migration: save_zero_page() can take block through pss
[qemu/kevin.git] / contrib / plugins / cache.c
blob9e7ade3b374d736402349ba8222628e0775eee29
1 /*
2 * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
4 * License: GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
8 #include <inttypes.h>
9 #include <stdio.h>
10 #include <glib.h>
12 #include <qemu-plugin.h>
14 #define STRTOLL(x) g_ascii_strtoll(x, NULL, 10)
16 QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
18 static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
20 static GHashTable *miss_ht;
22 static GMutex hashtable_lock;
23 static GRand *rng;
25 static int limit;
26 static bool sys;
28 enum EvictionPolicy {
29 LRU,
30 FIFO,
31 RAND,
34 enum EvictionPolicy policy;
37 * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
38 * put in any of the blocks inside the set. The number of block per set is
39 * called the associativity (assoc).
41 * Each block contains the stored tag and a valid bit. Since this is not
42 * a functional simulator, the data itself is not stored. We only identify
43 * whether a block is in the cache or not by searching for its tag.
45 * In order to search for memory data in the cache, the set identifier and tag
46 * are extracted from the address and the set is probed to see whether a tag
47 * match occur.
49 * An address is logically divided into three portions: The block offset,
50 * the set number, and the tag.
52 * The set number is used to identify the set in which the block may exist.
53 * The tag is compared against all the tags of a set to search for a match. If a
54 * match is found, then the access is a hit.
56 * The CacheSet also contains bookkeaping information about eviction details.
59 typedef struct {
60 uint64_t tag;
61 bool valid;
62 } CacheBlock;
64 typedef struct {
65 CacheBlock *blocks;
66 uint64_t *lru_priorities;
67 uint64_t lru_gen_counter;
68 GQueue *fifo_queue;
69 } CacheSet;
71 typedef struct {
72 CacheSet *sets;
73 int num_sets;
74 int cachesize;
75 int assoc;
76 int blksize_shift;
77 uint64_t set_mask;
78 uint64_t tag_mask;
79 uint64_t accesses;
80 uint64_t misses;
81 } Cache;
83 typedef struct {
84 char *disas_str;
85 const char *symbol;
86 uint64_t addr;
87 uint64_t l1_dmisses;
88 uint64_t l1_imisses;
89 uint64_t l2_misses;
90 } InsnData;
92 void (*update_hit)(Cache *cache, int set, int blk);
93 void (*update_miss)(Cache *cache, int set, int blk);
95 void (*metadata_init)(Cache *cache);
96 void (*metadata_destroy)(Cache *cache);
98 static int cores;
99 static Cache **l1_dcaches, **l1_icaches;
101 static bool use_l2;
102 static Cache **l2_ucaches;
104 static GMutex *l1_dcache_locks;
105 static GMutex *l1_icache_locks;
106 static GMutex *l2_ucache_locks;
108 static uint64_t l1_dmem_accesses;
109 static uint64_t l1_imem_accesses;
110 static uint64_t l1_imisses;
111 static uint64_t l1_dmisses;
113 static uint64_t l2_mem_accesses;
114 static uint64_t l2_misses;
116 static int pow_of_two(int num)
118 g_assert((num & (num - 1)) == 0);
119 int ret = 0;
120 while (num /= 2) {
121 ret++;
123 return ret;
127 * LRU evection policy: For each set, a generation counter is maintained
128 * alongside a priority array.
130 * On each set access, the generation counter is incremented.
132 * On a cache hit: The hit-block is assigned the current generation counter,
133 * indicating that it is the most recently used block.
135 * On a cache miss: The block with the least priority is searched and replaced
136 * with the newly-cached block, of which the priority is set to the current
137 * generation number.
