qemu-iotests: Test reopen between read-only and read-write
[qemu/kevin.git] / target / sh4 / helper.c
blob28d93c25436d2c104debef5aa4210ad918322f80
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/log.h"
24 #include "sysemu/sysemu.h"
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/sh4/sh_intc.h"
28 #endif
30 #if defined(CONFIG_USER_ONLY)
32 void superh_cpu_do_interrupt(CPUState *cs)
34 cs->exception_index = -1;
37 int superh_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
38 int mmu_idx)
40 SuperHCPU *cpu = SUPERH_CPU(cs);
41 CPUSH4State *env = &cpu->env;
43 env->tea = address;
44 cs->exception_index = -1;
45 switch (rw) {
46 case 0:
47 cs->exception_index = 0x0a0;
48 break;
49 case 1:
50 cs->exception_index = 0x0c0;
51 break;
52 case 2:
53 cs->exception_index = 0x0a0;
54 break;
56 return 1;
59 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
61 /* For user mode, only U0 area is cacheable. */
62 return !(addr & 0x80000000);
65 #else /* !CONFIG_USER_ONLY */
67 #define MMU_OK 0
68 #define MMU_ITLB_MISS (-1)
69 #define MMU_ITLB_MULTIPLE (-2)
70 #define MMU_ITLB_VIOLATION (-3)
71 #define MMU_DTLB_MISS_READ (-4)
72 #define MMU_DTLB_MISS_WRITE (-5)
73 #define MMU_DTLB_INITIAL_WRITE (-6)
74 #define MMU_DTLB_VIOLATION_READ (-7)
75 #define MMU_DTLB_VIOLATION_WRITE (-8)
76 #define MMU_DTLB_MULTIPLE (-9)
77 #define MMU_DTLB_MISS (-10)
78 #define MMU_IADDR_ERROR (-11)
79 #define MMU_DADDR_ERROR_READ (-12)
80 #define MMU_DADDR_ERROR_WRITE (-13)
82 void superh_cpu_do_interrupt(CPUState *cs)
84 SuperHCPU *cpu = SUPERH_CPU(cs);
85 CPUSH4State *env = &cpu->env;
86 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
87 int do_exp, irq_vector = cs->exception_index;
89 /* prioritize exceptions over interrupts */
91 do_exp = cs->exception_index != -1;
92 do_irq = do_irq && (cs->exception_index == -1);
94 if (env->sr & (1u << SR_BL)) {
95 if (do_exp && cs->exception_index != 0x1e0) {
96 /* In theory a masked exception generates a reset exception,
97 which in turn jumps to the reset vector. However this only
98 works when using a bootloader. When using a kernel and an
99 initrd, they need to be reloaded and the program counter
100 should be loaded with the kernel entry point.
101 qemu_system_reset_request takes care of that. */
102 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
103 return;
105 if (do_irq && !env->in_sleep) {
106 return; /* masked */
109 env->in_sleep = 0;
111 if (do_irq) {
112 irq_vector = sh_intc_get_pending_vector(env->intc_handle,
113 (env->sr >> 4) & 0xf);
114 if (irq_vector == -1) {
115 return; /* masked */
119 if (qemu_loglevel_mask(CPU_LOG_INT)) {
120 const char *expname;
121 switch (cs->exception_index) {
122 case 0x0e0:
123 expname = "addr_error";
124 break;
125 case 0x040:
126 expname = "tlb_miss";
127 break;
128 case 0x0a0:
129 expname = "tlb_violation";
130 break;
131 case 0x180:
132 expname = "illegal_instruction";
133 break;
134 case 0x1a0:
135 expname = "slot_illegal_instruction";
136 break;
137 case 0x800:
138 expname = "fpu_disable";
139 break;
140 case 0x820:
141 expname = "slot_fpu";
142 break;
143 case 0x100:
144 expname = "data_write";
145 break;
146 case 0x060:
147 expname = "dtlb_miss_write";
148 break;
149 case 0x0c0:
150 expname = "dtlb_violation_write";
151 break;
152 case 0x120:
153 expname = "fpu_exception";
154 break;
155 case 0x080:
156 expname = "initial_page_write";
157 break;
158 case 0x160:
159 expname = "trapa";
160 break;
161 default:
162 expname = do_irq ? "interrupt" : "???";
163 break;
165 qemu_log("exception 0x%03x [%s] raised\n",
166 irq_vector, expname);
