2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include "qemu-common.h"
30 #include "exec/tb-context.h"
31 #include "qemu/bitops.h"
32 #include "qemu/queue.h"
34 #include "tcg-target.h"
35 #include "qemu/int128.h"
37 /* XXX: make safe guess about sizes */
38 #define MAX_OP_PER_INSTR 266
40 #if HOST_LONG_BITS == 32
41 #define MAX_OPC_PARAM_PER_ARG 2
43 #define MAX_OPC_PARAM_PER_ARG 1
45 #define MAX_OPC_PARAM_IARGS 6
46 #define MAX_OPC_PARAM_OARGS 1
47 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS)
49 /* A Call op needs up to 4 + 2N parameters on 32-bit archs,
50 * and up to 4 + N parameters on 64-bit archs
51 * (N = number of input arguments + output arguments). */
52 #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS))
54 #define CPU_TEMP_BUF_NLONGS 128
56 /* Default target word size to pointer size. */
57 #ifndef TCG_TARGET_REG_BITS
58 # if UINTPTR_MAX == UINT32_MAX
59 # define TCG_TARGET_REG_BITS 32
60 # elif UINTPTR_MAX == UINT64_MAX
61 # define TCG_TARGET_REG_BITS 64
63 # error Unknown pointer size for tcg target
67 #if TCG_TARGET_REG_BITS == 32
68 typedef int32_t tcg_target_long
;
69 typedef uint32_t tcg_target_ulong
;
70 #define TCG_PRIlx PRIx32
71 #define TCG_PRIld PRId32
72 #elif TCG_TARGET_REG_BITS == 64
73 typedef int64_t tcg_target_long
;
74 typedef uint64_t tcg_target_ulong
;
75 #define TCG_PRIlx PRIx64
76 #define TCG_PRIld PRId64
81 /* Oversized TCG guests make things like MTTCG hard
82 * as we can't use atomics for cputlb updates.
84 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
85 #define TCG_OVERSIZED_GUEST 1
87 #define TCG_OVERSIZED_GUEST 0
90 #if TCG_TARGET_NB_REGS <= 32
91 typedef uint32_t TCGRegSet
;
92 #elif TCG_TARGET_NB_REGS <= 64
93 typedef uint64_t TCGRegSet
;
98 #if TCG_TARGET_REG_BITS == 32
99 /* Turn some undef macros into false macros. */
100 #define TCG_TARGET_HAS_extrl_i64_i32 0
101 #define TCG_TARGET_HAS_extrh_i64_i32 0
102 #define TCG_TARGET_HAS_div_i64 0
103 #define TCG_TARGET_HAS_rem_i64 0
104 #define TCG_TARGET_HAS_div2_i64 0
105 #define TCG_TARGET_HAS_rot_i64 0
106 #define TCG_TARGET_HAS_ext8s_i64 0
107 #define TCG_TARGET_HAS_ext16s_i64 0
108 #define TCG_TARGET_HAS_ext32s_i64 0
109 #define TCG_TARGET_HAS_ext8u_i64 0
110 #define TCG_TARGET_HAS_ext16u_i64 0
111 #define TCG_TARGET_HAS_ext32u_i64 0
112 #define TCG_TARGET_HAS_bswap16_i64 0
113 #define TCG_TARGET_HAS_bswap32_i64 0
114 #define TCG_TARGET_HAS_bswap64_i64 0
115 #define TCG_TARGET_HAS_neg_i64 0
116 #define TCG_TARGET_HAS_not_i64 0
117 #define TCG_TARGET_HAS_andc_i64 0
118 #define TCG_TARGET_HAS_orc_i64 0
119 #define TCG_TARGET_HAS_eqv_i64 0
120 #define TCG_TARGET_HAS_nand_i64 0
121 #define TCG_TARGET_HAS_nor_i64 0
122 #define TCG_TARGET_HAS_clz_i64 0
123 #define TCG_TARGET_HAS_ctz_i64 0
124 #define TCG_TARGET_HAS_ctpop_i64 0
125 #define TCG_TARGET_HAS_deposit_i64 0
126 #define TCG_TARGET_HAS_extract_i64 0
127 #define TCG_TARGET_HAS_sextract_i64 0
128 #define TCG_TARGET_HAS_movcond_i64 0
129 #define TCG_TARGET_HAS_add2_i64 0
130 #define TCG_TARGET_HAS_sub2_i64 0
131 #define TCG_TARGET_HAS_mulu2_i64 0
132 #define TCG_TARGET_HAS_muls2_i64 0
133 #define TCG_TARGET_HAS_muluh_i64 0
134 #define TCG_TARGET_HAS_mulsh_i64 0
135 /* Turn some undef macros into true macros. */
136 #define TCG_TARGET_HAS_add2_i32 1
137 #define TCG_TARGET_HAS_sub2_i32 1
140 #ifndef TCG_TARGET_deposit_i32_valid
141 #define TCG_TARGET_deposit_i32_valid(ofs, len) 1
143 #ifndef TCG_TARGET_deposit_i64_valid
144 #define TCG_TARGET_deposit_i64_valid(ofs, len) 1
146 #ifndef TCG_TARGET_extract_i32_valid
147 #define TCG_TARGET_extract_i32_valid(ofs, len) 1
149 #ifndef TCG_TARGET_extract_i64_valid
150 #define TCG_TARGET_extract_i64_valid(ofs, len) 1
153 /* Only one of DIV or DIV2 should be defined. */
154 #if defined(TCG_TARGET_HAS_div_i32)
155 #define TCG_TARGET_HAS_div2_i32 0
156 #elif defined(TCG_TARGET_HAS_div2_i32)