140 static void lru_priorities_init(Cache *cache)
142 int i;
144 for (i = 0; i < cache->num_sets; i++) {
145 cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc);
146 cache->sets[i].lru_gen_counter = 0;
150 static void lru_update_blk(Cache *cache, int set_idx, int blk_idx)
152 CacheSet *set = &cache->sets[set_idx];
153 set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter;
154 set->lru_gen_counter++;
157 static int lru_get_lru_block(Cache *cache, int set_idx)
159 int i, min_idx, min_priority;
161 min_priority = cache->sets[set_idx].lru_priorities[0];
162 min_idx = 0;
164 for (i = 1; i < cache->assoc; i++) {
165 if (cache->sets[set_idx].lru_priorities[i] < min_priority) {
166 min_priority = cache->sets[set_idx].lru_priorities[i];
167 min_idx = i;
170 return min_idx;
173 static void lru_priorities_destroy(Cache *cache)
175 int i;
177 for (i = 0; i < cache->num_sets; i++) {
178 g_free(cache->sets[i].lru_priorities);
183 * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that
184 * stores accesses to the cache.
186 * On a compulsory miss: The block index is enqueued to the fifo_queue to
187 * indicate that it's the latest cached block.
189 * On a conflict miss: The first-in block is removed from the cache and the new
190 * block is put in its place and enqueued to the FIFO queue.
193 static void fifo_init(Cache *cache)
195 int i;
197 for (i = 0; i < cache->num_sets; i++) {
198 cache->sets[i].fifo_queue = g_queue_new();
202 static int fifo_get_first_block(Cache *cache, int set)
204 GQueue *q = cache->sets[set].fifo_queue;
205 return GPOINTER_TO_INT(g_queue_pop_tail(q));
208 static void fifo_update_on_miss(Cache *cache, int set, int blk_idx)
210 GQueue *q = cache->sets[set].fifo_queue;
211 g_queue_push_head(q, GINT_TO_POINTER(blk_idx));
214 static void fifo_destroy(Cache *cache)
216 int i;
218 for (i = 0; i < cache->num_sets; i++) {
219 g_queue_free(cache->sets[i].fifo_queue);
223 static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
225 return addr & cache->tag_mask;
228 static inline uint64_t extract_set(Cache *cache, uint64_t addr)
230 return (addr & cache->set_mask) >> cache->blksize_shift;
233 static const char *cache_config_error(int blksize, int assoc, int cachesize)
235 if (cachesize % blksize != 0) {
236 return "cache size must be divisible by block size";
237 } else if (cachesize % (blksize * assoc) != 0) {
238 return "cache size must be divisible by set size (assoc * block size)";
239 } else {
240 return NULL;
244 static bool bad_cache_params(int blksize, int assoc, int cachesize)
246 return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0);
249 static Cache *cache_init(int blksize, int assoc, int cachesize)
251 Cache *cache;
252 int i;
253 uint64_t blk_mask;
256 * This function shall not be called directly, and hence expects suitable
257 * parameters.
259 g_assert(!bad_cache_params(blksize, assoc, cachesize));
261 cache = g_new(Cache, 1);
262 cache->assoc = assoc;
263 cache->cachesize = cachesize;
264 cache->num_sets = cachesize / (blksize * assoc);
265 cache->sets = g_new(CacheSet, cache->num_sets);
266 cache->blksize_shift = pow_of_two(blksize);
267 cache->accesses = 0;
268 cache->misses = 0;
270 for (i = 0; i < cache->num_sets; i++) {
271 cache->sets[i].blocks = g_new0(CacheBlock, assoc);
274 blk_mask = blksize - 1;
275 cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
276 cache->tag_mask = ~(cache->set_mask | blk_mask);
278 if (metadata_init) {
279 metadata_init(cache);
282 return cache;
285 static Cache **caches_init(int blksize, int assoc, int cachesize)
287 Cache **caches;
288 int i;
290 if (bad_cache_params(blksize, assoc, cachesize)) {
291 return NULL;
294 caches = g_new(Cache *, cores);
296 for (i = 0; i < cores; i++) {
297 caches[i] = cache_init(blksize, assoc, cachesize);
300 return caches;
303 static int get_invalid_block(Cache *cache, uint64_t set)
305 int i;
307 for (i = 0; i < cache->assoc; i++) {
308 if (!cache->sets[set].blocks[i].valid) {
309 return i;
313 return -1;
316 static int get_replaced_block(Cache *cache, int set)
318 switch (policy) {
319 case RAND:
320 return g_rand_int_range(rng, 0, cache->assoc);
321 case LRU:
322 return lru_get_lru_block(cache, set);
323 case FIFO:
324 return fifo_get_first_block(cache, set);
325 default:
326 g_assert_not_reached();
330 static int in_cache(Cache *cache, uint64_t addr)
332 int i;
333 uint64_t tag, set;
335 tag = extract_tag(cache, addr);
336 set = extract_set(cache, addr);
338 for (i = 0; i < cache->assoc; i++) {
339 if (cache->sets[set].blocks[i].tag == tag &&
340 cache->sets[set].blocks[i].valid) {
341 return i;
345 return -1;
349 * access_cache(): Simulate a cache access
350 * @cache: The cache under simulation
351 * @addr: The address of the requested memory location
353 * Returns true if the requested data is hit in the cache and false when missed.