167 log_cpu_state(cs, 0);
170 env->ssr = cpu_read_sr(env);
171 env->spc = env->pc;
172 env->sgr = env->gregs[15];
173 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
175 if (env->flags & DELAY_SLOT_MASK) {
176 /* Branch instruction should be executed again before delay slot. */
177 env->spc -= 2;
178 /* Clear flags for exception/interrupt routine. */
179 env->flags &= ~DELAY_SLOT_MASK;
182 if (do_exp) {
183 env->expevt = cs->exception_index;
184 switch (cs->exception_index) {
185 case 0x000:
186 case 0x020:
187 case 0x140:
188 env->sr &= ~(1u << SR_FD);
189 env->sr |= 0xf << 4; /* IMASK */
190 env->pc = 0xa0000000;
191 break;
192 case 0x040:
193 case 0x060:
194 env->pc = env->vbr + 0x400;
195 break;
196 case 0x160:
197 env->spc += 2; /* special case for TRAPA */
198 /* fall through */
199 default:
200 env->pc = env->vbr + 0x100;
201 break;
203 return;
206 if (do_irq) {
207 env->intevt = irq_vector;
208 env->pc = env->vbr + 0x600;
209 return;
213 static void update_itlb_use(CPUSH4State * env, int itlbnb)
215 uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
217 switch (itlbnb) {
218 case 0:
219 and_mask = 0x1f;
220 break;
221 case 1:
222 and_mask = 0xe7;
223 or_mask = 0x80;
224 break;
225 case 2:
226 and_mask = 0xfb;
227 or_mask = 0x50;
228 break;
229 case 3:
230 or_mask = 0x2c;
231 break;
234 env->mmucr &= (and_mask << 24) | 0x00ffffff;
235 env->mmucr |= (or_mask << 24);
238 static int itlb_replacement(CPUSH4State * env)
240 SuperHCPU *cpu = sh_env_get_cpu(env);
242 if ((env->mmucr & 0xe0000000) == 0xe0000000) {
243 return 0;
245 if ((env->mmucr & 0x98000000) == 0x18000000) {
246 return 1;
248 if ((env->mmucr & 0x54000000) == 0x04000000) {
249 return 2;
251 if ((env->mmucr & 0x2c000000) == 0x00000000) {
252 return 3;
254 cpu_abort(CPU(cpu), "Unhandled itlb_replacement");
257 /* Find the corresponding entry in the right TLB
258 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
260 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
261 tlb_t * entries, uint8_t nbtlb, int use_asid)
263 int match = MMU_DTLB_MISS;
264 uint32_t start, end;
265 uint8_t asid;
266 int i;
268 asid = env->pteh & 0xff;
270 for (i = 0; i < nbtlb; i++) {
271 if (!entries[i].v)
272 continue; /* Invalid entry */
273 if (!entries[i].sh && use_asid && entries[i].asid != asid)
274 continue; /* Bad ASID */
275 start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
276 end = start + entries[i].size - 1;
277 if (address >= start && address <= end) { /* Match */
278 if (match != MMU_DTLB_MISS)
279 return MMU_DTLB_MULTIPLE; /* Multiple match */
280 match = i;
283 return match;
286 static void increment_urc(CPUSH4State * env)
288 uint8_t urb, urc;
290 /* Increment URC */
291 urb = ((env->mmucr) >> 18) & 0x3f;
292 urc = ((env->mmucr) >> 10) & 0x3f;
293 urc++;
294 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
295 urc = 0;
296 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
299 /* Copy and utlb entry into itlb
300 Return entry
302 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
304 int itlb;
306 tlb_t * ientry;
307 itlb = itlb_replacement(env);
308 ientry = &env->itlb[itlb];
309 if (ientry->v) {
310 tlb_flush_page(CPU(sh_env_get_cpu(env)), ientry->vpn << 10);
312 *ientry = env->utlb[utlb];
313 update_itlb_use(env, itlb);
314 return itlb;
317 /* Find itlb entry
318 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
320 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
321 int use_asid)
323 int e;
325 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
326 if (e == MMU_DTLB_MULTIPLE) {
327 e = MMU_ITLB_MULTIPLE;
328 } else if (e == MMU_DTLB_MISS) {
