4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
39 #include "exec/ioport.h"
40 #include "standard-headers/asm-x86/hyperv.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/msi.h"
43 #include "migration/migration.h"
44 #include "exec/memattrs.h"
49 #define DPRINTF(fmt, ...) \
50 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
52 #define DPRINTF(fmt, ...) \
56 #define MSR_KVM_WALL_CLOCK 0x11
57 #define MSR_KVM_SYSTEM_TIME 0x12
60 #define BUS_MCEERR_AR 4
63 #define BUS_MCEERR_AO 5
66 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
67 KVM_CAP_INFO(SET_TSS_ADDR
),
68 KVM_CAP_INFO(EXT_CPUID
),
69 KVM_CAP_INFO(MP_STATE
),
73 static bool has_msr_star
;
74 static bool has_msr_hsave_pa
;
75 static bool has_msr_tsc_aux
;
76 static bool has_msr_tsc_adjust
;
77 static bool has_msr_tsc_deadline
;
78 static bool has_msr_feature_control
;
79 static bool has_msr_async_pf_en
;
80 static bool has_msr_pv_eoi_en
;
81 static bool has_msr_misc_enable
;
82 static bool has_msr_smbase
;
83 static bool has_msr_bndcfgs
;
84 static bool has_msr_kvm_steal_time
;
85 static int lm_capable_kernel
;
86 static bool has_msr_hv_hypercall
;
87 static bool has_msr_hv_vapic
;
88 static bool has_msr_hv_tsc
;
89 static bool has_msr_hv_crash
;
90 static bool has_msr_hv_reset
;
91 static bool has_msr_hv_vpindex
;
92 static bool has_msr_hv_runtime
;
93 static bool has_msr_hv_synic
;
94 static bool has_msr_hv_stimer
;
95 static bool has_msr_mtrr
;
96 static bool has_msr_xss
;
98 static bool has_msr_architectural_pmu
;
99 static uint32_t num_architectural_pmu_counters
;
101 static int has_xsave
;
103 static int has_pit_state2
;
105 int kvm_has_pit_state2(void)
107 return has_pit_state2
;
110 bool kvm_has_smm(void)
112 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
115 bool kvm_allows_irq0_override(void)
117 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
120 static int kvm_get_tsc(CPUState
*cs
)
122 X86CPU
*cpu
= X86_CPU(cs
);
123 CPUX86State
*env
= &cpu
->env
;
125 struct kvm_msrs info
;
126 struct kvm_msr_entry entries
[1];
130 if (env
->tsc_valid
) {
134 msr_data
.info
.nmsrs
= 1;
135 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
136 env
->tsc_valid
= !runstate_is_running();
138 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
143 env
->tsc
= msr_data
.entries
[0].data
;
147 static inline void do_kvm_synchronize_tsc(void *arg
)
154 void kvm_synchronize_all_tsc(void)
160 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
165 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
167 struct kvm_cpuid2
*cpuid
;
170 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
171 cpuid
= g_malloc0(size
);
173 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
174 if (r
== 0 && cpuid
->nent
>= max
) {
182 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
190 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
193 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
195 struct kvm_cpuid2
*cpuid
;
197 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
203 static const struct kvm_para_features
{
206 } para_features
[] = {
207 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
208 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
209 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
210 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
213 static int get_para_features(KVMState
*s
)
217 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
218 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
219 features
|= (1 << para_features
[i
].feature
);
227 /* Returns the value for a specific register on the cpuid entry
229 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
249 /* Find matching entry for function/index on kvm_cpuid2 struct
251 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
256 for (i
= 0; i
< cpuid
->nent
; ++i
) {
257 if (cpuid
->entries
[i
].function
== function
&&
258 cpuid
->entries
[i
].index
== index
) {
259 return &cpuid
->entries
[i
];
266 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
267 uint32_t index
, int reg
)
269 struct kvm_cpuid2
*cpuid
;
271 uint32_t cpuid_1_edx
;
274 cpuid
= get_supported_cpuid(s
);
276 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
279 ret
= cpuid_entry_get_reg(entry
, reg
);
282 /* Fixups for the data returned by KVM, below */
284 if (function
== 1 && reg
== R_EDX
) {
285 /* KVM before 2.6.30 misreports the following features */
286 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
287 } else if (function
== 1 && reg
== R_ECX
) {
288 /* We can set the hypervisor flag, even if KVM does not return it on
289 * GET_SUPPORTED_CPUID
291 ret
|= CPUID_EXT_HYPERVISOR
;
292 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
293 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
294 * and the irqchip is in the kernel.
296 if (kvm_irqchip_in_kernel() &&
297 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
298 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
301 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
302 * without the in-kernel irqchip
304 if (!kvm_irqchip_in_kernel()) {
305 ret
&= ~CPUID_EXT_X2APIC
;
307 } else if (function
== 6 && reg
== R_EAX
) {
308 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
309 } else if (function
== 0x80000001 && reg
== R_EDX
) {
310 /* On Intel, kvm returns cpuid according to the Intel spec,
311 * so add missing bits according to the AMD spec:
313 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
314 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
319 /* fallback for older kernels */
320 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
321 ret
= get_para_features(s
);
327 typedef struct HWPoisonPage
{
329 QLIST_ENTRY(HWPoisonPage
) list
;
332 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
333 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
335 static void kvm_unpoison_all(void *param
)
337 HWPoisonPage
*page
, *next_page
;
339 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
340 QLIST_REMOVE(page
, list
);
341 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
346 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
350 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
351 if (page
->ram_addr
== ram_addr
) {
355 page
= g_new(HWPoisonPage
, 1);
356 page
->ram_addr
= ram_addr
;
357 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
360 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
365 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
368 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
373 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
375 CPUX86State
*env
= &cpu
->env
;
376 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
377 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
378 uint64_t mcg_status
= MCG_STATUS_MCIP
;
380 if (code
== BUS_MCEERR_AR
) {
381 status
|= MCI_STATUS_AR
| 0x134;
382 mcg_status
|= MCG_STATUS_EIPV
;
385 mcg_status
|= MCG_STATUS_RIPV
;
387 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
388 (MCM_ADDR_PHYS
<< 6) | 0xc,
389 cpu_x86_support_mca_broadcast(env
) ?
390 MCE_INJECT_BROADCAST
: 0);
393 static void hardware_memory_error(void)
395 fprintf(stderr
, "Hardware memory error!\n");
399 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
401 X86CPU
*cpu
= X86_CPU(c
);
402 CPUX86State
*env
= &cpu
->env
;
406 if ((env
->mcg_cap
& MCG_SER_P
) && addr
407 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
408 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
409 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
410 fprintf(stderr
, "Hardware memory error for memory used by "
411 "QEMU itself instead of guest system!\n");
412 /* Hope we are lucky for AO MCE */
413 if (code
== BUS_MCEERR_AO
) {
416 hardware_memory_error();
419 kvm_hwpoison_page_add(ram_addr
);
420 kvm_mce_inject(cpu
, paddr
, code
);
422 if (code
== BUS_MCEERR_AO
) {
424 } else if (code
== BUS_MCEERR_AR
) {
425 hardware_memory_error();
433 int kvm_arch_on_sigbus(int code
, void *addr
)
435 X86CPU
*cpu
= X86_CPU(first_cpu
);
437 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
441 /* Hope we are lucky for AO MCE */
442 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
443 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
445 fprintf(stderr
, "Hardware memory error for memory used by "
446 "QEMU itself instead of guest system!: %p\n", addr
);
449 kvm_hwpoison_page_add(ram_addr
);
450 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
452 if (code
== BUS_MCEERR_AO
) {
454 } else if (code
== BUS_MCEERR_AR
) {
455 hardware_memory_error();
463 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
465 CPUX86State
*env
= &cpu
->env
;
467 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
468 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
469 struct kvm_x86_mce mce
;
471 env
->exception_injected
= -1;
474 * There must be at least one bank in use if an MCE is pending.
475 * Find it and use its values for the event injection.