354 * The cache is updated on miss for the next access.
356 static bool access_cache(Cache *cache, uint64_t addr)
358 int hit_blk, replaced_blk;
359 uint64_t tag, set;
361 tag = extract_tag(cache, addr);
362 set = extract_set(cache, addr);
364 hit_blk = in_cache(cache, addr);
365 if (hit_blk != -1) {
366 if (update_hit) {
367 update_hit(cache, set, hit_blk);
369 return true;
372 replaced_blk = get_invalid_block(cache, set);
374 if (replaced_blk == -1) {
375 replaced_blk = get_replaced_block(cache, set);
378 if (update_miss) {
379 update_miss(cache, set, replaced_blk);
382 cache->sets[set].blocks[replaced_blk].tag = tag;
383 cache->sets[set].blocks[replaced_blk].valid = true;
385 return false;
388 static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
389 uint64_t vaddr, void *userdata)
391 uint64_t effective_addr;
392 struct qemu_plugin_hwaddr *hwaddr;
393 int cache_idx;
394 InsnData *insn;
395 bool hit_in_l1;
397 hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
398 if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
399 return;
402 effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
403 cache_idx = vcpu_index % cores;
405 g_mutex_lock(&l1_dcache_locks[cache_idx]);
406 hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr);
407 if (!hit_in_l1) {
408 insn = userdata;
409 __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST);
410 l1_dcaches[cache_idx]->misses++;
412 l1_dcaches[cache_idx]->accesses++;
413 g_mutex_unlock(&l1_dcache_locks[cache_idx]);
415 if (hit_in_l1 || !use_l2) {
416 /* No need to access L2 */
417 return;
420 g_mutex_lock(&l2_ucache_locks[cache_idx]);
421 if (!access_cache(l2_ucaches[cache_idx], effective_addr)) {
422 insn = userdata;
423 __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
424 l2_ucaches[cache_idx]->misses++;
426 l2_ucaches[cache_idx]->accesses++;
427 g_mutex_unlock(&l2_ucache_locks[cache_idx]);
430 static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
432 uint64_t insn_addr;
433 InsnData *insn;
434 int cache_idx;
435 bool hit_in_l1;
437 insn_addr = ((InsnData *) userdata)->addr;
439 cache_idx = vcpu_index % cores;
440 g_mutex_lock(&l1_icache_locks[cache_idx]);
441 hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr);
442 if (!hit_in_l1) {
443 insn = userdata;
444 __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST);
445 l1_icaches[cache_idx]->misses++;
447 l1_icaches[cache_idx]->accesses++;
448 g_mutex_unlock(&l1_icache_locks[cache_idx]);
450 if (hit_in_l1 || !use_l2) {
451 /* No need to access L2 */
452 return;
455 g_mutex_lock(&l2_ucache_locks[cache_idx]);
456 if (!access_cache(l2_ucaches[cache_idx], insn_addr)) {
457 insn = userdata;
458 __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
459 l2_ucaches[cache_idx]->misses++;
461 l2_ucaches[cache_idx]->accesses++;
462 g_mutex_unlock(&l2_ucache_locks[cache_idx]);
465 static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
467 size_t n_insns;
468 size_t i;
469 InsnData *data;
471 n_insns = qemu_plugin_tb_n_insns(tb);
472 for (i = 0; i < n_insns; i++) {
473 struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
474 uint64_t effective_addr;
476 if (sys) {
477 effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
478 } else {
479 effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
483 * Instructions might get translated multiple times, we do not create
484 * new entries for those instructions. Instead, we fetch the same
485 * entry from the hash table and register it for the callback again.