157 #define TCG_TARGET_HAS_div_i32 0
158 #define TCG_TARGET_HAS_rem_i32 0
160 #if defined(TCG_TARGET_HAS_div_i64)
161 #define TCG_TARGET_HAS_div2_i64 0
162 #elif defined(TCG_TARGET_HAS_div2_i64)
163 #define TCG_TARGET_HAS_div_i64 0
164 #define TCG_TARGET_HAS_rem_i64 0
167 /* For 32-bit targets, some sort of unsigned widening multiply is required. */
168 #if TCG_TARGET_REG_BITS == 32 \
169 && !(defined(TCG_TARGET_HAS_mulu2_i32) \
170 || defined(TCG_TARGET_HAS_muluh_i32))
171 # error "Missing unsigned widening multiply"
174 #if !defined(TCG_TARGET_HAS_v64) \
175 && !defined(TCG_TARGET_HAS_v128) \
176 && !defined(TCG_TARGET_HAS_v256)
177 #define TCG_TARGET_MAYBE_vec 0
178 #define TCG_TARGET_HAS_neg_vec 0
179 #define TCG_TARGET_HAS_not_vec 0
180 #define TCG_TARGET_HAS_andc_vec 0
181 #define TCG_TARGET_HAS_orc_vec 0
182 #define TCG_TARGET_HAS_shi_vec 0
183 #define TCG_TARGET_HAS_shs_vec 0
184 #define TCG_TARGET_HAS_shv_vec 0
185 #define TCG_TARGET_HAS_mul_vec 0
186 #define TCG_TARGET_HAS_sat_vec 0
187 #define TCG_TARGET_HAS_minmax_vec 0
189 #define TCG_TARGET_MAYBE_vec 1
191 #ifndef TCG_TARGET_HAS_v64
192 #define TCG_TARGET_HAS_v64 0
194 #ifndef TCG_TARGET_HAS_v128
195 #define TCG_TARGET_HAS_v128 0
197 #ifndef TCG_TARGET_HAS_v256
198 #define TCG_TARGET_HAS_v256 0
201 #ifndef TARGET_INSN_START_EXTRA_WORDS
202 # define TARGET_INSN_START_WORDS 1
204 # define TARGET_INSN_START_WORDS (1 + TARGET_INSN_START_EXTRA_WORDS)
207 typedef enum TCGOpcode
{
208 #define DEF(name, oargs, iargs, cargs, flags) INDEX_op_ ## name,
214 #define tcg_regset_set_reg(d, r) ((d) |= (TCGRegSet)1 << (r))
215 #define tcg_regset_reset_reg(d, r) ((d) &= ~((TCGRegSet)1 << (r)))
216 #define tcg_regset_test_reg(d, r) (((d) >> (r)) & 1)
218 #ifndef TCG_TARGET_INSN_UNIT_SIZE
219 # error "Missing TCG_TARGET_INSN_UNIT_SIZE"
220 #elif TCG_TARGET_INSN_UNIT_SIZE == 1
221 typedef uint8_t tcg_insn_unit
;
222 #elif TCG_TARGET_INSN_UNIT_SIZE == 2
223 typedef uint16_t tcg_insn_unit
;
224 #elif TCG_TARGET_INSN_UNIT_SIZE == 4
225 typedef uint32_t tcg_insn_unit
;
226 #elif TCG_TARGET_INSN_UNIT_SIZE == 8
227 typedef uint64_t tcg_insn_unit
;
229 /* The port better have done this. */
233 #if defined CONFIG_DEBUG_TCG || defined QEMU_STATIC_ANALYSIS
234 # define tcg_debug_assert(X) do { assert(X); } while (0)
236 # define tcg_debug_assert(X) \
237 do { if (!(X)) { __builtin_unreachable(); } } while (0)
240 typedef struct TCGRelocation
{
241 struct TCGRelocation
*next
;
247 typedef struct TCGLabel
{
248 unsigned has_value
: 1;
253 tcg_insn_unit
*value_ptr
;
254 TCGRelocation
*first_reloc
;
258 typedef struct TCGPool
{
259 struct TCGPool
*next
;
261 uint8_t data
[0] __attribute__ ((aligned
));
264 #define TCG_POOL_CHUNK_SIZE 32768
266 #define TCG_MAX_TEMPS 512
267 #define TCG_MAX_INSNS 512
269 /* when the size of the arguments of a called function is smaller than
270 this value, they are statically allocated in the TB stack frame */
271 #define TCG_STATIC_CALL_ARGS_SIZE 128
273 typedef enum TCGType
{
281 TCG_TYPE_COUNT
, /* number of different types */
283 /* An alias for the size of the host register. */
284 #if TCG_TARGET_REG_BITS == 32
285 TCG_TYPE_REG
= TCG_TYPE_I32
,
287 TCG_TYPE_REG
= TCG_TYPE_I64
,
290 /* An alias for the size of the native pointer. */
291 #if UINTPTR_MAX == UINT32_MAX
292 TCG_TYPE_PTR
= TCG_TYPE_I32
,
294 TCG_TYPE_PTR
= TCG_TYPE_I64
,
297 /* An alias for the size of the target "long", aka register. */
298 #if TARGET_LONG_BITS == 64
299 TCG_TYPE_TL
= TCG_TYPE_I64
,
301 TCG_TYPE_TL
= TCG_TYPE_I32
,
305 /* Constants for qemu_ld and qemu_st for the Memory Operation field. */
306 typedef enum TCGMemOp
{
311 MO_SIZE
= 3, /* Mask for the above. */
313 MO_SIGN
= 4, /* Sign-extended, otherwise zero-extended. */
315 MO_BSWAP
= 8, /* Host reverse endian. */
316 #ifdef HOST_WORDS_BIGENDIAN
323 #ifdef TARGET_WORDS_BIGENDIAN
329 /* MO_UNALN accesses are never checked for alignment.