477 for (bank
= 0; bank
< bank_num
; bank
++) {
478 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
482 assert(bank
< bank_num
);
485 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
486 mce
.mcg_status
= env
->mcg_status
;
487 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
488 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
490 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
495 static void cpu_update_state(void *opaque
, int running
, RunState state
)
497 CPUX86State
*env
= opaque
;
500 env
->tsc_valid
= false;
504 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
506 X86CPU
*cpu
= X86_CPU(cs
);
510 #ifndef KVM_CPUID_SIGNATURE_NEXT
511 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
514 static bool hyperv_hypercall_available(X86CPU
*cpu
)
516 return cpu
->hyperv_vapic
||
517 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
520 static bool hyperv_enabled(X86CPU
*cpu
)
522 CPUState
*cs
= CPU(cpu
);
523 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
524 (hyperv_hypercall_available(cpu
) ||
526 cpu
->hyperv_relaxed_timing
||
529 cpu
->hyperv_vpindex
||
530 cpu
->hyperv_runtime
||
535 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
537 X86CPU
*cpu
= X86_CPU(cs
);
538 CPUX86State
*env
= &cpu
->env
;
545 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
546 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
549 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
550 * TSC frequency doesn't match the one we want.
552 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
553 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
555 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
556 error_report("warning: TSC frequency mismatch between "
557 "VM and host, and TSC scaling unavailable");
565 static Error
*invtsc_mig_blocker
;
567 #define KVM_MAX_CPUID_ENTRIES 100
569 int kvm_arch_init_vcpu(CPUState
*cs
)
572 struct kvm_cpuid2 cpuid
;
573 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
574 } QEMU_PACKED cpuid_data
;
575 X86CPU
*cpu
= X86_CPU(cs
);
576 CPUX86State
*env
= &cpu
->env
;
577 uint32_t limit
, i
, j
, cpuid_i
;
579 struct kvm_cpuid_entry2
*c
;
580 uint32_t signature
[3];
581 int kvm_base
= KVM_CPUID_SIGNATURE
;
584 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
588 /* Paravirtualization CPUIDs */
589 if (hyperv_enabled(cpu
)) {
590 c
= &cpuid_data
.entries
[cpuid_i
++];
591 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
592 if (!cpu
->hyperv_vendor_id
) {
593 memcpy(signature
, "Microsoft Hv", 12);
595 size_t len
= strlen(cpu
->hyperv_vendor_id
);
598 error_report("hv-vendor-id truncated to 12 characters");
601 memset(signature
, 0, 12);
602 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
604 c
->eax
= HYPERV_CPUID_MIN
;
605 c
->ebx
= signature
[0];
606 c
->ecx
= signature
[1];
607 c
->edx
= signature
[2];
609 c
= &cpuid_data
.entries
[cpuid_i
++];
610 c
->function
= HYPERV_CPUID_INTERFACE
;
611 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
612 c
->eax
= signature
[0];
617 c
= &cpuid_data
.entries
[cpuid_i
++];
618 c
->function
= HYPERV_CPUID_VERSION
;
622 c
= &cpuid_data
.entries
[cpuid_i
++];
623 c
->function
= HYPERV_CPUID_FEATURES
;
624 if (cpu
->hyperv_relaxed_timing
) {
625 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
627 if (cpu
->hyperv_vapic
) {
628 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
629 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
630 has_msr_hv_vapic
= true;
632 if (cpu
->hyperv_time
&&
633 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
634 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
635 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
637 has_msr_hv_tsc
= true;
639 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
640 c
->edx
|= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
642 c
->edx
|= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
643 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
644 c
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
646 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
647 c
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
649 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
650 c
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
652 if (cpu
->hyperv_synic
) {
655 if (!has_msr_hv_synic
||
656 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
657 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
661 c
->eax
|= HV_X64_MSR_SYNIC_AVAILABLE
;
662 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
663 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
664 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
667 if (cpu
->hyperv_stimer
) {
668 if (!has_msr_hv_stimer
) {
669 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
672 c
->eax
|= HV_X64_MSR_SYNTIMER_AVAILABLE
;
674 c
= &cpuid_data
.entries
[cpuid_i
++];
675 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
676 if (cpu
->hyperv_relaxed_timing
) {
677 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
679 if (has_msr_hv_vapic
) {
680 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
682 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
684 c
= &cpuid_data
.entries
[cpuid_i
++];
685 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
689 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
690 has_msr_hv_hypercall
= true;
693 if (cpu
->expose_kvm
) {
694 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
695 c
= &cpuid_data
.entries
[cpuid_i
++];
696 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
697 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
698 c
->ebx
= signature
[0];
699 c
->ecx
= signature
[1];
700 c
->edx
= signature
[2];
702 c
= &cpuid_data
.entries
[cpuid_i
++];
703 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
704 c
->eax
= env
->features
[FEAT_KVM
];
706 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
708 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
710 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
713 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
715 for (i
= 0; i
<= limit
; i
++) {
716 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
717 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
720 c
= &cpuid_data
.entries
[cpuid_i
++];
724 /* Keep reading function 2 till all the input is received */
728 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
729 KVM_CPUID_FLAG_STATE_READ_NEXT
;
730 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
731 times
= c
->eax
& 0xff;
733 for (j
= 1; j
< times
; ++j
) {
734 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
735 fprintf(stderr
, "cpuid_data is full, no space for "
736 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
739 c
= &cpuid_data
.entries
[cpuid_i
++];
741 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
742 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
750 if (i
== 0xd && j
== 64) {
754 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
756 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
758 if (i
== 4 && c
->eax
== 0) {
761 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
764 if (i
== 0xd && c
->eax
== 0) {
767 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
768 fprintf(stderr
, "cpuid_data is full, no space for "
769 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
772 c
= &cpuid_data
.entries
[cpuid_i
++];
778 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
786 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
787 if ((ver
& 0xff) > 0) {
788 has_msr_architectural_pmu
= true;
789 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
791 /* Shouldn't be more than 32, since that's the number of bits
792 * available in EBX to tell us _which_ counters are available.
795 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
796 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
801 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
803 for (i
= 0x80000000; i
<= limit
; i
++) {
804 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
805 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
808 c
= &cpuid_data
.entries
[cpuid_i
++];
812 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
815 /* Call Centaur's CPUID instructions they are supported. */
816 if (env
->cpuid_xlevel2
> 0) {
817 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
819 for (i
= 0xC0000000; i
<= limit
; i
++) {
820 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
821 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
824 c
= &cpuid_data
.entries
[cpuid_i
++];
828 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
832 cpuid_data
.cpuid
.nent
= cpuid_i
;
834 if (((env
->cpuid_version
>> 8)&0xF) >= 6
835 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
836 (CPUID_MCE
| CPUID_MCA
)
837 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
838 uint64_t mcg_cap
, unsupported_caps
;
842 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
844 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
848 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
849 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
850 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
854 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
855 if (unsupported_caps
) {
856 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
860 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
861 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
863 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
868 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
870 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
872 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
873 !!(c
->ecx
& CPUID_EXT_SMX
);
876 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
877 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
879 error_setg(&invtsc_mig_blocker
,
880 "State blocked by non-migratable CPU device"
882 migrate_add_blocker(invtsc_mig_blocker
);
884 vmstate_x86_cpu
.unmigratable
= 1;
887 cpuid_data
.cpuid
.padding
= 0;
888 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
893 r
= kvm_arch_set_tsc_khz(cs
);
898 /* vcpu's TSC frequency is either specified by user, or following
899 * the value used by KVM if the former is not present. In the
900 * latter case, we query it from KVM and record in env->tsc_khz,
901 * so that vcpu's TSC frequency can be migrated later via this field.
