char: cadence_uart: Clean up variable names
[qemu/kevin.git] / hw / char / cadence_uart.c
blob4a4d3ebbcba0f10d7814bc39d8871521f66bca1b
1 /*
2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
27 } while (0);
28 #else
29 #define DB_PRINT(...)
30 #endif
32 #define UART_SR_INTR_RTRIG 0x00000001
33 #define UART_SR_INTR_REMPTY 0x00000002
34 #define UART_SR_INTR_RFUL 0x00000004
35 #define UART_SR_INTR_TEMPTY 0x00000008
36 #define UART_SR_INTR_TFUL 0x00000010
37 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
38 #define UART_SR_TTRIG 0x00002000
39 #define UART_INTR_TTRIG 0x00000400
40 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
41 * SR, then the same bit in CISR is set high too */
42 #define UART_SR_TO_CISR_MASK 0x0000001F
44 #define UART_INTR_ROVR 0x00000020
45 #define UART_INTR_FRAME 0x00000040
46 #define UART_INTR_PARE 0x00000080
47 #define UART_INTR_TIMEOUT 0x00000100
48 #define UART_INTR_DMSI 0x00000200
49 #define UART_INTR_TOVR 0x00001000
51 #define UART_SR_RACTIVE 0x00000400
52 #define UART_SR_TACTIVE 0x00000800
53 #define UART_SR_FDELT 0x00001000
55 #define UART_CR_RXRST 0x00000001
56 #define UART_CR_TXRST 0x00000002
57 #define UART_CR_RX_EN 0x00000004
58 #define UART_CR_RX_DIS 0x00000008
59 #define UART_CR_TX_EN 0x00000010
60 #define UART_CR_TX_DIS 0x00000020
61 #define UART_CR_RST_TO 0x00000040
62 #define UART_CR_STARTBRK 0x00000080
63 #define UART_CR_STOPBRK 0x00000100
65 #define UART_MR_CLKS 0x00000001
66 #define UART_MR_CHRL 0x00000006
67 #define UART_MR_CHRL_SH 1
68 #define UART_MR_PAR 0x00000038
69 #define UART_MR_PAR_SH 3
70 #define UART_MR_NBSTOP 0x000000C0
71 #define UART_MR_NBSTOP_SH 6
72 #define UART_MR_CHMODE 0x00000300
73 #define UART_MR_CHMODE_SH 8
74 #define UART_MR_UCLKEN 0x00000400
75 #define UART_MR_IRMODE 0x00000800
77 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
78 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
79 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
80 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
81 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
82 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
83 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
84 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
85 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
86 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
88 #define CADENCE_UART_RX_FIFO_SIZE 16
89 #define CADENCE_UART_TX_FIFO_SIZE 16
90 #define UART_INPUT_CLK 50000000
92 #define R_CR (0x00/4)
93 #define R_MR (0x04/4)
94 #define R_IER (0x08/4)
95 #define R_IDR (0x0C/4)
96 #define R_IMR (0x10/4)
97 #define R_CISR (0x14/4)
98 #define R_BRGR (0x18/4)
99 #define R_RTOR (0x1C/4)
100 #define R_RTRIG (0x20/4)
101 #define R_MCR (0x24/4)
102 #define R_MSR (0x28/4)
103 #define R_SR (0x2C/4)
104 #define R_TX_RX (0x30/4)
105 #define R_BDIV (0x34/4)
106 #define R_FDEL (0x38/4)
107 #define R_PMIN (0x3C/4)
108 #define R_PWID (0x40/4)
109 #define R_TTRIG (0x44/4)
111 #define CADENCE_UART_R_MAX (0x48/4)
113 #define TYPE_CADENCE_UART "cadence_uart"
114 #define CADENCE_UART(obj) OBJECT_CHECK(CadenceUARTState, (obj), \
115 TYPE_CADENCE_UART)
117 typedef struct {
118 /*< private >*/
119 SysBusDevice parent_obj;
120 /*< public >*/
122 MemoryRegion iomem;
123 uint32_t r[CADENCE_UART_R_MAX];
124 uint8_t rx_fifo[CADENCE_UART_RX_FIFO_SIZE];
125 uint8_t tx_fifo[CADENCE_UART_TX_FIFO_SIZE];
126 uint32_t rx_wpos;
127 uint32_t rx_count;
128 uint32_t tx_count;
129 uint64_t char_tx_time;
130 CharDriverState *chr;
131 qemu_irq irq;
132 QEMUTimer *fifo_trigger_handle;
133 } CadenceUARTState;
135 static void uart_update_status(CadenceUARTState *s)
137 s->r[R_SR] = 0;
139 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
140 : 0;
141 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
142 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
144 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
145 : 0;
146 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
147 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
149 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