329 e = MMU_ITLB_MISS;
330 } else if (e >= 0) {
331 update_itlb_use(env, e);
333 return e;
336 /* Find utlb entry
337 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
338 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
340 /* per utlb access */
341 increment_urc(env);
343 /* Return entry */
344 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
347 /* Match address against MMU
348 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
349 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
350 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
351 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
352 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
354 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
355 int *prot, target_ulong address,
356 int rw, int access_type)
358 int use_asid, n;
359 tlb_t *matching = NULL;
361 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
363 if (rw == 2) {
364 n = find_itlb_entry(env, address, use_asid);
365 if (n >= 0) {
366 matching = &env->itlb[n];
367 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
368 n = MMU_ITLB_VIOLATION;
369 } else {
370 *prot = PAGE_EXEC;
372 } else {
373 n = find_utlb_entry(env, address, use_asid);
374 if (n >= 0) {
375 n = copy_utlb_entry_itlb(env, n);
376 matching = &env->itlb[n];
377 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
378 n = MMU_ITLB_VIOLATION;
379 } else {
380 *prot = PAGE_READ | PAGE_EXEC;
381 if ((matching->pr & 1) && matching->d) {
382 *prot |= PAGE_WRITE;
385 } else if (n == MMU_DTLB_MULTIPLE) {
386 n = MMU_ITLB_MULTIPLE;
387 } else if (n == MMU_DTLB_MISS) {
388 n = MMU_ITLB_MISS;
391 } else {
392 n = find_utlb_entry(env, address, use_asid);
393 if (n >= 0) {
394 matching = &env->utlb[n];
395 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
396 n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE :
397 MMU_DTLB_VIOLATION_READ;
398 } else if ((rw == 1) && !(matching->pr & 1)) {
399 n = MMU_DTLB_VIOLATION_WRITE;
400 } else if ((rw == 1) && !matching->d) {
401 n = MMU_DTLB_INITIAL_WRITE;
402 } else {
403 *prot = PAGE_READ;
404 if ((matching->pr & 1) && matching->d) {
405 *prot |= PAGE_WRITE;
408 } else if (n == MMU_DTLB_MISS) {
409 n = (rw == 1) ? MMU_DTLB_MISS_WRITE :
410 MMU_DTLB_MISS_READ;
413 if (n >= 0) {
414 n = MMU_OK;
415 *physical = ((matching->ppn << 10) & ~(matching->size - 1)) |
416 (address & (matching->size - 1));
418 return n;
421 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
422 int *prot, target_ulong address,
423 int rw, int access_type)
425 /* P1, P2 and P4 areas do not use translation */
426 if ((address >= 0x80000000 && address < 0xc0000000) ||
427 address >= 0xe0000000) {
428 if (!(env->sr & (1u << SR_MD))
429 && (address < 0xe0000000 || address >= 0xe4000000)) {
430 /* Unauthorized access in user mode (only store queues are available) */
431 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
432 if (rw == 0)
433 return MMU_DADDR_ERROR_READ;
434 else if (rw == 1)
435 return MMU_DADDR_ERROR_WRITE;
436 else
437 return MMU_IADDR_ERROR;
439 if (address >= 0x80000000 && address < 0xc0000000) {
440 /* Mask upper 3 bits for P1 and P2 areas */
441 *physical = address & 0x1fffffff;
442 } else {
443 *physical = address;
445 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
446 return MMU_OK;
449 /* If MMU is disabled, return the corresponding physical page */
450 if (!(env->mmucr & MMUCR_AT)) {
451 *physical = address & 0x1FFFFFFF;
452 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
453 return MMU_OK;
456 /* We need to resort to the MMU */
