx);
183 DB_PRINT("data rx:%x\n", rx);
184 if (fifo8_is_full(&s->rx_fifo)) {
185 s->regs[R_IPISR] |= IRQ_DRR_OVERRUN;
186 } else {
187 fifo8_push(&s->rx_fifo, (uint8_t)rx);
188 if (fifo8_is_full(&s->rx_fifo)) {
189 s->regs[R_SPISR] |= SR_RX_FULL;
190 s->regs[R_IPISR] |= IRQ_DRR_FULL;
194 s->regs[R_SPISR] &= ~SR_RX_EMPTY;
195 s->regs[R_SPISR] &= ~SR_TX_FULL;
196 s->regs[R_SPISR] |= SR_TX_EMPTY;
198 s->regs[R_IPISR] |= IRQ_DTR_EMPTY;
199 s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY;
204 static uint64_t
205 spi_read(void *opaque, hwaddr addr, unsigned int size)
207 XilinxSPI *s = opaque;
208 uint32_t r = 0;
210 addr >>= 2;
211 switch (addr) {
212 case R_SPIDRR:
213 if (fifo8_is_empty(&s->rx_fifo)) {
214 DB_PRINT("Read from empty FIFO!\n");
215 return 0xdeadbeef;
218 s->regs[R_SPISR] &= ~SR_RX_FULL;
219 r = fifo8_pop(&s->rx_fifo);
220 if (fifo8_is_empty(&s->rx_fifo)) {
221 s->regs[R_SPISR] |= SR_RX_EMPTY;
223 break;
225 case R_SPISR:
226 r = s->regs[addr];
227 break;
229 default:
230 if (addr < ARRAY_SIZE(s->regs)) {
231 r = s->regs[addr];
233 break;
236 DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, r);
237 xlx_spi_update_irq(s);
238 return r;
241 static void
242 spi_write(void *opaque, hwaddr addr,
243 uint64_t val64, unsigned int size)
245 XilinxSPI *s = opaque;
246 uint32_t value = val64;
248 DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, value);
249 addr >>= 2;
250 switch (addr) {
251 case R_SRR:
252 if (value != 0xa) {
253 DB_PRINT("Invalid write to SRR %x\n", value);
254 } else {
255 xlx_spi_do_reset(s);
257 break;
259 case R_SPIDTR:
260 s->regs[R_SPISR] &= ~SR_TX_EMPTY;
261 fifo8_push(&s->tx_fifo, (uint8_t)value);
262 if (fifo8_is_full(&s->tx_fifo)) {
263 s->regs[R_SPISR] |= SR_TX_FULL;
265 if (!spi_master_enabled(s)) {
266 goto done;
267 } else {
268 DB_PRINT("DTR and master enabled\n");
270 spi_flush_txfifo(s);
271 break;
273 case R_SPISR:
274 DB_PRINT("Invalid write to SPISR %x\n", value);
275 break;
277 case R_IPISR:
278 /* Toggle the bits. */
279 s->regs[addr] ^= value;
280 break;
282 /* Slave Select Register. */
283 case R_SPISSR:
284 s->regs[addr] = value;
285 xlx_spi_update_cs(s);
286 break;
288 case R_SPICR:
289 /* FIXME: reset irq and sr state to empty queues. */
290 if (value & R_SPICR_RXFF_RST) {
291 rxfifo_reset(s);
294 if (value & R_SPICR_TXFF_RST) {
295 txfifo_reset(s);
297 value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST);
298 s->regs[addr] = value;
300 if (!(value & R_SPICR_MTI)) {
301 spi_flush_txfifo(s);
303 break;
305 default:
306 if (addr < ARRAY_SIZE(s->regs)) {
307 s->regs[addr] = value;
309 break;
312 done:
313 xlx_spi_update_irq(s);
316 static const MemoryRegionOps spi_ops = {
317 .read = spi_read,
318 .write = spi_write,
319 .endianness = DEVICE_NATIVE_ENDIAN,
320 .valid = {
321 .min_access_size = 4,
322 .max_access_size = 4
326 static void xilinx_spi_realize(DeviceState *dev, Error **errp)
328 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
329 XilinxSPI *s = XILINX_SPI(dev);
330 int i;
332 DB_PRINT("\n");
334 s->spi = ssi_create_bus(dev, "spi");
336 sysbus_init_irq(sbd, &s->irq);
337 s->cs_lines = g_new0(qemu_irq, s->num_cs);
338 for (i = 0; i < s->num_cs; ++i) {
339 sysbus_init_irq(sbd, &s->cs_lines[i]);
342 memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
343 "xilinx-spi", R_MAX * 4);
344 sysbus_init_mmio(sbd, &s->mmio);
346 s->irqline = -1;
348 fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
349 fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
352 static const VMStateDescription vmstate_xilinx_spi = {
353 .name = "xilinx_spi",
354 .version_id = 1,
355 .minimum_version_id = 1,
356 .fields = (VMStateField[]) {
357 VMSTATE_FIFO8(tx_fifo, XilinxSPI),
358 VMSTATE_FIFO8(rx_fifo, XilinxSPI),
359 VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX),
360 VMSTATE_END_OF_LIST()
364 static Property xilinx_spi_properties[] = {
365 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1),
366 DEFINE_PROP_END_OF_LIST(),
369 static void xilinx_spi_class_init(ObjectClass *klass, void *data)
371 DeviceClass *dc = DEVICE_CLASS(klass);
373 dc->realize = xilinx_spi_realize;
374 dc->reset = xlx_spi_reset;
375 device_class_set_props(dc, xilinx_spi_properties);
376 dc->vmsd = &vmstate_xilinx_spi;
379 static const TypeInfo xilinx_spi_info = {
380 .name = TYPE_XILINX_SPI,
381 .parent = TYPE_SYS_BUS_DEVICE,
382 .instance_size = sizeof(XilinxSPI),
383 .class_init = xilinx_spi_class_init,
386 static void xilinx_spi_register_types(void)
388 type_register_static(&xilinx_spi_info);
391 type_init(xilinx_spi_register_types)