2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
34 //#define DEBUG_TLB_CHECK
40 * If flush_global is true (the usual case), flush all tlb entries.
41 * If flush_global is false, flush (at least) all tlb entries not
44 * Since QEMU doesn't currently implement a global/not-global flag
45 * for tlb entries, at the moment tlb_flush() will also flush all
46 * tlb entries in the flush_global == false case. This is OK because
47 * CPU architectures generally permit an implementation to drop
48 * entries from the TLB at any time, so flushing more entries than
49 * required is only an efficiency issue, not a correctness issue.
51 void tlb_flush(CPUState
*cpu
, int flush_global
)
53 CPUArchState
*env
= cpu
->env_ptr
;
55 #if defined(DEBUG_TLB)
56 printf("tlb_flush:\n");
58 /* must reset current TB so that interrupts cannot modify the
59 links while we are modifying them */
60 cpu
->current_tb
= NULL
;
62 memset(env
->tlb_table
, -1, sizeof(env
->tlb_table
));
63 memset(env
->tlb_v_table
, -1, sizeof(env
->tlb_v_table
));
64 memset(cpu
->tb_jmp_cache
, 0, sizeof(cpu
->tb_jmp_cache
));
67 env
->tlb_flush_addr
= -1;
68 env
->tlb_flush_mask
= 0;
72 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
74 if (addr
== (tlb_entry
->addr_read
&
75 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
76 addr
== (tlb_entry
->addr_write
&
77 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
78 addr
== (tlb_entry
->addr_code
&
79 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
80 memset(tlb_entry
, -1, sizeof(*tlb_entry
));
84 void tlb_flush_page(CPUState
*cpu
, target_ulong addr
)
86 CPUArchState
*env
= cpu
->env_ptr
;
90 #if defined(DEBUG_TLB)
91 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
93 /* Check if we need to flush due to large pages. */
94 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
95 #if defined(DEBUG_TLB)
96 printf("tlb_flush_page: forced full flush ("
97 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
98 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
103 /* must reset current TB so that interrupts cannot modify the
104 links while we are modifying them */
105 cpu
->current_tb
= NULL
;
107 addr
&= TARGET_PAGE_MASK
;
108 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
109 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
110 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
113 /* check whether there are entries that need to be flushed in the vtlb */
114 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
116 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
117 tlb_flush_entry(&env
->tlb_v_table
[mmu_idx
][k
], addr
);
121 tb_flush_jmp_cache(cpu
, addr
);
124 /* update the TLBs so that writes to code in the virtual page 'addr'
126 void tlb_protect_code(ram_addr_t ram_addr
)
128 cpu_physical_memory_reset_dirty(ram_addr
, TARGET_PAGE_SIZE
,
132 /* update the TLB so that writes in physical page 'phys_addr' are no longer
133 tested for self modifying code */
134 void tlb_unprotect_code_phys(CPUState
*cpu
, ram_addr_t ram_addr
,
137 cpu_physical_memory_set_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
);
140 static bool tlb_is_dirty_ram(CPUTLBEntry
*tlbe
)
142 return (tlbe
->addr_write
& (TLB_INVALID_MASK
|TLB_MMIO
|TLB_NOTDIRTY
)) == 0;
145 void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
, uintptr_t start
,
150 if (tlb_is_dirty_ram(tlb_entry
)) {
151 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
152 if ((addr
- start
) < length
) {
153 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
158 static inline ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
162 if (qemu_ram_addr_from_host(ptr
, &ram_addr
) == NULL
) {
163 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
169 void cpu_tlb_reset_dirty_all(ram_addr_t start1
, ram_addr_t length
)
178 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
181 for (i
= 0; i
< CPU_TLB_SIZE
; i
++) {
182 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
186 for (i
= 0; i
< CPU_VTLB_SIZE
; i
++) {
187 tlb_reset_dirty_range(&env
->tlb_v_table
[mmu_idx
][i
],
194 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
196 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
)) {
197 tlb_entry
->addr_write
= vaddr
;
201 /* update the TLB corresponding to virtual page vaddr
202 so that it is no longer dirty */
203 void tlb_set_dirty(CPUArchState
*env
, target_ulong vaddr
)
208 vaddr
&= TARGET_PAGE_MASK
;
209 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
210 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
211 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
214 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
216 for (k
= 0; k
< CPU_VTLB_SIZE
; k
++) {
217 tlb_set_dirty1(&env
->tlb_v_table
[mmu_idx
][k
], vaddr
);
222 /* Our TLB does not support large pages, so remember the area covered by
223 large pages and trigger a full TLB flush if these are invalidated. */
224 static void tlb_add_large_page(CPUArchState
*env
, target_ulong vaddr
,
227 target_ulong mask
= ~(size
- 1);
229 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
230 env
->tlb_flush_addr
= vaddr
& mask
;
231 env
->tlb_flush_mask
= mask
;
234 /* Extend the existing region to include the new page.