457 return get_mmu_address(env, physical, prot, address, rw, access_type);
460 int superh_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
461 int mmu_idx)
463 SuperHCPU *cpu = SUPERH_CPU(cs);
464 CPUSH4State *env = &cpu->env;
465 target_ulong physical;
466 int prot, ret, access_type;
468 access_type = ACCESS_INT;
469 ret =
470 get_physical_address(env, &physical, &prot, address, rw,
471 access_type);
473 if (ret != MMU_OK) {
474 env->tea = address;
475 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
476 env->pteh = (env->pteh & PTEH_ASID_MASK) |
477 (address & PTEH_VPN_MASK);
479 switch (ret) {
480 case MMU_ITLB_MISS:
481 case MMU_DTLB_MISS_READ:
482 cs->exception_index = 0x040;
483 break;
484 case MMU_DTLB_MULTIPLE:
485 case MMU_ITLB_MULTIPLE:
486 cs->exception_index = 0x140;
487 break;
488 case MMU_ITLB_VIOLATION:
489 cs->exception_index = 0x0a0;
490 break;
491 case MMU_DTLB_MISS_WRITE:
492 cs->exception_index = 0x060;
493 break;
494 case MMU_DTLB_INITIAL_WRITE:
495 cs->exception_index = 0x080;
496 break;
497 case MMU_DTLB_VIOLATION_READ:
498 cs->exception_index = 0x0a0;
499 break;
500 case MMU_DTLB_VIOLATION_WRITE:
501 cs->exception_index = 0x0c0;
502 break;
503 case MMU_IADDR_ERROR:
504 case MMU_DADDR_ERROR_READ:
505 cs->exception_index = 0x0e0;
506 break;
507 case MMU_DADDR_ERROR_WRITE:
508 cs->exception_index = 0x100;
509 break;
510 default:
511 cpu_abort(cs, "Unhandled MMU fault");
513 return 1;
516 address &= TARGET_PAGE_MASK;
517 physical &= TARGET_PAGE_MASK;
519 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
520 return 0;
523 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
525 SuperHCPU *cpu = SUPERH_CPU(cs);
526 target_ulong physical;
527 int prot;
529 get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0);
530 return physical;
533 void cpu_load_tlb(CPUSH4State * env)
535 SuperHCPU *cpu = sh_env_get_cpu(env);
536 int n = cpu_mmucr_urc(env->mmucr);
537 tlb_t * entry = &env->utlb[n];
539 if (entry->v) {
540 /* Overwriting valid entry in utlb. */
541 target_ulong address = entry->vpn << 10;
542 tlb_flush_page(CPU(cpu), address);
545 /* Take values into cpu status from registers. */
546 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
547 entry->vpn = cpu_pteh_vpn(env->pteh);
548 entry->v = (uint8_t)cpu_ptel_v(env->ptel);
549 entry->ppn = cpu_ptel_ppn(env->ptel);
550 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel);
551 switch (entry->sz) {
552 case 0: /* 00 */
553 entry->size = 1024; /* 1K */
554 break;
555 case 1: /* 01 */
556 entry->size = 1024 * 4; /* 4K */
557 break;
558 case 2: /* 10 */
559 entry->size = 1024 * 64; /* 64K */
560 break;
561 case 3: /* 11 */
562 entry->size = 1024 * 1024; /* 1M */
563 break;
564 default:
565 cpu_abort(CPU(cpu), "Unhandled load_tlb");
566 break;
568 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel);
569 entry->c = (uint8_t)cpu_ptel_c(env->ptel);
570 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel);
571 entry->d = (uint8_t)cpu_ptel_d(env->ptel);
572 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel);
573 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea);
574 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea);
577 void cpu_sh4_invalidate_tlb(CPUSH4State *s)
579 int i;
581 /* UTLB */
582 for (i = 0; i < UTLB_SIZE; i++) {
583 tlb_t * entry = &s->utlb[i];
584 entry->v = 0;
586 /* ITLB */
587 for (i = 0; i < ITLB_SIZE; i++) {
588 tlb_t * entry = &s->itlb[i];
589 entry->v = 0;
592 tlb_flush(CPU(sh_env_get_cpu(s)));
595 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
596 hwaddr addr)
598 int index = (addr & 0x00000300) >> 8;