330 * MO_ALIGN accesses will result in a call to the CPU's
331 * do_unaligned_access hook if the guest address is not aligned.
332 * The default depends on whether the target CPU defines ALIGNED_ONLY.
334 * Some architectures (e.g. ARMv8) need the address which is aligned
335 * to a size more than the size of the memory access.
336 * Some architectures (e.g. SPARCv9) need an address which is aligned,
337 * but less strictly than the natural alignment.
339 * MO_ALIGN supposes the alignment size is the size of a memory access.
341 * There are three options:
342 * - unaligned access permitted (MO_UNALN).
343 * - an alignment to the size of an access (MO_ALIGN);
344 * - an alignment to a specified size, which may be more or less than
345 * the access size (MO_ALIGN_x where 'x' is a size in bytes);
348 MO_AMASK
= 7 << MO_ASHIFT
,
356 MO_ALIGN_2
= 1 << MO_ASHIFT
,
357 MO_ALIGN_4
= 2 << MO_ASHIFT
,
358 MO_ALIGN_8
= 3 << MO_ASHIFT
,
359 MO_ALIGN_16
= 4 << MO_ASHIFT
,
360 MO_ALIGN_32
= 5 << MO_ASHIFT
,
361 MO_ALIGN_64
= 6 << MO_ASHIFT
,
363 /* Combinations of the above, for ease of use. */
367 MO_SB
= MO_SIGN
| MO_8
,
368 MO_SW
= MO_SIGN
| MO_16
,
369 MO_SL
= MO_SIGN
| MO_32
,
372 MO_LEUW
= MO_LE
| MO_UW
,
373 MO_LEUL
= MO_LE
| MO_UL
,
374 MO_LESW
= MO_LE
| MO_SW
,
375 MO_LESL
= MO_LE
| MO_SL
,
376 MO_LEQ
= MO_LE
| MO_Q
,
378 MO_BEUW
= MO_BE
| MO_UW
,
379 MO_BEUL
= MO_BE
| MO_UL
,
380 MO_BESW
= MO_BE
| MO_SW
,
381 MO_BESL
= MO_BE
| MO_SL
,
382 MO_BEQ
= MO_BE
| MO_Q
,
384 MO_TEUW
= MO_TE
| MO_UW
,
385 MO_TEUL
= MO_TE
| MO_UL
,
386 MO_TESW
= MO_TE
| MO_SW
,
387 MO_TESL
= MO_TE
| MO_SL
,
388 MO_TEQ
= MO_TE
| MO_Q
,
390 MO_SSIZE
= MO_SIZE
| MO_SIGN
,
395 * @memop: TCGMemOp value
397 * Extract the alignment size from the memop.
399 static inline unsigned get_alignment_bits(TCGMemOp memop
)
401 unsigned a
= memop
& MO_AMASK
;
404 /* No alignment required. */
406 } else if (a
== MO_ALIGN
) {
407 /* A natural alignment requirement. */
410 /* A specific alignment requirement. */
413 #if defined(CONFIG_SOFTMMU)
414 /* The requested alignment cannot overlap the TLB flags. */
415 tcg_debug_assert((TLB_FLAGS_MASK
& ((1 << a
) - 1)) == 0);
420 typedef tcg_target_ulong TCGArg
;
422 /* Define type and accessor macros for TCG variables.
424 TCG variables are the inputs and outputs of TCG ops, as described
425 in tcg/README. Target CPU front-end code uses these types to deal
426 with TCG variables as it emits TCG code via the tcg_gen_* functions.
427 They come in several flavours:
428 * TCGv_i32 : 32 bit integer type
429 * TCGv_i64 : 64 bit integer type
430 * TCGv_ptr : a host pointer type
431 * TCGv_vec : a host vector type; the exact size is not exposed
432 to the CPU front-end code.
433 * TCGv : an integer type the same size as target_ulong
434 (an alias for either TCGv_i32 or TCGv_i64)
435 The compiler's type checking will complain if you mix them
436 up and pass the wrong sized TCGv to a function.
438 Users of tcg_gen_* don't need to know about any of the internal
439 details of these, and should treat them as opaque types.