487 g_mutex_lock(&hashtable_lock);
488 data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
489 if (data == NULL) {
490 data = g_new0(InsnData, 1);
491 data->disas_str = qemu_plugin_insn_disas(insn);
492 data->symbol = qemu_plugin_insn_symbol(insn);
493 data->addr = effective_addr;
494 g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
495 (gpointer) data);
497 g_mutex_unlock(&hashtable_lock);
499 qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
500 QEMU_PLUGIN_CB_NO_REGS,
501 rw, data);
503 qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
504 QEMU_PLUGIN_CB_NO_REGS, data);
508 static void insn_free(gpointer data)
510 InsnData *insn = (InsnData *) data;
511 g_free(insn->disas_str);
512 g_free(insn);
515 static void cache_free(Cache *cache)
517 for (int i = 0; i < cache->num_sets; i++) {
518 g_free(cache->sets[i].blocks);
521 if (metadata_destroy) {
522 metadata_destroy(cache);
525 g_free(cache->sets);
526 g_free(cache);
529 static void caches_free(Cache **caches)
531 int i;
533 for (i = 0; i < cores; i++) {
534 cache_free(caches[i]);
538 static void append_stats_line(GString *line,
539 uint64_t l1_daccess, uint64_t l1_dmisses,
540 uint64_t l1_iaccess, uint64_t l1_imisses,
541 uint64_t l2_access, uint64_t l2_misses)
543 double l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0;
544 double l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0;
546 g_string_append_printf(line, "%-14" PRIu64 " %-12" PRIu64 " %9.4lf%%"
547 " %-14" PRIu64 " %-12" PRIu64 " %9.4lf%%",
548 l1_daccess,
549 l1_dmisses,
550 l1_daccess ? l1_dmiss_rate : 0.0,
551 l1_iaccess,
552 l1_imisses,
553 l1_iaccess ? l1_imiss_rate : 0.0);
555 if (l2_access && l2_misses) {
556 double l2_miss_rate = ((double) l2_misses) / (l2_access) * 100.0;
557 g_string_append_printf(line,
558 " %-12" PRIu64 " %-11" PRIu64 " %10.4lf%%",
559 l2_access,
560 l2_misses,
561 l2_access ? l2_miss_rate : 0.0);
564 g_string_append(line, "\n");
567 static void sum_stats(void)
569 int i;
571 g_assert(cores > 1);
572 for (i = 0; i < cores; i++) {
573 l1_imisses += l1_icaches[i]->misses;
574 l1_dmisses += l1_dcaches[i]->misses;
575 l1_imem_accesses += l1_icaches[i]->accesses;
576 l1_dmem_accesses += l1_dcaches[i]->accesses;
578 if (use_l2) {
579 l2_misses += l2_ucaches[i]->misses;
580 l2_mem_accesses += l2_ucaches[i]->accesses;
585 static int dcmp(gconstpointer a, gconstpointer b)
587 InsnData *insn_a = (InsnData *) a;
588 InsnData *insn_b = (InsnData *) b;
590 return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1;
593 static int icmp(gconstpointer a, gconstpointer b)
595 InsnData *insn_a = (InsnData *) a;
596 InsnData *insn_b = (InsnData *) b;
598 return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1;
601 static int l2_cmp(gconstpointer a, gconstpointer b)
603 InsnData *insn_a = (InsnData *) a;
604 InsnData *insn_b = (InsnData *) b;
606 return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1;
609 static void log_stats(void)
611 int i;
612 Cache *icache, *dcache, *l2_cache;
614 g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses,"
615 " dmiss rate, insn accesses,"
616 " insn misses, imiss rate");
618 if (use_l2) {
619 g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate");
622 g_string_append(rep, "\n");
624 for (i = 0; i < cores; i++) {
625 g_string_append_printf(rep, "%-8d", i);