599 tlb_t * entry = &s->itlb[index];
601 return (entry->vpn << 10) |
602 (entry->v << 8) |
603 (entry->asid);
606 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
607 uint32_t mem_value)
609 uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
610 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
611 uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
613 int index = (addr & 0x00000300) >> 8;
614 tlb_t * entry = &s->itlb[index];
615 if (entry->v) {
616 /* Overwriting valid entry in itlb. */
617 target_ulong address = entry->vpn << 10;
618 tlb_flush_page(CPU(sh_env_get_cpu(s)), address);
620 entry->asid = asid;
621 entry->vpn = vpn;
622 entry->v = v;
625 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
626 hwaddr addr)
628 int array = (addr & 0x00800000) >> 23;
629 int index = (addr & 0x00000300) >> 8;
630 tlb_t * entry = &s->itlb[index];
632 if (array == 0) {
633 /* ITLB Data Array 1 */
634 return (entry->ppn << 10) |
635 (entry->v << 8) |
636 (entry->pr << 5) |
637 ((entry->sz & 1) << 6) |
638 ((entry->sz & 2) << 4) |
639 (entry->c << 3) |
640 (entry->sh << 1);
641 } else {
642 /* ITLB Data Array 2 */
643 return (entry->tc << 1) |
644 (entry->sa);
648 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
649 uint32_t mem_value)
651 int array = (addr & 0x00800000) >> 23;
652 int index = (addr & 0x00000300) >> 8;
653 tlb_t * entry = &s->itlb[index];
655 if (array == 0) {
656 /* ITLB Data Array 1 */
657 if (entry->v) {
658 /* Overwriting valid entry in utlb. */
659 target_ulong address = entry->vpn << 10;
660 tlb_flush_page(CPU(sh_env_get_cpu(s)), address);
662 entry->ppn = (mem_value & 0x1ffffc00) >> 10;
663 entry->v = (mem_value & 0x00000100) >> 8;
664 entry->sz = (mem_value & 0x00000080) >> 6 |
665 (mem_value & 0x00000010) >> 4;
666 entry->pr = (mem_value & 0x00000040) >> 5;
667 entry->c = (mem_value & 0x00000008) >> 3;
668 entry->sh = (mem_value & 0x00000002) >> 1;
669 } else {
670 /* ITLB Data Array 2 */
671 entry->tc = (mem_value & 0x00000008) >> 3;
672 entry->sa = (mem_value & 0x00000007);
676 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
677 hwaddr addr)
679 int index = (addr & 0x00003f00) >> 8;
680 tlb_t * entry = &s->utlb[index];
682 increment_urc(s); /* per utlb access */
684 return (entry->vpn << 10) |
685 (entry->v << 8) |
686 (entry->asid);
689 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
690 uint32_t mem_value)
692 int associate = addr & 0x0000080;
693 uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
694 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
695 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
696 uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
697 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
699 if (associate) {
700 int i;
701 tlb_t * utlb_match_entry = NULL;
702 int needs_tlb_flush = 0;
704 /* search UTLB */
705 for (i = 0; i < UTLB_SIZE; i++) {
706 tlb_t * entry = &s->utlb[i];
707 if (!entry->v)
708 continue;
710 if (entry->vpn == vpn
711 && (!use_asid || entry->asid == asid || entry->sh)) {
712 if (utlb_match_entry) {
713 CPUState *cs = CPU(sh_env_get_cpu(s));
715 /* Multiple TLB Exception */
716 cs->exception_index = 0x140;
717 s->tea = addr;
718 break;
720 if (entry->v && !v)
721 needs_tlb_flush = 1;
722 entry->v = v;
723 entry->d = d;
724 utlb_match_entry = entry;
726 increment_urc(s); /* per utlb access */
729 /* search ITLB */
730 for (i = 0; i < ITLB_SIZE; i++) {
731 tlb_t * entry = &s->itlb[i];
732 if (entry->vpn == vpn
733 && (!use_asid || entry->asid == asid || entry->sh)) {
734 if (entry->v && !v)
735 needs_tlb_flush = 1;