440 You won't be able to look inside them in a debugger either.
442 Internal implementation details follow:
444 Note that there is no definition of the structs TCGv_i32_d etc anywhere.
445 This is deliberate, because the values we store in variables of type
446 TCGv_i32 are not really pointers-to-structures. They're just small
447 integers, but keeping them in pointer types like this means that the
448 compiler will complain if you accidentally pass a TCGv_i32 to a
449 function which takes a TCGv_i64, and so on. Only the internals of
450 TCG need to care about the actual contents of the types. */
452 typedef struct TCGv_i32_d
*TCGv_i32
;
453 typedef struct TCGv_i64_d
*TCGv_i64
;
454 typedef struct TCGv_ptr_d
*TCGv_ptr
;
455 typedef struct TCGv_vec_d
*TCGv_vec
;
456 typedef TCGv_ptr TCGv_env
;
457 #if TARGET_LONG_BITS == 32
458 #define TCGv TCGv_i32
459 #elif TARGET_LONG_BITS == 64
460 #define TCGv TCGv_i64
462 #error Unhandled TARGET_LONG_BITS value
466 /* Helper does not read globals (either directly or through an exception). It
467 implies TCG_CALL_NO_WRITE_GLOBALS. */
468 #define TCG_CALL_NO_READ_GLOBALS 0x0001
469 /* Helper does not write globals */
470 #define TCG_CALL_NO_WRITE_GLOBALS 0x0002
471 /* Helper can be safely suppressed if the return value is not used. */
472 #define TCG_CALL_NO_SIDE_EFFECTS 0x0004
473 /* Helper is QEMU_NORETURN. */
474 #define TCG_CALL_NO_RETURN 0x0008
476 /* convenience version of most used call flags */
477 #define TCG_CALL_NO_RWG TCG_CALL_NO_READ_GLOBALS
478 #define TCG_CALL_NO_WG TCG_CALL_NO_WRITE_GLOBALS
479 #define TCG_CALL_NO_SE TCG_CALL_NO_SIDE_EFFECTS
480 #define TCG_CALL_NO_RWG_SE (TCG_CALL_NO_RWG | TCG_CALL_NO_SE)
481 #define TCG_CALL_NO_WG_SE (TCG_CALL_NO_WG | TCG_CALL_NO_SE)
483 /* Used to align parameters. See the comment before tcgv_i32_temp. */
484 #define TCG_CALL_DUMMY_ARG ((TCGArg)0)
486 /* Conditions. Note that these are laid out for easy manipulation by
488 bit 0 is used for inverting;
491 bit 3 is used with bit 0 for swapping signed/unsigned. */
494 TCG_COND_NEVER
= 0 | 0 | 0 | 0,
495 TCG_COND_ALWAYS
= 0 | 0 | 0 | 1,
496 TCG_COND_EQ
= 8 | 0 | 0 | 0,
497 TCG_COND_NE
= 8 | 0 | 0 | 1,
499 TCG_COND_LT
= 0 | 0 | 2 | 0,
500 TCG_COND_GE
= 0 | 0 | 2 | 1,
501 TCG_COND_LE
= 8 | 0 | 2 | 0,
502 TCG_COND_GT
= 8 | 0 | 2 | 1,
504 TCG_COND_LTU
= 0 | 4 | 0 | 0,
505 TCG_COND_GEU
= 0 | 4 | 0 | 1,
506 TCG_COND_LEU
= 8 | 4 | 0 | 0,
507 TCG_COND_GTU
= 8 | 4 | 0 | 1,
510 /* Invert the sense of the comparison. */
511 static inline TCGCond
tcg_invert_cond(TCGCond c
)
513 return (TCGCond
)(c
^ 1);
516 /* Swap the operands in a comparison. */
517 static inline TCGCond
tcg_swap_cond(TCGCond c
)
519 return c
& 6 ? (TCGCond
)(c
^ 9) : c
;
522 /* Create an "unsigned" version of a "signed" comparison. */
523 static inline TCGCond
tcg_unsigned_cond(TCGCond c
)
525 return c
& 2 ? (TCGCond
)(c
^ 6) : c
;
528 /* Create a "signed" version of an "unsigned" comparison. */
529 static inline TCGCond
tcg_signed_cond(TCGCond c
)
531 return c
& 4 ? (TCGCond
)(c
^ 6) : c
;
534 /* Must a comparison be considered unsigned? */
535 static inline bool is_unsigned_cond(TCGCond c
)
540 /* Create a "high" version of a double-word comparison.
541 This removes equality from a LTE or GTE comparison. */
542 static inline TCGCond
tcg_high_cond(TCGCond c
)
549 return (TCGCond
)(c
^ 8);
555 typedef enum TCGTempVal
{
562 typedef struct TCGTemp
{
564 TCGTempVal val_type
:8;
567 unsigned int fixed_reg
:1;
568 unsigned int indirect_reg
:1;
569 unsigned int indirect_base
:1;
570 unsigned int mem_coherent
:1;
571 unsigned int mem_allocated
:1;
572 /* If true, the temp is saved across both basic blocks and
573 translation blocks. */
574 unsigned int temp_global
:1;
575 /* If true, the temp is saved across basic blocks but dead
576 at the end of translation blocks. If false, the temp is
577 dead at the end of basic blocks. */
578 unsigned int temp_local
:1;
579 unsigned int temp_allocated
:1;
582 struct TCGTemp
*mem_base
;
586 /* Pass-specific information that can be stored for a temporary.
587 One word worth of integer data, and one pointer to data
588 allocated separately. */
593 typedef struct TCGContext TCGContext
;
595 typedef struct TCGTempSet
{
596 unsigned long l
[BITS_TO_LONGS(TCG_MAX_TEMPS
)];
599 /* While we limit helpers to 6 arguments, for 32-bit hosts, with padding,
600 this imples a max of 6*2 (64-bit in) + 2 (64-bit out) = 14 operands.