626 dcache = l1_dcaches[i];
627 icache = l1_icaches[i];
628 l2_cache = use_l2 ? l2_ucaches[i] : NULL;
629 append_stats_line(rep, dcache->accesses, dcache->misses,
630 icache->accesses, icache->misses,
631 l2_cache ? l2_cache->accesses : 0,
632 l2_cache ? l2_cache->misses : 0);
635 if (cores > 1) {
636 sum_stats();
637 g_string_append_printf(rep, "%-8s", "sum");
638 append_stats_line(rep, l1_dmem_accesses, l1_dmisses,
639 l1_imem_accesses, l1_imisses,
640 l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0);
643 g_string_append(rep, "\n");
644 qemu_plugin_outs(rep->str);
647 static void log_top_insns(void)
649 int i;
650 GList *curr, *miss_insns;
651 InsnData *insn;
653 miss_insns = g_hash_table_get_values(miss_ht);
654 miss_insns = g_list_sort(miss_insns, dcmp);
655 g_autoptr(GString) rep = g_string_new("");
656 g_string_append_printf(rep, "%s", "address, data misses, instruction\n");
658 for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
659 insn = (InsnData *) curr->data;
660 g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
661 if (insn->symbol) {
662 g_string_append_printf(rep, " (%s)", insn->symbol);
664 g_string_append_printf(rep, ", %" PRId64 ", %s\n",
665 insn->l1_dmisses, insn->disas_str);
668 miss_insns = g_list_sort(miss_insns, icmp);
669 g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");
671 for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
672 insn = (InsnData *) curr->data;
673 g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
674 if (insn->symbol) {
675 g_string_append_printf(rep, " (%s)", insn->symbol);
677 g_string_append_printf(rep, ", %" PRId64 ", %s\n",
678 insn->l1_imisses, insn->disas_str);
681 if (!use_l2) {
682 goto finish;
685 miss_insns = g_list_sort(miss_insns, l2_cmp);
686 g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n");
688 for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
689 insn = (InsnData *) curr->data;
690 g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
691 if (insn->symbol) {
692 g_string_append_printf(rep, " (%s)", insn->symbol);
694 g_string_append_printf(rep, ", %" PRId64 ", %s\n",
695 insn->l2_misses, insn->disas_str);
698 finish:
699 qemu_plugin_outs(rep->str);
700 g_list_free(miss_insns);
703 static void plugin_exit(qemu_plugin_id_t id, void *p)
705 log_stats();
706 log_top_insns();
708 caches_free(l1_dcaches);
709 caches_free(l1_icaches);
711 g_free(l1_dcache_locks);
712 g_free(l1_icache_locks);
714 if (use_l2) {
715 caches_free(l2_ucaches);
716 g_free(l2_ucache_locks);
719 g_hash_table_destroy(miss_ht);
722 static void policy_init(void)
724 switch (policy) {
725 case LRU:
726 update_hit = lru_update_blk;
727 update_miss = lru_update_blk;
728 metadata_init = lru_priorities_init;
729 metadata_destroy = lru_priorities_destroy;
730 break;
731 case FIFO:
732 update_miss = fifo_update_on_miss;
733 metadata_init = fifo_init;
734 metadata_destroy = fifo_destroy;
735 break;
736 case RAND:
737 rng = g_rand_new();
738 break;
739 default:
740 g_assert_not_reached();
744 QEMU_PLUGIN_EXPORT
745 int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
746 int argc, char **argv)
748 int i;
749 int l1_iassoc, l1_iblksize, l1_icachesize;
750 int l1_dassoc, l1_dblksize, l1_dcachesize;
751 int l2_assoc, l2_blksize, l2_cachesize;
753 limit = 32;
754 sys = info->system_emulation;
756 l1_dassoc = 8;