150 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
151 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
154 static void fifo_trigger_update(void *opaque)
156 CadenceUARTState *s = opaque;
158 s->r[R_CISR] |= UART_INTR_TIMEOUT;
160 uart_update_status(s);
163 static void uart_rx_reset(CadenceUARTState *s)
165 s->rx_wpos = 0;
166 s->rx_count = 0;
167 if (s->chr) {
168 qemu_chr_accept_input(s->chr);
172 static void uart_tx_reset(CadenceUARTState *s)
174 s->tx_count = 0;
177 static void uart_send_breaks(CadenceUARTState *s)
179 int break_enabled = 1;
181 if (s->chr) {
182 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
183 &break_enabled);
187 static void uart_parameters_setup(CadenceUARTState *s)
189 QEMUSerialSetParams ssp;
190 unsigned int baud_rate, packet_size;
192 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
193 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
195 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
196 packet_size = 1;
198 switch (s->r[R_MR] & UART_MR_PAR) {
199 case UART_PARITY_EVEN:
200 ssp.parity = 'E';
201 packet_size++;
202 break;
203 case UART_PARITY_ODD:
204 ssp.parity = 'O';
205 packet_size++;
206 break;
207 default:
208 ssp.parity = 'N';
209 break;
212 switch (s->r[R_MR] & UART_MR_CHRL) {
213 case UART_DATA_BITS_6:
214 ssp.data_bits = 6;
215 break;
216 case UART_DATA_BITS_7:
217 ssp.data_bits = 7;
218 break;
219 default:
220 ssp.data_bits = 8;
221 break;
224 switch (s->r[R_MR] & UART_MR_NBSTOP) {
225 case UART_STOP_BITS_1:
226 ssp.stop_bits = 1;
227 break;
228 default:
229 ssp.stop_bits = 2;
230 break;
233 packet_size += ssp.data_bits + ssp.stop_bits;
234 s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
235 if (s->chr) {
236 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
240 static int uart_can_receive(void *opaque)
242 CadenceUARTState *s = opaque;
243 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
244 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
246 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
247 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
249 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
250 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
252 return ret;
255 static void uart_ctrl_update(CadenceUARTState *s)
257 if (s->r[R_CR] & UART_CR_TXRST) {
258 uart_tx_reset(s);
261 if (s->r[R_CR] & UART_CR_RXRST) {
262 uart_rx_reset(s);
265 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
267 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
268 uart_send_breaks(s);
272 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
274 CadenceUARTState *s = opaque;
275 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
276 int i;
278 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
279 return;
282 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
283 s->r[R_CISR] |= UART_INTR_ROVR;
284 } else {
285 for (i = 0; i < size; i++) {
286 s->rx_fifo[s->rx_wpos] = buf[i];
287 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
288 s->rx_count++;
290 timer_mod(s->fifo_trigger_handle, new_rx_time +
291 (s->char_tx_time * 4));
293 uart_update_status(s);
296 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
297 void *opaque)
299 CadenceUARTState *s = opaque;
300 int ret;
302 /* instant drain the fifo when there's no back-end */
303 if (!s->chr) {
304 s->tx_count = 0;
305 return FALSE;
308 if (!s->tx_count) {
309 return FALSE;
312 ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
313 s->tx_count -= ret;
314 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
316 if (s->tx_count) {
317 int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
318 cadence_uart_xmit, s);
319 assert(r);
322 uart_update_status(s);
323 return FALSE;
326 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
327 int size)
329 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
330 return;
333 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
334 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
336 * This can only be a guest error via a bad tx fifo register push,
337 * as can_receive() should stop remote loop and echo modes ever getting
338 * us to here.