904 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
905 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
913 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
916 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
923 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
925 CPUX86State
*env
= &cpu
->env
;
927 env
->exception_injected
= -1;
928 env
->interrupt_injected
= -1;
930 if (kvm_irqchip_in_kernel()) {
931 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
932 KVM_MP_STATE_UNINITIALIZED
;
934 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
938 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
940 CPUX86State
*env
= &cpu
->env
;
942 /* APs get directly into wait-for-SIPI state. */
943 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
944 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
948 static int kvm_get_supported_msrs(KVMState
*s
)
950 static int kvm_supported_msrs
;
954 if (kvm_supported_msrs
== 0) {
955 struct kvm_msr_list msr_list
, *kvm_msr_list
;
957 kvm_supported_msrs
= -1;
959 /* Obtain MSR list from KVM. These are the MSRs that we must
962 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
963 if (ret
< 0 && ret
!= -E2BIG
) {
966 /* Old kernel modules had a bug and could write beyond the provided
967 memory. Allocate at least a safe amount of 1K. */
968 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
970 sizeof(msr_list
.indices
[0])));
972 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
973 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
977 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
978 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
982 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
983 has_msr_hsave_pa
= true;
986 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
987 has_msr_tsc_aux
= true;
990 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
991 has_msr_tsc_adjust
= true;
994 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
995 has_msr_tsc_deadline
= true;
998 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
999 has_msr_smbase
= true;
1002 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1003 has_msr_misc_enable
= true;
1006 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1007 has_msr_bndcfgs
= true;
1010 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1014 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1015 has_msr_hv_crash
= true;
1018 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1019 has_msr_hv_reset
= true;
1022 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1023 has_msr_hv_vpindex
= true;
1026 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1027 has_msr_hv_runtime
= true;
1030 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1031 has_msr_hv_synic
= true;
1034 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1035 has_msr_hv_stimer
= true;
1041 g_free(kvm_msr_list
);
1047 static Notifier smram_machine_done
;
1048 static KVMMemoryListener smram_listener
;
1049 static AddressSpace smram_address_space
;
1050 static MemoryRegion smram_as_root
;
1051 static MemoryRegion smram_as_mem
;
1053 static void register_smram_listener(Notifier
*n
, void *unused
)
1055 MemoryRegion
*smram
=
1056 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1058 /* Outer container... */
1059 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1060 memory_region_set_enabled(&smram_as_root
, true);
1062 /* ... with two regions inside: normal system memory with low
1065 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1066 get_system_memory(), 0, ~0ull);
1067 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1068 memory_region_set_enabled(&smram_as_mem
, true);
1071 /* ... SMRAM with higher priority */
1072 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1073 memory_region_set_enabled(smram
, true);
1076 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1077 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1078 &smram_address_space
, 1);
1081 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1083 uint64_t identity_base
= 0xfffbc000;
1084 uint64_t shadow_mem
;
1086 struct utsname utsname
;
1088 #ifdef KVM_CAP_XSAVE
1089 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1093 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1096 #ifdef KVM_CAP_PIT_STATE2
1097 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1100 ret
= kvm_get_supported_msrs(s
);
1106 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1109 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1110 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1111 * Since these must be part of guest physical memory, we need to allocate
1112 * them, both by setting their start addresses in the kernel and by
1113 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1115 * Older KVM versions may not support setting the identity map base. In
1116 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1119 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1120 /* Allows up to 16M BIOSes. */
1121 identity_base
= 0xfeffc000;
1123 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1129 /* Set TSS base one page after EPT identity map. */
1130 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1135 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1136 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1138 fprintf(stderr
, "e820_add_entry() table is full\n");
1141 qemu_register_reset(kvm_unpoison_all
, NULL
);
1143 shadow_mem
= machine_kvm_shadow_mem(ms
);
1144 if (shadow_mem
!= -1) {
1146 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1152 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1153 smram_machine_done
.notify
= register_smram_listener
;
1154 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1159 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1161 lhs
->selector
= rhs
->selector
;
1162 lhs
->base
= rhs
->base
;
1163 lhs
->limit
= rhs
->limit
;
1175 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1177 unsigned flags
= rhs
->flags
;
1178 lhs
->selector
= rhs
->selector
;
1179 lhs
->base
= rhs
->base
;
1180 lhs
->limit
= rhs
->limit
;
1181 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1182 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1183 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1184 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1185 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1186 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1187 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1188 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1189 lhs
->unusable
= !lhs
->present
;
1193 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1195 lhs
->selector
= rhs
->selector
;
1196 lhs
->base
= rhs
->base
;
1197 lhs
->limit
= rhs
->limit
;
1198 if (rhs
->unusable
) {
1201 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1202 (rhs
->present
* DESC_P_MASK
) |
1203 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1204 (rhs
->db
<< DESC_B_SHIFT
) |
1205 (rhs
->s
* DESC_S_MASK
) |
1206 (rhs
->l
<< DESC_L_SHIFT
) |
1207 (rhs
->g
* DESC_G_MASK
) |
1208 (rhs
->avl
* DESC_AVL_MASK
);
1212 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1215 *kvm_reg
= *qemu_reg
;
1217 *qemu_reg
= *kvm_reg
;
1221 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1223 CPUX86State
*env
= &cpu
->env
;
1224 struct kvm_regs regs
;
1228 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1234 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1235 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1236 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1237 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1238 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1239 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1240 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1241 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1242 #ifdef TARGET_X86_64
1243 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1244 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1245 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1246 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1247 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1248 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1249 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1250 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1253 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1254 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1257 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1263 static int kvm_put_fpu(X86CPU
*cpu
)
1265 CPUX86State
*env
= &cpu
->env
;
1269 memset(&fpu
, 0, sizeof fpu
);
1270 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1271 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1272 fpu
.fcw
= env
->fpuc
;
1273 fpu
.last_opcode
= env
->fpop
;
1274 fpu
.last_ip
= env
->fpip
;
1275 fpu
.last_dp
= env
->fpdp
;
1276 for (i
= 0; i
< 8; ++i
) {
1277 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1279 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1280 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1281 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1282 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1284 fpu
.mxcsr
= env
->mxcsr
;
1286 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1289 #define XSAVE_FCW_FSW 0
1290 #define XSAVE_FTW_FOP 1
1291 #define XSAVE_CWD_RIP 2
1292 #define XSAVE_CWD_RDP 4
1293 #define XSAVE_MXCSR 6
1294 #define XSAVE_ST_SPACE 8
1295 #define XSAVE_XMM_SPACE 40
1296 #define XSAVE_XSTATE_BV 128
1297 #define XSAVE_YMMH_SPACE 144
1298 #define XSAVE_BNDREGS 240
1299 #define XSAVE_BNDCSR 256
1300 #define XSAVE_OPMASK 272
1301 #define XSAVE_ZMM_Hi256 288
1302 #define XSAVE_Hi16_ZMM 416
1303 #define XSAVE_PKRU 672
1305 static int kvm_put_xsave(X86CPU
*cpu
)
1307 CPUX86State
*env
= &cpu
->env
;
1308 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1309 uint16_t cwd
, swd
, twd
;
1310 uint8_t *xmm
, *ymmh
, *zmmh
;
1314 return kvm_put_fpu(cpu
);
1317 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1319 swd
= env
->fpus
& ~(7 << 11);
1320 swd
|= (env
->fpstt
& 7) << 11;
1322 for (i
= 0; i
< 8; ++i
) {
1323 twd
|= (!env
->fptags
[i
]) << i
;
1325 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
1326 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
1327 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
1328 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
1329 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
1330 sizeof env
->fpregs
);
1331 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
1332 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
1333 memcpy(&xsave
->region
[XSAVE_BNDREGS
], env
->bnd_regs
,
1334 sizeof env
->bnd_regs
);
1335 memcpy(&xsave
->region
[XSAVE_BNDCSR
], &env
->bndcs_regs
,
1336 sizeof(env
->bndcs_regs
));
1337 memcpy(&xsave
->region
[XSAVE_OPMASK
], env
->opmask_regs
,
1338 sizeof env
->opmask_regs
);
1340 xmm
= (uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1341 ymmh
= (uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1342 zmmh
= (uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1343 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1344 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1345 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1346 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1347 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1348 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1349 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1350 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1351 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1354 #ifdef TARGET_X86_64
1355 memcpy(&xsave
->region
[XSAVE_Hi16_ZMM
], &env
->xmm_regs
[16],
1356 16 * sizeof env
->xmm_regs
[16]);
1357 memcpy(&xsave
->region
[XSAVE_PKRU
], &env
->pkru
, sizeof env
->pkru
);
1359 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1363 static int kvm_put_xcrs(X86CPU
*cpu
)
1365 CPUX86State
*env
= &cpu
->env
;
1366 struct kvm_xcrs xcrs
= {};
1374 xcrs
.xcrs
[0].xcr
= 0;
1375 xcrs
.xcrs
[0].value
= env
->xcr0
;
1376 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1379 static int kvm_put_sregs(X86CPU
*cpu
)
1381 CPUX86State
*env
= &cpu
->env
;
1382 struct kvm_sregs sregs
;
1384 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1385 if (env
->interrupt_injected
>= 0) {
1386 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1387 (uint64_t)1 << (env
->interrupt_injected
% 64);
1390 if ((env
->eflags
& VM_MASK
)) {
1391 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1392 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1393 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1394 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1395 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1396 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1398 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1399 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1400 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1401 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1402 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1403 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1406 set_seg(&sregs
.tr
, &env
->tr
);
1407 set_seg(&sregs
.ldt
, &env
->ldt
);
1409 sregs
.idt
.limit
= env
->idt
.limit
;
1410 sregs
.idt
.base
= env
->idt
.base
;
1411 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1412 sregs
.gdt
.limit
= env
->gdt
.limit
;
1413 sregs
.gdt
.base
= env
->gdt
.base
;
1414 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1416 sregs
.cr0
= env
->cr
[0];
1417 sregs
.cr2
= env
->cr
[2];
1418 sregs
.cr3
= env
->cr
[3];
1419 sregs
.cr4
= env
->cr
[4];
1421 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1422 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1424 sregs
.efer
= env
->efer
;
1426 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1429 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
1430 uint32_t index
, uint64_t value
)
1432 entry
->index
= index
;
1433 entry
->reserved
= 0;
1434 entry
->data
= value
;
1437 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1439 CPUX86State
*env
= &cpu
->env
;
1441 struct kvm_msrs info
;
1442 struct kvm_msr_entry entries
[1];
1444 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1446 if (!has_msr_tsc_deadline
) {
1450 kvm_msr_entry_set(&msrs
[0], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1452 msr_data
.info
= (struct kvm_msrs
) {
1456 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1460 * Provide a separate write service for the feature control MSR in order to
1461 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1462 * before writing any other state because forcibly leaving nested mode
1463 * invalidates the VCPU state.