601 There are never more than 2 outputs, which means that we can store all
602 dead + sync data within 16 bits. */
605 typedef uint16_t TCGLifeData
;
607 /* The layout here is designed to avoid a bitfield crossing of
608 a 32-bit boundary, which would cause GCC to add extra padding. */
609 typedef struct TCGOp
{
610 TCGOpcode opc
: 8; /* 8 */
612 /* Parameters for this opcode. See below. */
613 unsigned param1
: 4; /* 12 */
614 unsigned param2
: 4; /* 16 */
616 /* Lifetime data of the operands. */
617 unsigned life
: 16; /* 32 */
619 /* Next and previous opcodes. */
620 QTAILQ_ENTRY(TCGOp
) link
;
622 /* Arguments for the opcode. */
623 TCGArg args
[MAX_OPC_PARAM
];
625 /* Register preferences for the output(s). */
626 TCGRegSet output_pref
[2];
629 #define TCGOP_CALLI(X) (X)->param1
630 #define TCGOP_CALLO(X) (X)->param2
632 #define TCGOP_VECL(X) (X)->param1
633 #define TCGOP_VECE(X) (X)->param2
635 /* Make sure operands fit in the bitfields above. */
636 QEMU_BUILD_BUG_ON(NB_OPS
> (1 << 8));
638 typedef struct TCGProfile
{
639 int64_t cpu_exec_time
;
642 int64_t op_count
; /* total insn count */
643 int op_count_max
; /* max insn per TB */
646 int64_t del_op_count
;
648 int64_t code_out_len
;
649 int64_t search_out_len
;
654 int64_t restore_count
;
655 int64_t restore_time
;
656 int64_t table_op_count
[NB_OPS
];
660 uint8_t *pool_cur
, *pool_end
;
661 TCGPool
*pool_first
, *pool_current
, *pool_first_large
;
668 /* goto_tb support */
669 tcg_insn_unit
*code_buf
;
670 uint16_t *tb_jmp_reset_offset
; /* tb->jmp_reset_offset */
671 uintptr_t *tb_jmp_insn_offset
; /* tb->jmp_target_arg if direct_jump */
672 uintptr_t *tb_jmp_target_addr
; /* tb->jmp_target_arg if !direct_jump */
674 TCGRegSet reserved_regs
;
675 uint32_t tb_cflags
; /* cflags of the current TB */
676 intptr_t current_frame_offset
;
677 intptr_t frame_start
;
681 tcg_insn_unit
*code_ptr
;
683 #ifdef CONFIG_PROFILER
687 #ifdef CONFIG_DEBUG_TCG
689 int goto_tb_issue_mask
;
692 /* Code generation. Note that we specifically do not use tcg_insn_unit
693 here, because there's too much arithmetic throughout that relies
694 on addition and subtraction working on bytes. Rely on the GCC
695 extension that allows arithmetic on void*. */
696 void *code_gen_prologue
;
697 void *code_gen_epilogue
;
698 void *code_gen_buffer
;
699 size_t code_gen_buffer_size
;
703 /* Threshold to flush the translated code buffer. */
704 void *code_gen_highwater
;
706 size_t tb_phys_invalidate_count
;
708 /* Track which vCPU triggers events */
709 CPUState
*cpu
; /* *_trans */
711 /* These structures are private to tcg-target.inc.c. */
712 #ifdef TCG_TARGET_NEED_LDST_LABELS
713 QSIMPLEQ_HEAD(, TCGLabelQemuLdst
) ldst_labels
;
715 #ifdef TCG_TARGET_NEED_POOL_LABELS
716 struct TCGLabelPoolData
*pool_labels
;
719 TCGLabel
*exitreq_label
;
721 TCGTempSet free_temps
[TCG_TYPE_COUNT
* 2];
722 TCGTemp temps
[TCG_MAX_TEMPS
]; /* globals first, temps after */
724 QTAILQ_HEAD(, TCGOp
) ops
, free_ops
;
726 /* Tells which temporary holds a given register.
727 It does not take into account fixed registers */
728 TCGTemp
*reg_to_temp
[TCG_TARGET_NB_REGS
];
730 uint16_t gen_insn_end_off
[TCG_MAX_INSNS
];
731 target_ulong gen_insn_data
[TCG_MAX_INSNS
][TARGET_INSN_START_WORDS
];
734 extern TCGContext tcg_init_ctx
;
735 extern __thread TCGContext
*tcg_ctx
;
736 extern TCGv_env cpu_env
;
738 static inline size_t temp_idx(TCGTemp
*ts
)
740 ptrdiff_t n
= ts
- tcg_ctx
->temps
;
741 tcg_debug_assert(n
>= 0 && n
< tcg_ctx
->nb_temps
);
745 static inline TCGArg
temp_arg(TCGTemp
*ts
)
747 return (uintptr_t)ts
;
750 static inline TCGTemp
*arg_temp(TCGArg a
)
752 return (TCGTemp
*)(uintptr_t)a
;
755 /* Using the offset of a temporary, relative to TCGContext, rather than
756 its index means that we don't use 0. That leaves offset 0 free for
757 a NULL representation without having to leave index 0 unused. */
758 static inline TCGTemp
*tcgv_i32_temp(TCGv_i32 v
)
760 uintptr_t o
= (uintptr_t)v
;
761 TCGTemp
*t
= (void *)tcg_ctx
+ o
;
762 tcg_debug_assert(offsetof(TCGContext
, temps
[temp_idx(t
)]) == o
);
766 static inline TCGTemp
*tcgv_i64_temp(TCGv_i64 v
)
768 return tcgv_i32_temp((TCGv_i32
)v
);
771 static inline TCGTemp
*tcgv_ptr_temp(TCGv_ptr v
)
773 return tcgv_i32_temp((TCGv_i32
)v
);
776 static inline TCGTemp
*tcgv_vec_temp(TCGv_vec v
)
778 return tcgv_i32_temp((TCGv_i32
)v
);
781 static inline TCGArg
tcgv_i32_arg(TCGv_i32 v
)
783 return temp_arg(tcgv_i32_temp(v
));
786 static inline TCGArg
tcgv_i64_arg(TCGv_i64 v