340 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
341 s->r[R_CISR] |= UART_INTR_ROVR;
344 memcpy(s->tx_fifo + s->tx_count, buf, size);
345 s->tx_count += size;
347 cadence_uart_xmit(NULL, G_IO_OUT, s);
350 static void uart_receive(void *opaque, const uint8_t *buf, int size)
352 CadenceUARTState *s = opaque;
353 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
355 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
356 uart_write_rx_fifo(opaque, buf, size);
358 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
359 uart_write_tx_fifo(s, buf, size);
363 static void uart_event(void *opaque, int event)
365 CadenceUARTState *s = opaque;
366 uint8_t buf = '\0';
368 if (event == CHR_EVENT_BREAK) {
369 uart_write_rx_fifo(opaque, &buf, 1);
372 uart_update_status(s);
375 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
377 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
378 return;
381 if (s->rx_count) {
382 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
383 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
384 *c = s->rx_fifo[rx_rpos];
385 s->rx_count--;
387 if (s->chr) {
388 qemu_chr_accept_input(s->chr);
390 } else {
391 *c = 0;
394 uart_update_status(s);
397 static void uart_write(void *opaque, hwaddr offset,
398 uint64_t value, unsigned size)
400 CadenceUARTState *s = opaque;
402 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
403 offset >>= 2;
404 switch (offset) {
405 case R_IER: /* ier (wts imr) */
406 s->r[R_IMR] |= value;
407 break;
408 case R_IDR: /* idr (wtc imr) */
409 s->r[R_IMR] &= ~value;
410 break;
411 case R_IMR: /* imr (read only) */
412 break;
413 case R_CISR: /* cisr (wtc) */
414 s->r[R_CISR] &= ~value;
415 break;
416 case R_TX_RX: /* UARTDR */
417 switch (s->r[R_MR] & UART_MR_CHMODE) {
418 case NORMAL_MODE:
419 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
420 break;
421 case LOCAL_LOOPBACK:
422 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
423 break;
425 break;
426 default:
427 s->r[offset] = value;
430 switch (offset) {
431 case R_CR:
432 uart_ctrl_update(s);
433 break;
434 case R_MR:
435 uart_parameters_setup(s);
436 break;
438 uart_update_status(s);
441 static uint64_t uart_read(void *opaque, hwaddr offset,
442 unsigned size)
444 CadenceUARTState *s = opaque;
445 uint32_t c = 0;
447 offset >>= 2;
448 if (offset >= CADENCE_UART_R_MAX) {
449 c = 0;
450 } else if (offset == R_TX_RX) {
451 uart_read_rx_fifo(s, &c);
452 } else {
453 c = s->r[offset];
456 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
457 return c;
460 static const MemoryRegionOps uart_ops = {
461 .read = uart_read,
462 .write = uart_write,
463 .endianness = DEVICE_NATIVE_ENDIAN,
466 static void cadence_uart_reset(DeviceState *dev)
468 CadenceUARTState *s = CADENCE_UART(dev);
470 s->r[R_CR] = 0x00000128;
471 s->r[R_IMR] = 0;
472 s->r[R_CISR] = 0;
473 s->r[R_RTRIG] = 0x00000020;
474 s->r[R_BRGR] = 0x0000000F;
475 s->r[R_TTRIG] = 0x00000020;
477 uart_rx_reset(s);
478 uart_tx_reset(s);
480 uart_update_status(s);
483 static void cadence_uart_realize(DeviceState *dev, Error **errp)
485 CadenceUARTState *s = CADENCE_UART(dev);
487 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
488 fifo_trigger_update, s);
490 /* FIXME use a qdev chardev prop instead of qemu_char_get_next_serial() */
491 s->chr = qemu_char_get_next_serial();
493 if (s->chr) {
494 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
495 uart_event, s);
499 static void cadence_uart_init(Object *obj)
501 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
502 CadenceUARTState *s = CADENCE_UART(obj);
504 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
505 sysbus_init_mmio(sbd, &s->iomem);
506 sysbus_init_irq(sbd, &s->irq);
508 s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
511 static int cadence_uart_post_load(void *opaque, int version_id)
513 CadenceUARTState *s = opaque;
515 uart_parameters_setup(s);
516 uart_update_status(s);
517 return 0;
520 static const VMStateDescription vmstate_cadence_uart = {
521 .name = "cadence_uart",
522 .version_id = 2,
523 .minimum_version_id = 2,
524 .post_load = cadence_uart_post_load,
525 .fields = (VMStateField[]) {
526 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
527 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
528 CADENCE_UART_RX_FIFO_SIZE),
529 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
530 CADENCE_UART_TX_FIFO_SIZE),
531 VMSTATE_UINT32(rx_count, CadenceUARTState),
532 VMSTATE_UINT32(tx_count, CadenceUARTState),
533 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
534 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
535 VMSTATE_END_OF_LIST()
539 static void cadence_uart_class_init(ObjectClass *klass, void *data)
541 DeviceClass *dc = DEVICE_CLASS(klass);
543 dc->realize = cadence_uart_realize;
544 dc->vmsd = &vmstate_cadence_uart;
545 dc->reset = cadence_uart_reset;
546 /* Reason: realize() method uses qemu_char_get_next_serial() */
547 dc->cannot_instantiate_with_device_add_yet = true;
550 static const TypeInfo cadence_uart_info = {
551 .name = TYPE_CADENCE_UART,
552 .parent = TYPE_SYS_BUS_DEVICE,
553 .instance_size = sizeof(CadenceUARTState),
554 .instance_init = cadence_uart_init,
555 .class_init = cadence_uart_class_init,
558 static void cadence_uart_register_types(void)
560 type_register_static(&cadence_uart_info);
563 type_init(cadence_uart_register_types)