1465 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1468 struct kvm_msrs info
;
1469 struct kvm_msr_entry entry
;
1472 kvm_msr_entry_set(&msr_data
.entry
, MSR_IA32_FEATURE_CONTROL
,
1473 cpu
->env
.msr_ia32_feature_control
);
1475 msr_data
.info
= (struct kvm_msrs
) {
1479 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1482 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1484 CPUX86State
*env
= &cpu
->env
;
1486 struct kvm_msrs info
;
1487 struct kvm_msr_entry entries
[150];
1489 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1492 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1493 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1494 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1495 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
1497 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
1499 if (has_msr_hsave_pa
) {
1500 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1502 if (has_msr_tsc_aux
) {
1503 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_AUX
, env
->tsc_aux
);
1505 if (has_msr_tsc_adjust
) {
1506 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_ADJUST
, env
->tsc_adjust
);
1508 if (has_msr_misc_enable
) {
1509 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
1510 env
->msr_ia32_misc_enable
);
1512 if (has_msr_smbase
) {
1513 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SMBASE
, env
->smbase
);
1515 if (has_msr_bndcfgs
) {
1516 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1519 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_XSS
, env
->xss
);
1521 #ifdef TARGET_X86_64
1522 if (lm_capable_kernel
) {
1523 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
1524 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
1525 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
1526 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
1530 * The following MSRs have side effects on the guest or are too heavy
1531 * for normal writeback. Limit them to reset or full state updates.
1533 if (level
>= KVM_PUT_RESET_STATE
) {
1534 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1535 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1536 env
->system_time_msr
);
1537 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1538 if (has_msr_async_pf_en
) {
1539 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1540 env
->async_pf_en_msr
);
1542 if (has_msr_pv_eoi_en
) {
1543 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_PV_EOI_EN
,
1544 env
->pv_eoi_en_msr
);
1546 if (has_msr_kvm_steal_time
) {
1547 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_STEAL_TIME
,
1548 env
->steal_time_msr
);
1550 if (has_msr_architectural_pmu
) {
1551 /* Stop the counter. */
1552 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1553 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1555 /* Set the counter values. */
1556 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1557 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR0
+ i
,
1558 env
->msr_fixed_counters
[i
]);
1560 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1561 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_PERFCTR0
+ i
,
1562 env
->msr_gp_counters
[i
]);
1563 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_EVNTSEL0
+ i
,
1564 env
->msr_gp_evtsel
[i
]);
1566 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_STATUS
,
1567 env
->msr_global_status
);
1568 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1569 env
->msr_global_ovf_ctrl
);
1571 /* Now start the PMU. */
1572 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
,
1573 env
->msr_fixed_ctr_ctrl
);
1574 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
,
1575 env
->msr_global_ctrl
);
1577 if (has_msr_hv_hypercall
) {
1578 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
,
1579 env
->msr_hv_guest_os_id
);
1580 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
,
1581 env
->msr_hv_hypercall
);
1583 if (has_msr_hv_vapic
) {
1584 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
,
1587 if (has_msr_hv_tsc
) {
1588 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_REFERENCE_TSC
,
1591 if (has_msr_hv_crash
) {
1594 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1595 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_P0
+ j
,
1596 env
->msr_hv_crash_params
[j
]);
1598 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_CTL
,
1599 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1601 if (has_msr_hv_runtime
) {
1602 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_VP_RUNTIME
,
1603 env
->msr_hv_runtime
);
1605 if (cpu
->hyperv_synic
) {
1608 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SCONTROL
,
1609 env
->msr_hv_synic_control
);
1610 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SVERSION
,
1611 env
->msr_hv_synic_version
);
1612 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SIEFP
,
1613 env
->msr_hv_synic_evt_page
);
1614 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SIMP
,
1615 env
->msr_hv_synic_msg_page
);
1617 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1618 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SINT0
+ j
,
1619 env
->msr_hv_synic_sint
[j
]);
1622 if (has_msr_hv_stimer
) {
1625 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1626 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_STIMER0_CONFIG
+ j
*2,
1627 env
->msr_hv_stimer_config
[j
]);
1630 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1631 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_STIMER0_COUNT
+ j
*2,
1632 env
->msr_hv_stimer_count
[j
]);
1636 kvm_msr_entry_set(&msrs
[n
++], MSR_MTRRdefType
, env
->mtrr_deftype
);
1637 kvm_msr_entry_set(&msrs
[n
++],
1638 MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1639 kvm_msr_entry_set(&msrs
[n
++],
1640 MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1641 kvm_msr_entry_set(&msrs
[n
++],
1642 MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1643 kvm_msr_entry_set(&msrs
[n
++],
1644 MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1645 kvm_msr_entry_set(&msrs
[n
++],
1646 MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1647 kvm_msr_entry_set(&msrs
[n
++],
1648 MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1649 kvm_msr_entry_set(&msrs
[n
++],
1650 MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1651 kvm_msr_entry_set(&msrs
[n
++],
1652 MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1653 kvm_msr_entry_set(&msrs
[n
++],
1654 MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1655 kvm_msr_entry_set(&msrs
[n
++],
1656 MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1657 kvm_msr_entry_set(&msrs
[n
++],
1658 MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1659 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1660 kvm_msr_entry_set(&msrs
[n
++],
1661 MSR_MTRRphysBase(i
), env
->mtrr_var
[i
].base
);
1662 kvm_msr_entry_set(&msrs
[n
++],
1663 MSR_MTRRphysMask(i
), env
->mtrr_var
[i
].mask
);
1667 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1668 * kvm_put_msr_feature_control. */
1673 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1674 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1675 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1676 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1680 msr_data
.info
= (struct kvm_msrs
) {
1684 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1689 static int kvm_get_fpu(X86CPU
*cpu
)
1691 CPUX86State
*env
= &cpu
->env
;
1695 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1700 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1701 env
->fpus
= fpu
.fsw
;
1702 env
->fpuc
= fpu
.fcw
;
1703 env
->fpop
= fpu
.last_opcode
;
1704 env
->fpip
= fpu
.last_ip
;
1705 env
->fpdp
= fpu
.last_dp
;
1706 for (i
= 0; i
< 8; ++i
) {
1707 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1709 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1710 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1711 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1712 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1714 env
->mxcsr
= fpu
.mxcsr
;
1719 static int kvm_get_xsave(X86CPU
*cpu
)
1721 CPUX86State
*env
= &cpu
->env
;
1722 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1724 const uint8_t *xmm
, *ymmh
, *zmmh
;
1725 uint16_t cwd
, swd
, twd
;
1728 return kvm_get_fpu(cpu
);