)
788 return temp_arg(tcgv_i64_temp(v
));
791 static inline TCGArg
tcgv_ptr_arg(TCGv_ptr v
)
793 return temp_arg(tcgv_ptr_temp(v
));
796 static inline TCGArg
tcgv_vec_arg(TCGv_vec v
)
798 return temp_arg(tcgv_vec_temp(v
));
801 static inline TCGv_i32
temp_tcgv_i32(TCGTemp
*t
)
803 (void)temp_idx(t
); /* trigger embedded assert */
804 return (TCGv_i32
)((void *)t
- (void *)tcg_ctx
);
807 static inline TCGv_i64
temp_tcgv_i64(TCGTemp
*t
)
809 return (TCGv_i64
)temp_tcgv_i32(t
);
812 static inline TCGv_ptr
temp_tcgv_ptr(TCGTemp
*t
)
814 return (TCGv_ptr
)temp_tcgv_i32(t
);
817 static inline TCGv_vec
temp_tcgv_vec(TCGTemp
*t
)
819 return (TCGv_vec
)temp_tcgv_i32(t
);
822 #if TCG_TARGET_REG_BITS == 32
823 static inline TCGv_i32
TCGV_LOW(TCGv_i64 t
)
825 return temp_tcgv_i32(tcgv_i64_temp(t
));
828 static inline TCGv_i32
TCGV_HIGH(TCGv_i64 t
)
830 return temp_tcgv_i32(tcgv_i64_temp(t
) + 1);
834 static inline void tcg_set_insn_param(TCGOp
*op
, int arg
, TCGArg v
)
839 static inline void tcg_set_insn_start_param(TCGOp
*op
, int arg
, target_ulong v
)
841 #if TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
842 tcg_set_insn_param(op
, arg
, v
);
844 tcg_set_insn_param(op
, arg
* 2, v
);
845 tcg_set_insn_param(op
, arg
* 2 + 1, v
>> 32);
849 /* The last op that was emitted. */
850 static inline TCGOp
*tcg_last_op(void)
852 return QTAILQ_LAST(&tcg_ctx
->ops
);
855 /* Test for whether to terminate the TB for using too many opcodes. */
856 static inline bool tcg_op_buf_full(void)
858 /* This is not a hard limit, it merely stops translation when
859 * we have produced "enough" opcodes. We want to limit TB size
860 * such that a RISC host can reasonably use a 16-bit signed
861 * branch within the TB. We also need to be mindful of the
862 * 16-bit unsigned offsets, TranslationBlock.jmp_reset_offset[]
863 * and TCGContext.gen_insn_end_off[].
865 return tcg_ctx
->nb_ops
>= 4000;
868 /* pool based memory allocation */
870 /* user-mode: mmap_lock must be held for tcg_malloc_internal. */
871 void *tcg_malloc_internal(TCGContext
*s
, int size
);
872 void tcg_pool_reset(TCGContext
*s
);
873 TranslationBlock
*tcg_tb_alloc(TCGContext
*s
);
875 void tcg_region_init(void);
876 void tcg_region_reset_all(void);
878 size_t tcg_code_size(void);
879 size_t tcg_code_capacity(void);
881 void tcg_tb_insert(TranslationBlock
*tb
);
882 void tcg_tb_remove(TranslationBlock
*tb
);
883 size_t tcg_tb_phys_invalidate_count(void);
884 TranslationBlock
*tcg_tb_lookup(uintptr_t tc_ptr
);
885 void tcg_tb_foreach(GTraverseFunc func
, gpointer user_data
);
886 size_t tcg_nb_tbs(void);
888 /* user-mode: Called with mmap_lock held. */
889 static inline void *tcg_malloc(int size
)
891 TCGContext
*s
= tcg_ctx
;
892 uint8_t *ptr
, *ptr_end
;
894 /* ??? This is a weak placeholder for minimum malloc alignment. */
895 size
= QEMU_ALIGN_UP(size
, 8);
898 ptr_end
= ptr
+ size
;
899 if (unlikely(ptr_end
> s
->pool_end
)) {
900 return tcg_malloc_internal(tcg_ctx
, size
);
902 s
->pool_cur
= ptr_end
;
907 void tcg_context_init(TCGContext
*s
);
908 void tcg_register_thread(void);
909 void tcg_prologue_init(TCGContext
*s
);
910 void tcg_func_start(TCGContext
*s
);
912 int tcg_gen_code(TCGContext
*s
, TranslationBlock
*tb
);
914 void tcg_set_frame(TCGContext
*s
, TCGReg reg
, intptr_t start
, intptr_t size
);
916 TCGTemp
*tcg_global_mem_new_internal(TCGType
, TCGv_ptr
,
917 intptr_t, const char *);
918 TCGTemp
*tcg_temp_new_internal(TCGType
, bool);
919 void tcg_temp_free_internal(TCGTemp
*);
920 TCGv_vec
tcg_temp_new_vec(TCGType type
);
921 TCGv_vec
tcg_temp_new_vec_matching(TCGv_vec match
);
923 static inline void tcg_temp_free_i32(TCGv_i32 arg
)
925 tcg_temp_free_internal(tcgv_i32_temp(arg
));
928 static inline void tcg_temp_free_i64(TCGv_i64 arg
)
930 tcg_temp_free_internal(tcgv_i64_temp(arg
));
933 static inline void tcg_temp_free_ptr(TCGv_ptr arg
)
935 tcg_temp_free_internal(tcgv_ptr_temp(arg
));
938 static inline void tcg_temp_free_vec(TCGv_vec arg
)
940 tcg_temp_free_internal(tcgv_vec_temp(arg
));
943 static inline TCGv_i32
tcg_global_mem_new_i32(TCGv_ptr reg
, intptr_t offset
,
946 TCGTemp
*t
= tcg_global_mem_new_internal(TCG_TYPE_I32
, reg
, offset
, name
);
947 return temp_tcgv_i32(t
);
950 static inline TCGv_i32
tcg_temp_new_i32(void)
952 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_I32
, false);
953 return temp_tcgv_i32(t
);
956 static inline TCGv_i32
tcg_temp_local_new_i32(void)
958 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_I32