235 This is a compromise between unnecessary flushes and the cost
236 of maintaining a full variable size TLB. */
237 mask
&= env
->tlb_flush_mask
;
238 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
241 env
->tlb_flush_addr
&= mask
;
242 env
->tlb_flush_mask
= mask
;
245 /* Add a new TLB entry. At most one entry for a given virtual address
246 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
247 supplied size is only used by tlb_flush_page. */
248 void tlb_set_page(CPUState
*cpu
, target_ulong vaddr
,
249 hwaddr paddr
, int prot
,
250 int mmu_idx
, target_ulong size
)
252 CPUArchState
*env
= cpu
->env_ptr
;
253 MemoryRegionSection
*section
;
255 target_ulong address
;
256 target_ulong code_address
;
259 hwaddr iotlb
, xlat
, sz
;
260 unsigned vidx
= env
->vtlb_index
++ % CPU_VTLB_SIZE
;
262 assert(size
>= TARGET_PAGE_SIZE
);
263 if (size
!= TARGET_PAGE_SIZE
) {
264 tlb_add_large_page(env
, vaddr
, size
);
268 section
= address_space_translate_for_iotlb(cpu
->as
, paddr
,
270 assert(sz
>= TARGET_PAGE_SIZE
);
272 #if defined(DEBUG_TLB)
273 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
275 vaddr
, paddr
, prot
, mmu_idx
);
279 if (!memory_region_is_ram(section
->mr
) && !memory_region_is_romd(section
->mr
)) {
284 /* TLB_MMIO for rom/romd handled below */
285 addend
= (uintptr_t)memory_region_get_ram_ptr(section
->mr
) + xlat
;
288 code_address
= address
;
289 iotlb
= memory_region_section_get_iotlb(cpu
, section
, vaddr
, paddr
, xlat
,
292 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
293 te
= &env
->tlb_table
[mmu_idx
][index
];
295 /* do not discard the translation in te, evict it into a victim tlb */
296 env
->tlb_v_table
[mmu_idx
][vidx
] = *te
;
297 env
->iotlb_v
[mmu_idx
][vidx
] = env
->iotlb
[mmu_idx
][index
];
300 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
301 te
->addend
= addend
- vaddr
;
302 if (prot
& PAGE_READ
) {
303 te
->addr_read
= address
;
308 if (prot
& PAGE_EXEC
) {
309 te
->addr_code
= code_address
;
313 if (prot
& PAGE_WRITE
) {
314 if ((memory_region_is_ram(section
->mr
) && section
->readonly
)
315 || memory_region_is_romd(section
->mr
)) {
316 /* Write access calls the I/O callback. */
317 te
->addr_write
= address
| TLB_MMIO
;
318 } else if (memory_region_is_ram(section
->mr
)
319 && cpu_physical_memory_is_clean(section
->mr
->ram_addr
321 te
->addr_write
= address
| TLB_NOTDIRTY
;
323 te
->addr_write
= address
;
330 /* NOTE: this function can trigger an exception */
331 /* NOTE2: the returned address is not exactly the physical address: it
332 * is actually a ram_addr_t (in system mode; the user mode emulation
333 * version of this function returns a guest virtual address).
335 tb_page_addr_t
get_page_addr_code(CPUArchState
*env1
, target_ulong addr
)
337 int mmu_idx
, page_index
, pd
;
340 CPUState
*cpu
= ENV_GET_CPU(env1
);
342 page_index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
343 mmu_idx
= cpu_mmu_index(env1
);
344 if (unlikely(env1
->tlb_table
[mmu_idx
][page_index
].addr_code
!=
345 (addr
& TARGET_PAGE_MASK
))) {
346 cpu_ldub_code(env1
, addr
);
348 pd
= env1
->iotlb
[mmu_idx
][page_index
] & ~TARGET_PAGE_MASK
;
349 mr
= iotlb_to_region(cpu
->as
, pd
);
350 if (memory_region_is_unassigned(mr
)) {
351 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
353 if (cc
->do_unassigned_access
) {
354 cc
->do_unassigned_access(cpu
, addr
, false, true, 0, 4);
356 cpu_abort(cpu
, "Trying to execute code outside RAM or ROM at 0x"
357 TARGET_FMT_lx
"\n", addr
);
360 p
= (void *)((uintptr_t)addr
+ env1
->tlb_table
[mmu_idx
][page_index
].addend
);
361 return qemu_ram_addr_from_host_nofail(p
);
364 #define MMUSUFFIX _mmu
367 #include "softmmu_template.h"
370 #include "softmmu_template.h"
373 #include "softmmu_template.h"
376 #include "softmmu_template.h"
379 #define MMUSUFFIX _cmmu
383 #define GETRA() ((uintptr_t)0)
384 #define SOFTMMU_CODE_ACCESS
387 #include "softmmu_template.h"
390 #include "softmmu_template.h"
393 #include "softmmu_template.h"
396 #include "softmmu_template.h"