1731 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1736 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1737 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1738 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1739 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1740 env
->fpstt
= (swd
>> 11) & 7;
1743 for (i
= 0; i
< 8; ++i
) {
1744 env
->fptags
[i
] = !((twd
>> i
) & 1);
1746 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1747 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1748 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1749 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1750 sizeof env
->fpregs
);
1751 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1752 memcpy(env
->bnd_regs
, &xsave
->region
[XSAVE_BNDREGS
],
1753 sizeof env
->bnd_regs
);
1754 memcpy(&env
->bndcs_regs
, &xsave
->region
[XSAVE_BNDCSR
],
1755 sizeof(env
->bndcs_regs
));
1756 memcpy(env
->opmask_regs
, &xsave
->region
[XSAVE_OPMASK
],
1757 sizeof env
->opmask_regs
);
1759 xmm
= (const uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1760 ymmh
= (const uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1761 zmmh
= (const uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1762 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1763 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1764 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1765 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1766 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1767 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1768 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1769 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1770 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1773 #ifdef TARGET_X86_64
1774 memcpy(&env
->xmm_regs
[16], &xsave
->region
[XSAVE_Hi16_ZMM
],
1775 16 * sizeof env
->xmm_regs
[16]);
1776 memcpy(&env
->pkru
, &xsave
->region
[XSAVE_PKRU
], sizeof env
->pkru
);
1781 static int kvm_get_xcrs(X86CPU
*cpu
)
1783 CPUX86State
*env
= &cpu
->env
;
1785 struct kvm_xcrs xcrs
;
1791 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1796 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1797 /* Only support xcr0 now */
1798 if (xcrs
.xcrs
[i
].xcr
== 0) {
1799 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1806 static int kvm_get_sregs(X86CPU
*cpu
)
1808 CPUX86State
*env
= &cpu
->env
;
1809 struct kvm_sregs sregs
;
1813 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1818 /* There can only be one pending IRQ set in the bitmap at a time, so try
1819 to find it and save its number instead (-1 for none). */
1820 env
->interrupt_injected
= -1;
1821 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1822 if (sregs
.interrupt_bitmap
[i
]) {
1823 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1824 env
->interrupt_injected
= i
* 64 + bit
;
1829 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1830 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1831 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1832 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1833 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1834 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1836 get_seg(&env
->tr
, &sregs
.tr
);
1837 get_seg(&env
->ldt
, &sregs
.ldt
);
1839 env
->idt
.limit
= sregs
.idt
.limit
;
1840 env
->idt
.base
= sregs
.idt
.base
;
1841 env
->gdt
.limit
= sregs
.gdt
.limit
;
1842 env
->gdt
.base
= sregs
.gdt
.base
;
1844 env
->cr
[0] = sregs
.cr0
;
1845 env
->cr
[2] = sregs
.cr2
;
1846 env
->cr
[3] = sregs
.cr3
;
1847 env
->cr
[4] = sregs
.cr4
;
1849 env
->efer
= sregs
.efer
;
1851 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1853 #define HFLAG_COPY_MASK \
1854 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1855 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1856 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1857 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1859 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1860 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1861 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1862 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1863 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1864 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1866 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1867 hflags
|= HF_OSFXSR_MASK
;
1870 if (env
->efer
& MSR_EFER_LMA
) {
1871 hflags
|= HF_LMA_MASK
;
1874 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1875 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1877 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1878 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1879 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1880 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1881 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1882 !(hflags
& HF_CS32_MASK
)) {
1883 hflags
|= HF_ADDSEG_MASK
;
1885 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1886 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1889 env
->hflags
= hflags
;
1894 static int kvm_get_msrs(X86CPU
*cpu
)
1896 CPUX86State
*env
= &cpu
->env
;
1898 struct kvm_msrs info
;
1899 struct kvm_msr_entry entries
[150];
1901 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1905 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1906 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1907 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1908 msrs
[n
++].index
= MSR_PAT
;
1910 msrs
[n
++].index
= MSR_STAR
;
1912 if (has_msr_hsave_pa
) {
1913 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1915 if (has_msr_tsc_aux
) {
1916 msrs
[n
++].index
= MSR_TSC_AUX
;
1918 if (has_msr_tsc_adjust
) {
1919 msrs
[n
++].index
= MSR_TSC_ADJUST
;
1921 if (has_msr_tsc_deadline
) {
1922 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1924 if (has_msr_misc_enable
) {
1925 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1927 if (has_msr_smbase
) {
1928 msrs
[n
++].index
= MSR_IA32_SMBASE
;
1930 if (has_msr_feature_control
) {
1931 msrs
[n
++].index
= MSR_IA32_FEATURE_CONTROL
;
1933 if (has_msr_bndcfgs
) {
1934 msrs
[n
++].index
= MSR_IA32_BNDCFGS
;
1937 msrs
[n
++].index
= MSR_IA32_XSS
;
1941 if (!env
->tsc_valid
) {
1942 msrs
[n
++].index
= MSR_IA32_TSC
;
1943 env
->tsc_valid
= !runstate_is_running();
1946 #ifdef TARGET_X86_64
1947 if (lm_capable_kernel
) {
1948 msrs
[n
++].index
= MSR_CSTAR
;
1949 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1950 msrs
[n
++].index
= MSR_FMASK
;
1951 msrs
[n
++].index
= MSR_LSTAR
;
1954 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1955 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1956 if (has_msr_async_pf_en
) {
1957 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1959 if (has_msr_pv_eoi_en
) {
1960 msrs
[n
++].index
= MSR_KVM_PV_EOI_EN
;
1962 if (has_msr_kvm_steal_time
) {
1963 msrs
[n
++].index
= MSR_KVM_STEAL_TIME
;
1965 if (has_msr_architectural_pmu
) {
1966 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR_CTRL
;
1967 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_CTRL
;
1968 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_STATUS
;
1969 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_OVF_CTRL
;
1970 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1971 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR0
+ i
;
1973 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1974 msrs
[n
++].index
= MSR_P6_PERFCTR0
+ i
;
1975 msrs
[n
++].index
= MSR_P6_EVNTSEL0
+ i
;
1980 msrs
[n
++].index
= MSR_MCG_STATUS
;
1981 msrs
[n
++].index
= MSR_MCG_CTL
;
1982 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1983 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1987 if (has_msr_hv_hypercall
) {
1988 msrs
[n
++].index
= HV_X64_MSR_HYPERCALL
;
1989 msrs
[n
++].index
= HV_X64_MSR_GUEST_OS_ID
;
1991 if (has_msr_hv_vapic
) {
1992 msrs
[n
++].index
= HV_X64_MSR_APIC_ASSIST_PAGE
;
1994 if (has_msr_hv_tsc
) {
1995 msrs
[n
++].index
= HV_X64_MSR_REFERENCE_TSC
;
1997 if (has_msr_hv_crash
) {
2000 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2001 msrs
[n
++].index
= HV_X64_MSR_CRASH_P0
+ j
;
2004 if (has_msr_hv_runtime
) {
2005 msrs
[n
++].index
= HV_X64_MSR_VP_RUNTIME
;
2007 if (cpu
->hyperv_synic
) {
2010 msrs
[n
++].index
= HV_X64_MSR_SCONTROL
;
2011 msrs
[n
++].index
= HV_X64_MSR_SVERSION
;
2012 msrs
[n
++].index
= HV_X64_MSR_SIEFP
;
2013 msrs
[n
++].index
= HV_X64_MSR_SIMP
;
2014 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2015 msrs
[n
++].index