, true);
959 return temp_tcgv_i32(t
);
962 static inline TCGv_i64
tcg_global_mem_new_i64(TCGv_ptr reg
, intptr_t offset
,
965 TCGTemp
*t
= tcg_global_mem_new_internal(TCG_TYPE_I64
, reg
, offset
, name
);
966 return temp_tcgv_i64(t
);
969 static inline TCGv_i64
tcg_temp_new_i64(void)
971 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_I64
, false);
972 return temp_tcgv_i64(t
);
975 static inline TCGv_i64
tcg_temp_local_new_i64(void)
977 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_I64
, true);
978 return temp_tcgv_i64(t
);
981 static inline TCGv_ptr
tcg_global_mem_new_ptr(TCGv_ptr reg
, intptr_t offset
,
984 TCGTemp
*t
= tcg_global_mem_new_internal(TCG_TYPE_PTR
, reg
, offset
, name
);
985 return temp_tcgv_ptr(t
);
988 static inline TCGv_ptr
tcg_temp_new_ptr(void)
990 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_PTR
, false);
991 return temp_tcgv_ptr(t
);
994 static inline TCGv_ptr
tcg_temp_local_new_ptr(void)
996 TCGTemp
*t
= tcg_temp_new_internal(TCG_TYPE_PTR
, true);
997 return temp_tcgv_ptr(t
);
1000 #if defined(CONFIG_DEBUG_TCG)
1001 /* If you call tcg_clear_temp_count() at the start of a section of
1002 * code which is not supposed to leak any TCG temporaries, then
1003 * calling tcg_check_temp_count() at the end of the section will
1004 * return 1 if the section did in fact leak a temporary.
1006 void tcg_clear_temp_count(void);
1007 int tcg_check_temp_count(void);
1009 #define tcg_clear_temp_count() do { } while (0)
1010 #define tcg_check_temp_count() 0
1013 int64_t tcg_cpu_exec_time(void);
1014 void tcg_dump_info(FILE *f
, fprintf_function cpu_fprintf
);
1015 void tcg_dump_op_count(FILE *f
, fprintf_function cpu_fprintf
);
1017 #define TCG_CT_ALIAS 0x80
1018 #define TCG_CT_IALIAS 0x40
1019 #define TCG_CT_NEWREG 0x20 /* output requires a new register */
1020 #define TCG_CT_REG 0x01
1021 #define TCG_CT_CONST 0x02 /* any constant of register size */
1023 typedef struct TCGArgConstraint
{
1025 uint8_t alias_index
;
1031 #define TCG_MAX_OP_ARGS 16
1033 /* Bits for TCGOpDef->flags, 8 bits available. */
1035 /* Instruction exits the translation block. */
1036 TCG_OPF_BB_EXIT
= 0x01,
1037 /* Instruction defines the end of a basic block. */
1038 TCG_OPF_BB_END
= 0x02,
1039 /* Instruction clobbers call registers and potentially update globals. */
1040 TCG_OPF_CALL_CLOBBER
= 0x04,
1041 /* Instruction has side effects: it cannot be removed if its outputs
1042 are not used, and might trigger exceptions. */
1043 TCG_OPF_SIDE_EFFECTS
= 0x08,
1044 /* Instruction operands are 64-bits (otherwise 32-bits). */
1045 TCG_OPF_64BIT
= 0x10,
1046 /* Instruction is optional and not implemented by the host, or insn
1047 is generic and should not be implemened by the host. */
1048 TCG_OPF_NOT_PRESENT
= 0x20,
1049 /* Instruction operands are vectors. */
1050 TCG_OPF_VECTOR
= 0x40,
1053 typedef struct TCGOpDef
{
1055 uint8_t nb_oargs
, nb_iargs
, nb_cargs
, nb_args
;
1057 TCGArgConstraint
*args_ct
;
1059 #if defined(CONFIG_DEBUG_TCG)
1064 extern TCGOpDef tcg_op_defs
[];
1065 extern const size_t tcg_op_defs_max
;
1067 typedef struct TCGTargetOpDef
{
1069 const char *args_ct_str
[TCG_MAX_OP_ARGS
];
1072 #define tcg_abort() \
1074 fprintf(stderr, "%s:%d: tcg fatal error\n", __FILE__, __LINE__);\
1078 bool tcg_op_supported(TCGOpcode op
);
1080 void tcg_gen_callN(void *func
, TCGTemp
*ret
, int nargs
, TCGTemp
**args
);
1082 TCGOp
*tcg_emit_op(TCGOpcode opc
);
1083 void tcg_op_remove(TCGContext
*s
, TCGOp
*op
);
1084 TCGOp
*tcg_op_insert_before(TCGContext
*s
, TCGOp
*op
, TCGOpcode opc
);
1085 TCGOp
*tcg_op_insert_after(TCGContext
*s
, TCGOp
*op
, TCGOpcode opc
);
1087 void tcg_optimize(TCGContext
*s
);
1089 TCGv_i32
tcg_const_i32(int32_t val
);
1090 TCGv_i64
tcg_const_i64(int64_t val
);
1091 TCGv_i32
tcg_const_local_i32(int32_t val
);
1092 TCGv_i64
tcg_const_local_i64(int64_t val
);
1093 TCGv_vec
tcg_const_zeros_vec(TCGType
);
1094 TCGv_vec
tcg_const_ones_vec(TCGType
);
1095 TCGv_vec
tcg_const_zeros_vec_matching(TCGv_vec
);
1096 TCGv_vec
tcg_const_ones_vec_matching(TCGv_vec
);
1098 #if UINTPTR_MAX == UINT32_MAX
1099 # define tcg_const_ptr(x) ((TCGv_ptr)tcg_const_i32((intptr_t)(x)))
1100 # define tcg_const_local_ptr(x) ((TCGv_ptr)tcg_const_local_i32((intptr_t)(x)))
1102 # define tcg_const_ptr(x) ((TCGv_ptr)tcg_const_i64((intptr_t)(x)))
1103 # define tcg_const_local_ptr(x) ((TCGv_ptr)tcg_const_local_i64((intptr_t)(x)))
1106 TCGLabel
*gen_new_label(void);
1112 * Encode a label for storage in the TCG opcode stream.