736 if (utlb_match_entry)
737 *entry = *utlb_match_entry;
738 else
739 entry->v = v;
740 break;
744 if (needs_tlb_flush) {
745 tlb_flush_page(CPU(sh_env_get_cpu(s)), vpn << 10);
748 } else {
749 int index = (addr & 0x00003f00) >> 8;
750 tlb_t * entry = &s->utlb[index];
751 if (entry->v) {
752 CPUState *cs = CPU(sh_env_get_cpu(s));
754 /* Overwriting valid entry in utlb. */
755 target_ulong address = entry->vpn << 10;
756 tlb_flush_page(cs, address);
758 entry->asid = asid;
759 entry->vpn = vpn;
760 entry->d = d;
761 entry->v = v;
762 increment_urc(s);
766 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
767 hwaddr addr)
769 int array = (addr & 0x00800000) >> 23;
770 int index = (addr & 0x00003f00) >> 8;
771 tlb_t * entry = &s->utlb[index];
773 increment_urc(s); /* per utlb access */
775 if (array == 0) {
776 /* ITLB Data Array 1 */
777 return (entry->ppn << 10) |
778 (entry->v << 8) |
779 (entry->pr << 5) |
780 ((entry->sz & 1) << 6) |
781 ((entry->sz & 2) << 4) |
782 (entry->c << 3) |
783 (entry->d << 2) |
784 (entry->sh << 1) |
785 (entry->wt);
786 } else {
787 /* ITLB Data Array 2 */
788 return (entry->tc << 1) |
789 (entry->sa);
793 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
794 uint32_t mem_value)
796 int array = (addr & 0x00800000) >> 23;
797 int index = (addr & 0x00003f00) >> 8;
798 tlb_t * entry = &s->utlb[index];
800 increment_urc(s); /* per utlb access */
802 if (array == 0) {
803 /* UTLB Data Array 1 */
804 if (entry->v) {
805 /* Overwriting valid entry in utlb. */
806 target_ulong address = entry->vpn << 10;
807 tlb_flush_page(CPU(sh_env_get_cpu(s)), address);
809 entry->ppn = (mem_value & 0x1ffffc00) >> 10;
810 entry->v = (mem_value & 0x00000100) >> 8;
811 entry->sz = (mem_value & 0x00000080) >> 6 |
812 (mem_value & 0x00000010) >> 4;
813 entry->pr = (mem_value & 0x00000060) >> 5;
814 entry->c = (mem_value & 0x00000008) >> 3;
815 entry->d = (mem_value & 0x00000004) >> 2;
816 entry->sh = (mem_value & 0x00000002) >> 1;
817 entry->wt = (mem_value & 0x00000001);
818 } else {
819 /* UTLB Data Array 2 */
820 entry->tc = (mem_value & 0x00000008) >> 3;
821 entry->sa = (mem_value & 0x00000007);
825 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
827 int n;
828 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
830 /* check area */
831 if (env->sr & (1u << SR_MD)) {
832 /* For privileged mode, P2 and P4 area is not cacheable. */
833 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
834 return 0;
835 } else {
836 /* For user mode, only U0 area is cacheable. */
837 if (0x80000000 <= addr)
838 return 0;
842 * TODO : Evaluate CCR and check if the cache is on or off.
843 * Now CCR is not in CPUSH4State, but in SH7750State.
844 * When you move the ccr into CPUSH4State, the code will be
845 * as follows.
847 #if 0
848 /* check if operand cache is enabled or not. */
849 if (!(env->ccr & 1))
850 return 0;
851 #endif
853 /* if MMU is off, no check for TLB. */
854 if (env->mmucr & MMUCR_AT)
855 return 1;
857 /* check TLB */
858 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
859 if (n >= 0)
860 return env->itlb[n].c;
862 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
863 if (n >= 0)
864 return env->utlb[n].c;
866 return 0;
869 #endif
871 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
873 if (interrupt_request & CPU_INTERRUPT_HARD) {
874 SuperHCPU *cpu = SUPERH_CPU(cs);
875 CPUSH4State *env = &cpu->env;
877 /* Delay slots are indivisible, ignore interrupts */
878 if (env->flags & DELAY_SLOT_MASK) {
879 return false;
880 } else {
881 superh_cpu_do_interrupt(cs);
882 return true;
885 return false;