= msr
;
2018 if (has_msr_hv_stimer
) {
2021 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2023 msrs
[n
++].index
= msr
;
2027 msrs
[n
++].index
= MSR_MTRRdefType
;
2028 msrs
[n
++].index
= MSR_MTRRfix64K_00000
;
2029 msrs
[n
++].index
= MSR_MTRRfix16K_80000
;
2030 msrs
[n
++].index
= MSR_MTRRfix16K_A0000
;
2031 msrs
[n
++].index
= MSR_MTRRfix4K_C0000
;
2032 msrs
[n
++].index
= MSR_MTRRfix4K_C8000
;
2033 msrs
[n
++].index
= MSR_MTRRfix4K_D0000
;
2034 msrs
[n
++].index
= MSR_MTRRfix4K_D8000
;
2035 msrs
[n
++].index
= MSR_MTRRfix4K_E0000
;
2036 msrs
[n
++].index
= MSR_MTRRfix4K_E8000
;
2037 msrs
[n
++].index
= MSR_MTRRfix4K_F0000
;
2038 msrs
[n
++].index
= MSR_MTRRfix4K_F8000
;
2039 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2040 msrs
[n
++].index
= MSR_MTRRphysBase(i
);
2041 msrs
[n
++].index
= MSR_MTRRphysMask(i
);
2045 msr_data
.info
= (struct kvm_msrs
) {
2049 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
2054 for (i
= 0; i
< ret
; i
++) {
2055 uint32_t index
= msrs
[i
].index
;
2057 case MSR_IA32_SYSENTER_CS
:
2058 env
->sysenter_cs
= msrs
[i
].data
;
2060 case MSR_IA32_SYSENTER_ESP
:
2061 env
->sysenter_esp
= msrs
[i
].data
;
2063 case MSR_IA32_SYSENTER_EIP
:
2064 env
->sysenter_eip
= msrs
[i
].data
;
2067 env
->pat
= msrs
[i
].data
;
2070 env
->star
= msrs
[i
].data
;
2072 #ifdef TARGET_X86_64
2074 env
->cstar
= msrs
[i
].data
;
2076 case MSR_KERNELGSBASE
:
2077 env
->kernelgsbase
= msrs
[i
].data
;
2080 env
->fmask
= msrs
[i
].data
;
2083 env
->lstar
= msrs
[i
].data
;
2087 env
->tsc
= msrs
[i
].data
;
2090 env
->tsc_aux
= msrs
[i
].data
;
2092 case MSR_TSC_ADJUST
:
2093 env
->tsc_adjust
= msrs
[i
].data
;
2095 case MSR_IA32_TSCDEADLINE
:
2096 env
->tsc_deadline
= msrs
[i
].data
;
2098 case MSR_VM_HSAVE_PA
:
2099 env
->vm_hsave
= msrs
[i
].data
;
2101 case MSR_KVM_SYSTEM_TIME
:
2102 env
->system_time_msr
= msrs
[i
].data
;
2104 case MSR_KVM_WALL_CLOCK
:
2105 env
->wall_clock_msr
= msrs
[i
].data
;
2107 case MSR_MCG_STATUS
:
2108 env
->mcg_status
= msrs
[i
].data
;
2111 env
->mcg_ctl
= msrs
[i
].data
;
2113 case MSR_IA32_MISC_ENABLE
:
2114 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2116 case MSR_IA32_SMBASE
:
2117 env
->smbase
= msrs
[i
].data
;
2119 case MSR_IA32_FEATURE_CONTROL
:
2120 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2122 case MSR_IA32_BNDCFGS
:
2123 env
->msr_bndcfgs
= msrs
[i
].data
;
2126 env
->xss
= msrs
[i
].data
;
2129 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2130 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2131 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2134 case MSR_KVM_ASYNC_PF_EN
:
2135 env
->async_pf_en_msr
= msrs
[i
].data
;
2137 case MSR_KVM_PV_EOI_EN
:
2138 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2140 case MSR_KVM_STEAL_TIME
:
2141 env
->steal_time_msr
= msrs
[i
].data
;
2143 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2144 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2146 case MSR_CORE_PERF_GLOBAL_CTRL
:
2147 env
->msr_global_ctrl
= msrs
[i
].data
;
2149 case MSR_CORE_PERF_GLOBAL_STATUS
:
2150 env
->msr_global_status
= msrs
[i
].data
;
2152 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2153 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2155 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2156 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2158 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2159 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2161 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2162 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2164 case HV_X64_MSR_HYPERCALL
:
2165 env
->msr_hv_hypercall
= msrs
[i
].data
;
2167 case HV_X64_MSR_GUEST_OS_ID
:
2168 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2170 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2171 env
->msr_hv_vapic
= msrs
[i
].data
;
2173 case HV_X64_MSR_REFERENCE_TSC
:
2174 env
->msr_hv_tsc
= msrs
[i
].data
;
2176 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2177 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2179 case HV_X64_MSR_VP_RUNTIME
:
2180 env
->msr_hv_runtime
= msrs
[i
].data
;
2182 case HV_X64_MSR_SCONTROL
:
2183 env
->msr_hv_synic_control
= msrs
[i
].data
;
2185 case HV_X64_MSR_SVERSION
:
2186 env
->msr_hv_synic_version
= msrs
[i
].data
;
2188 case HV_X64_MSR_SIEFP
:
2189 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2191 case HV_X64_MSR_SIMP
:
2192 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2194 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2195 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2197 case HV_X64_MSR_STIMER0_CONFIG
:
2198 case HV_X64_MSR_STIMER1_CONFIG
:
2199 case HV_X64_MSR_STIMER2_CONFIG
:
2200 case HV_X64_MSR_STIMER3_CONFIG
:
2201 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2204 case HV_X64_MSR_STIMER0_COUNT
:
2205 case HV_X64_MSR_STIMER1_COUNT
:
2206 case HV_X64_MSR_STIMER2_COUNT
:
2207 case HV_X64_MSR_STIMER3_COUNT
:
2208 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2211 case MSR_MTRRdefType
:
2212 env
->mtrr_deftype
= msrs
[i
].data
;
2214 case MSR_MTRRfix64K_00000
:
2215 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2217 case MSR_MTRRfix16K_80000
:
2218 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2220 case MSR_MTRRfix16K_A0000
:
2221 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2223 case MSR_MTRRfix4K_C0000
:
2224 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2226 case MSR_MTRRfix4K_C8000
:
2227 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2229 case MSR_MTRRfix4K_D0000
:
2230 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2232 case MSR_MTRRfix4K_D8000
:
2233 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2235 case MSR_MTRRfix4K_E0000
:
2236 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2238 case MSR_MTRRfix4K_E8000
:
2239 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2241 case MSR_MTRRfix4K_F0000
:
2242 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2244 case MSR_MTRRfix4K_F8000
:
2245 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2247 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2249 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2251 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2260 static int kvm_put_mp_state(X86CPU
*cpu
)
2262 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2264 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2267 static int kvm_get_mp_state(X86CPU
*cpu
)
2269 CPUState
*cs
= CPU(cpu
);
2270 CPUX86State
*env
= &cpu
->env
;
2271 struct kvm_mp_state mp_state
;
2274 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2278 env
->mp_state
= mp_state
.mp_state
;
2279 if (kvm_irqchip_in_kernel()) {
2280 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2285 static int kvm_get_apic(X86CPU
*cpu
)
2287 DeviceState
*apic
= cpu
->apic_state
;
2288 struct kvm_lapic_state kapic
;
2291 if (apic
&& kvm_irqchip_in_kernel()) {
2292 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2297 kvm_get_apic_state(apic
, &kapic
);
2302 static int kvm_put_apic(X86CPU
*cpu
)
2304 DeviceState
*apic
= cpu
->apic_state
;
2305 struct kvm_lapic_state kapic
;
2307 if (apic
&& kvm_irqchip_in_kernel()) {
2308 kvm_put_apic_state(apic
, &kapic
);
2310 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2315 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2317 CPUState
*cs
= CPU(cpu
);
2318 CPUX86State
*env
= &cpu
->env
;
2319 struct kvm_vcpu_events events
= {};
2321 if (!kvm_has_vcpu_events()) {
2325 events
.exception
.injected
= (env
->exception_injected
>= 0);
2326 events
.exception
.nr
= env
->exception_injected
;
2327 events
.exception
.has_error_code
= env
->has_error_code
;
2328 events
.exception
.error_code
= env
->error_code
;
2329 events
.exception
.pad
= 0;
2331 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2332 events
.interrupt
.nr
= env
->interrupt_injected
;
2333 events
.interrupt
.soft
= env
->soft_interrupt
;
2335 events
.nmi
.injected
= env
->nmi_injected
;
2336 events
.nmi
.pending
= env
->nmi_pending
;
2337 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2340 events
.sipi_vector
= env
->sipi_vector
;
2342 if (has_msr_smbase
) {
2343 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2344 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2345 if (kvm_irqchip_in_kernel()) {
2346 /* As soon as these are moved to the kernel, remove them
2347 * from cs->interrupt_request.