757 l1_dblksize = 64;
758 l1_dcachesize = l1_dblksize * l1_dassoc * 32;
760 l1_iassoc = 8;
761 l1_iblksize = 64;
762 l1_icachesize = l1_iblksize * l1_iassoc * 32;
764 l2_assoc = 16;
765 l2_blksize = 64;
766 l2_cachesize = l2_assoc * l2_blksize * 2048;
768 policy = LRU;
770 cores = sys ? qemu_plugin_n_vcpus() : 1;
772 for (i = 0; i < argc; i++) {
773 char *opt = argv[i];
774 g_auto(GStrv) tokens = g_strsplit(opt, "=", 2);
776 if (g_strcmp0(tokens[0], "iblksize") == 0) {
777 l1_iblksize = STRTOLL(tokens[1]);
778 } else if (g_strcmp0(tokens[0], "iassoc") == 0) {
779 l1_iassoc = STRTOLL(tokens[1]);
780 } else if (g_strcmp0(tokens[0], "icachesize") == 0) {
781 l1_icachesize = STRTOLL(tokens[1]);
782 } else if (g_strcmp0(tokens[0], "dblksize") == 0) {
783 l1_dblksize = STRTOLL(tokens[1]);
784 } else if (g_strcmp0(tokens[0], "dassoc") == 0) {
785 l1_dassoc = STRTOLL(tokens[1]);
786 } else if (g_strcmp0(tokens[0], "dcachesize") == 0) {
787 l1_dcachesize = STRTOLL(tokens[1]);
788 } else if (g_strcmp0(tokens[0], "limit") == 0) {
789 limit = STRTOLL(tokens[1]);
790 } else if (g_strcmp0(tokens[0], "cores") == 0) {
791 cores = STRTOLL(tokens[1]);
792 } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) {
793 use_l2 = true;
794 l2_cachesize = STRTOLL(tokens[1]);
795 } else if (g_strcmp0(tokens[0], "l2blksize") == 0) {
796 use_l2 = true;
797 l2_blksize = STRTOLL(tokens[1]);
798 } else if (g_strcmp0(tokens[0], "l2assoc") == 0) {
799 use_l2 = true;
800 l2_assoc = STRTOLL(tokens[1]);
801 } else if (g_strcmp0(tokens[0], "l2") == 0) {
802 if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) {
803 fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
804 return -1;
806 } else if (g_strcmp0(tokens[0], "evict") == 0) {
807 if (g_strcmp0(tokens[1], "rand") == 0) {
808 policy = RAND;
809 } else if (g_strcmp0(tokens[1], "lru") == 0) {
810 policy = LRU;
811 } else if (g_strcmp0(tokens[1], "fifo") == 0) {
812 policy = FIFO;
813 } else {
814 fprintf(stderr, "invalid eviction policy: %s\n", opt);
815 return -1;
817 } else {
818 fprintf(stderr, "option parsing failed: %s\n", opt);
819 return -1;
823 policy_init();
825 l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize);
826 if (!l1_dcaches) {
827 const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize);
828 fprintf(stderr, "dcache cannot be constructed from given parameters\n");
829 fprintf(stderr, "%s\n", err);
830 return -1;
833 l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize);
834 if (!l1_icaches) {
835 const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize);
836 fprintf(stderr, "icache cannot be constructed from given parameters\n");
837 fprintf(stderr, "%s\n", err);
838 return -1;
841 l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL;
842 if (!l2_ucaches && use_l2) {
843 const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize);
844 fprintf(stderr, "L2 cache cannot be constructed from given parameters\n");
845 fprintf(stderr, "%s\n", err);
846 return -1;
849 l1_dcache_locks = g_new0(GMutex, cores);
850 l1_icache_locks = g_new0(GMutex, cores);
851 l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL;
853 qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
854 qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
856 miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);
858 return 0;