2349 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2350 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2351 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2353 /* Keep these in cs->interrupt_request. */
2354 events
.smi
.pending
= 0;
2355 events
.smi
.latched_init
= 0;
2357 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2361 if (level
>= KVM_PUT_RESET_STATE
) {
2363 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2366 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2369 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2371 CPUX86State
*env
= &cpu
->env
;
2372 struct kvm_vcpu_events events
;
2375 if (!kvm_has_vcpu_events()) {
2379 memset(&events
, 0, sizeof(events
));
2380 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2384 env
->exception_injected
=
2385 events
.exception
.injected
? events
.exception
.nr
: -1;
2386 env
->has_error_code
= events
.exception
.has_error_code
;
2387 env
->error_code
= events
.exception
.error_code
;
2389 env
->interrupt_injected
=
2390 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2391 env
->soft_interrupt
= events
.interrupt
.soft
;
2393 env
->nmi_injected
= events
.nmi
.injected
;
2394 env
->nmi_pending
= events
.nmi
.pending
;
2395 if (events
.nmi
.masked
) {
2396 env
->hflags2
|= HF2_NMI_MASK
;
2398 env
->hflags2
&= ~HF2_NMI_MASK
;
2401 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2402 if (events
.smi
.smm
) {
2403 env
->hflags
|= HF_SMM_MASK
;
2405 env
->hflags
&= ~HF_SMM_MASK
;
2407 if (events
.smi
.pending
) {
2408 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2410 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2412 if (events
.smi
.smm_inside_nmi
) {
2413 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2415 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2417 if (events
.smi
.latched_init
) {
2418 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2420 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2424 env
->sipi_vector
= events
.sipi_vector
;
2429 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2431 CPUState
*cs
= CPU(cpu
);
2432 CPUX86State
*env
= &cpu
->env
;
2434 unsigned long reinject_trap
= 0;
2436 if (!kvm_has_vcpu_events()) {
2437 if (env
->exception_injected
== 1) {
2438 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2439 } else if (env
->exception_injected
== 3) {
2440 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2442 env
->exception_injected
= -1;
2446 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2447 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2448 * by updating the debug state once again if single-stepping is on.
2449 * Another reason to call kvm_update_guest_debug here is a pending debug
2450 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2451 * reinject them via SET_GUEST_DEBUG.
2453 if (reinject_trap
||
2454 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2455 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2460 static int kvm_put_debugregs(X86CPU
*cpu
)
2462 CPUX86State
*env
= &cpu
->env
;
2463 struct kvm_debugregs dbgregs
;
2466 if (!kvm_has_debugregs()) {
2470 for (i
= 0; i
< 4; i
++) {
2471 dbgregs
.db
[i
] = env
->dr
[i
];
2473 dbgregs
.dr6
= env
->dr
[6];
2474 dbgregs
.dr7
= env
->dr
[7];
2477 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2480 static int kvm_get_debugregs(X86CPU
*cpu
)
2482 CPUX86State
*env
= &cpu
->env
;
2483 struct kvm_debugregs dbgregs
;
2486 if (!kvm_has_debugregs()) {
2490 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2494 for (i
= 0; i
< 4; i
++) {
2495 env
->dr
[i
] = dbgregs
.db
[i
];
2497 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2498 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2503 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2505 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2508 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2510 if (level
>= KVM_PUT_RESET_STATE
&& has_msr_feature_control
) {
2511 ret
= kvm_put_msr_feature_control(x86_cpu
);
2517 if (level
== KVM_PUT_FULL_STATE
) {
2518 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2519 * because TSC frequency mismatch shouldn't abort migration,
2520 * unless the user explicitly asked for a more strict TSC
2521 * setting (e.g. using an explicit "tsc-freq" option).
2523 kvm_arch_set_tsc_khz(cpu
);
2526 ret
= kvm_getput_regs(x86_cpu
, 1);
2530 ret
= kvm_put_xsave(x86_cpu
);
2534 ret
= kvm_put_xcrs(x86_cpu
);
2538 ret
= kvm_put_sregs(x86_cpu
);
2542 /* must be before kvm_put_msrs */
2543 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2547 ret
= kvm_put_msrs(x86_cpu
, level
);
2551 if (level
>= KVM_PUT_RESET_STATE
) {
2552 ret
= kvm_put_mp_state(x86_cpu
);
2556 ret
= kvm_put_apic(x86_cpu
);
2562 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2567 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2571 ret
= kvm_put_debugregs(x86_cpu
);
2576 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2583 int kvm_arch_get_registers(CPUState
*cs
)
2585 X86CPU
*cpu
= X86_CPU(cs
);
2588 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2590 ret
= kvm_getput_regs(cpu
, 0);
2594 ret
= kvm_get_xsave(cpu
);
2598 ret
= kvm_get_xcrs(cpu
);
2602 ret
= kvm_get_sregs(cpu
);
2606 ret
= kvm_get_msrs(cpu
);
2610 ret
= kvm_get_mp_state(cpu
);
2614 ret
= kvm_get_apic(cpu
);
2618 ret
= kvm_get_vcpu_events(cpu
);
2622 ret
= kvm_get_debugregs(cpu
);
2628 cpu_sync_bndcs_hflags(&cpu
->env
);
2632 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2634 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2635 CPUX86State
*env
= &x86_cpu
->env
;
2639 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2640 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2641 qemu_mutex_lock_iothread();
2642 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2643 qemu_mutex_unlock_iothread();
2644 DPRINTF("injected NMI\n");
2645 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2647 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2651 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2652 qemu_mutex_lock_iothread();
2653 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2654 qemu_mutex_unlock_iothread();
2655 DPRINTF("injected SMI\n");
2656 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2658 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2664 if (!kvm_pic_in_kernel()) {
2665 qemu_mutex_lock_iothread();
2668 /* Force the VCPU out of its inner loop to process any INIT requests
2669 * or (for userspace APIC, but it is cheap to combine the checks here)
2670 * pending TPR access reports.
2672 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2673 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2674 !(env
->hflags
& HF_SMM_MASK
)) {
2675 cpu
->exit_request
= 1;
2677 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2678 cpu
->exit_request
= 1;
2682 if (!kvm_pic_in_kernel()) {
2683 /* Try to inject an interrupt if the guest can accept it */
2684 if (run
->ready_for_interrupt_injection
&&
2685 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2686 (env
->eflags
& IF_MASK
)) {
2689 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2690 irq
= cpu_get_pic_interrupt(env
);
2692 struct kvm_interrupt intr
;
2695 DPRINTF("injected interrupt %d\n", irq
);
2696 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2699 "KVM: injection failed, interrupt lost (%s)\n",
2705 /* If we have an interrupt but the guest is not ready to receive an
2706 * interrupt, request an interrupt window exit. This will
2707 * cause a return to userspace as soon as the guest is ready to
2708 * receive interrupts. */
2709 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2710 run
->request_interrupt_window
= 1;
2712 run
->request_interrupt_window
= 0;
2715 DPRINTF("setting tpr\n");
2716 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2718 qemu_mutex_unlock_iothread();
2722 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2724 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2725 CPUX86State
*env
= &x86_cpu
->env
;
2727 if (run
->flags
& KVM_RUN_X86_SMM
) {
2728 env
->hflags
|= HF_SMM_MASK
;
2730 env
->hflags
&= HF_SMM_MASK
;
2733 env
->eflags
|= IF_MASK
;
2735 env
->eflags
&= ~IF_MASK
;
2738 /* We need to protect the apic state against concurrent accesses from
2739 * different threads in case the userspace irqchip is used. */
2740 if (!kvm_irqchip_in_kernel()) {
2741 qemu_mutex_lock_iothread();
2743 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2744 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2745 if (!kvm_irqchip_in_kernel()) {
2746 qemu_mutex_unlock_iothread();
2748 return cpu_get_mem_attrs(env
);
2751 int kvm_arch_process_async_events(CPUState
*cs
)
2753 X86CPU
*cpu
= X86_CPU(cs
);
2754 CPUX86State
*env
= &cpu
->env
;
2756 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2757 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2758 assert(env
->mcg_cap
);
2760 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2762 kvm_cpu_synchronize_state(cs
);
2764 if (env
->exception_injected
== EXCP08_DBLE
) {
2765 /* this means triple fault */
2766 qemu_system_reset_request();
2767 cs
->exit_request
= 1;
2770 env
->exception_injected
= EXCP12_MCHK
;
2771 env
->has_error_code
= 0;
2774 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2775 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2779 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2780 !(env
->hflags
& HF_SMM_MASK
)) {
2781 kvm_cpu_synchronize_state(cs
);
2785 if (kvm_irqchip_in_kernel()) {
2789 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2790 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2791 apic_poll_irq(cpu
->apic_state
);
2793 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2794 (env
->eflags
& IF_MASK
)) ||
2795 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2798 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2799 kvm_cpu_synchronize_state(cs
);
2802 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2803 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2804 kvm_cpu_synchronize_state(cs
);
2805 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2806 env
->tpr_access_type
);
2812 static int kvm_handle_halt(X86CPU
*cpu
)
2814 CPUState
*cs
= CPU(cpu
);
2815 CPUX86State
*env
= &cpu
->env
;
2817 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2818 (env
->eflags
& IF_MASK
)) &&
2819 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2827 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2829 CPUState
*cs
= CPU(cpu
);
2830 struct kvm_run
*run
= cs
->kvm_run
;
2832 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2833 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2838 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2840 static const uint8_t int3
= 0xcc;
2842 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2843 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2849 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2853 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2854 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2866 static int nb_hw_breakpoint
;
2868 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2872 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2873 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2874 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2881 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2882 target_ulong len
, int type
)
2885 case GDB_BREAKPOINT_HW
:
2888 case GDB_WATCHPOINT_WRITE
:
2889 case GDB_WATCHPOINT_ACCESS
:
2896 if (addr
& (len
- 1)) {
2908 if (nb_hw_breakpoint
== 4) {
2911 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2914 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2915 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2916 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2922 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2923 target_ulong len
, int type
)
2927 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2932 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2937 void kvm_arch_remove_all_hw_breakpoints(void)
2939 nb_hw_breakpoint
= 0;
2942 static CPUWatchpoint hw_watchpoint
;
2944 static int kvm_handle_debug(X86CPU
*cpu
,
2945 struct kvm_debug_exit_arch
*arch_info
)
2947 CPUState
*cs
= CPU(cpu
);
2948 CPUX86State
*env
= &cpu
->env
;
2952 if (arch_info
->exception
== 1) {
2953 if (arch_info
->dr6
& (1 << 14)) {
2954 if (cs
->singlestep_enabled
) {
2958 for (n
= 0; n
< 4; n
++) {
2959 if (arch_info
->dr6
& (1 << n
)) {
2960 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2966 cs
->watchpoint_hit
= &hw_watchpoint
;
2967 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2968 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2972 cs
->watchpoint_hit
= &hw_watchpoint
;
2973 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2974 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
2980 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
2984 cpu_synchronize_state(cs
);
2985 assert(env
->exception_injected
== -1);
2988 env
->exception_injected
= arch_info
->exception
;
2989 env
->has_error_code
= 0;
2995 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
2997 const uint8_t type_code
[] = {
2998 [GDB_BREAKPOINT_HW
] = 0x0,
2999 [GDB_WATCHPOINT_WRITE
] = 0x1,
3000 [GDB_WATCHPOINT_ACCESS
] = 0x3
3002 const uint8_t len_code
[] = {
3003 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3007 if (kvm_sw_breakpoints_active(cpu
)) {
3008 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3010 if (nb_hw_breakpoint
> 0) {
3011 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3012 dbg
->arch
.debugreg
[7] = 0x0600;
3013 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3014 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3015 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3016 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3017 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3022 static bool host_supports_vmx(void)
3024 uint32_t ecx
, unused
;
3026 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3027 return ecx
& CPUID_EXT_VMX
;
3030 #define VMX_INVALID_GUEST_STATE 0x80000021
3032 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3034 X86CPU
*cpu
= X86_CPU(cs
);
3038 switch (run
->exit_reason
) {
3040 DPRINTF("handle_hlt\n");
3041 qemu_mutex_lock_iothread();
3042 ret
= kvm_handle_halt(cpu
);
3043 qemu_mutex_unlock_iothread();
3045 case KVM_EXIT_SET_TPR
:
3048 case KVM_EXIT_TPR_ACCESS
:
3049 qemu_mutex_lock_iothread();
3050 ret
= kvm_handle_tpr_access(cpu
);
3051 qemu_mutex_unlock_iothread();
3053 case KVM_EXIT_FAIL_ENTRY
:
3054 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3055 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3057 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3059 "\nIf you're running a guest on an Intel machine without "
3060 "unrestricted mode\n"
3061 "support, the failure can be most likely due to the guest "
3062 "entering an invalid\n"
3063 "state for Intel VT. For example, the guest maybe running "
3064 "in big real mode\n"
3065 "which is not supported on less recent Intel processors."
3070 case KVM_EXIT_EXCEPTION
:
3071 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3072 run
->ex
.exception
, run
->ex
.error_code
);
3075 case KVM_EXIT_DEBUG
:
3076 DPRINTF("kvm_exit_debug\n");
3077 qemu_mutex_lock_iothread();
3078 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3079 qemu_mutex_unlock_iothread();
3081 case KVM_EXIT_HYPERV
:
3082 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3084 case KVM_EXIT_IOAPIC_EOI
:
3085 ioapic_eoi_broadcast(run
->eoi
.vector
);
3089 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3097 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3099 X86CPU
*cpu
= X86_CPU(cs
);
3100 CPUX86State
*env
= &cpu
->env
;
3102 kvm_cpu_synchronize_state(cs
);
3103 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3104 ((env
->segs
[R_CS
].selector
& 3) != 3);
3107 void kvm_arch_init_irq_routing(KVMState
*s
)
3109 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3110 /* If kernel can't do irq routing, interrupt source
3111 * override 0->2 cannot be set up as required by HPET.
3112 * So we have to disable it.
3116 /* We know at this point that we're using the in-kernel
3117 * irqchip, so we can use irqfds, and on x86 we know
3118 * we can use msi via irqfd and GSI routing.
3120 kvm_msi_via_irqfd_allowed
= true;
3121 kvm_gsi_routing_allowed
= true;
3123 if (kvm_irqchip_is_split()) {
3126 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3127 MSI routes for signaling interrupts to the local apics. */
3128 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3129 struct MSIMessage msg
= { 0x0, 0x0 };
3130 if (kvm_irqchip_add_msi_route(s
, msg
, NULL
) < 0) {
3131 error_report("Could not enable split IRQ mode.");
3138 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3141 if (machine_kernel_irqchip_split(ms
)) {
3142 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3144 error_report("Could not enable split irqchip mode: %s\n",
3148 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3149 kvm_split_irqchip
= true;
3157 /* Classic KVM device assignment interface. Will remain x86 only. */
3158 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3159 uint32_t flags
, uint32_t *dev_id
)
3161 struct kvm_assigned_pci_dev dev_data
= {
3162 .segnr
= dev_addr
->domain
,
3163 .busnr
= dev_addr
->bus
,
3164 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3169 dev_data
.assigned_dev_id
=
3170 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3172 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3177 *dev_id
= dev_data
.assigned_dev_id
;
3182 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3184 struct kvm_assigned_pci_dev dev_data
= {
3185 .assigned_dev_id
= dev_id
,
3188 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3191 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3192 uint32_t irq_type
, uint32_t guest_irq
)
3194 struct kvm_assigned_irq assigned_irq
= {
3195 .assigned_dev_id
= dev_id
,
3196 .guest_irq
= guest_irq
,
3200 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3201 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3203 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3207 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3210 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3211 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3213 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3216 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3218 struct kvm_assigned_pci_dev dev_data
= {
3219 .assigned_dev_id
= dev_id
,
3220 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3223 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3226 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3229 struct kvm_assigned_irq assigned_irq
= {
3230 .assigned_dev_id
= dev_id
,
3234 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3237 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3239 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3240 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3243 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3245 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3246 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3249 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3251 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3252 KVM_DEV_IRQ_HOST_MSI
);
3255 bool kvm_device_msix_supported(KVMState
*s
)
3257 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3258 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3259 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3262 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3263 uint32_t nr_vectors
)
3265 struct kvm_assigned_msix_nr msix_nr
= {
3266 .assigned_dev_id
= dev_id
,
3267 .entry_nr
= nr_vectors
,
3270 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3273 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3276 struct kvm_assigned_msix_entry msix_entry
= {
3277 .assigned_dev_id
= dev_id
,
3282 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3285 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3287 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3288 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3291 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3293 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3294 KVM_DEV_IRQ_HOST_MSIX
);
3297 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3298 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3303 int kvm_arch_msi_data_to_gsi(uint32_t data
)