1115 static inline TCGArg
label_arg(TCGLabel
*l
)
1117 return (uintptr_t)l
;
1124 * The opposite of label_arg. Retrieve a label from the
1125 * encoding of the TCG opcode stream.
1128 static inline TCGLabel
*arg_label(TCGArg i
)
1130 return (TCGLabel
*)(uintptr_t)i
;
1135 * @a, @b: addresses to be differenced
1137 * There are many places within the TCG backends where we need a byte
1138 * difference between two pointers. While this can be accomplished
1139 * with local casting, it's easy to get wrong -- especially if one is
1140 * concerned with the signedness of the result.
1142 * This version relies on GCC's void pointer arithmetic to get the
1146 static inline ptrdiff_t tcg_ptr_byte_diff(void *a
, void *b
)
1153 * @s: the tcg context
1154 * @target: address of the target
1156 * Produce a pc-relative difference, from the current code_ptr
1157 * to the destination address.
1160 static inline ptrdiff_t tcg_pcrel_diff(TCGContext
*s
, void *target
)
1162 return tcg_ptr_byte_diff(target
, s
->code_ptr
);
1166 * tcg_current_code_size
1167 * @s: the tcg context
1169 * Compute the current code size within the translation block.
1170 * This is used to fill in qemu's data structures for goto_tb.
1173 static inline size_t tcg_current_code_size(TCGContext
*s
)
1175 return tcg_ptr_byte_diff(s
->code_ptr
, s
->code_buf
);
1178 /* Combine the TCGMemOp and mmu_idx parameters into a single value. */
1179 typedef uint32_t TCGMemOpIdx
;
1183 * @op: memory operation
1186 * Encode these values into a single parameter.
1188 static inline TCGMemOpIdx
make_memop_idx(TCGMemOp op
, unsigned idx
)
1190 tcg_debug_assert(idx
<= 15);
1191 return (op
<< 4) | idx
;
1196 * @oi: combined op/idx parameter
1198 * Extract the memory operation from the combined value.
1200 static inline TCGMemOp
get_memop(TCGMemOpIdx oi
)
1207 * @oi: combined op/idx parameter
1209 * Extract the mmu index from the combined value.
1211 static inline unsigned get_mmuidx(TCGMemOpIdx oi
)
1218 * @env: pointer to CPUArchState for the CPU
1219 * @tb_ptr: address of generated code for the TB to execute
1221 * Start executing code from a given translation block.
1222 * Where translation blocks have been linked, execution
1223 * may proceed from the given TB into successive ones.
1224 * Control eventually returns only when some action is needed
1225 * from the top-level loop: either control must pass to a TB
1226 * which has not yet been directly linked, or an asynchronous
1227 * event such as an interrupt needs handling.
1229 * Return: The return value is the value passed to the corresponding
1230 * tcg_gen_exit_tb() at translation time of the last TB attempted to execute.
1231 * The value is either zero or a 4-byte aligned pointer to that TB combined
1232 * with additional information in its two least significant bits. The
1233 * additional information is encoded as follows:
1234 * 0, 1: the link between this TB and the next is via the specified
1235 * TB index (0 or 1). That is, we left the TB via (the equivalent
1236 * of) "goto_tb <index>". The main loop uses this to determine
1237 * how to link the TB just executed to the next.
1238 * 2: we are using instruction counting code generation, and we
1239 * did not start executing this TB because the instruction counter
1240 * would hit zero midway through it. In this case the pointer
1241 * returned is the TB we were about to execute, and the caller must
1242 * arrange to execute the remaining count of instructions.
1243 * 3: we stopped because the CPU's exit_request flag was set
1244 * (usually meaning that there is an interrupt that needs to be
1245 * handled). The pointer returned is the TB we were about to execute
1246 * when we noticed the pending exit request.
1248 * If the bottom two bits indicate an exit-via-index then the CPU
1249 * state is correctly synchronised and ready for execution of the next
1250 * TB (and in particular the guest PC is the address to execute next).
1251 * Otherwise, we gave up on execution of this TB before it started, and
1252 * the caller must fix up the CPU state by calling the CPU's
1253 * synchronize_from_tb() method with the TB pointer we return (falling
1254 * back to calling the CPU's set_pc method with tb->pb if no
1255 * synchronize_from_tb() method exists).
1257 * Note that TCG targets may use a different definition of tcg_qemu_tb_exec
1258 * to this default (which just calls the prologue.code emitted by
1259 * tcg_target_qemu_prologue()).
1261 #define TB_EXIT_MASK 3
1262 #define TB_EXIT_IDX0 0
1263 #define TB_EXIT_IDX1 1
1264 #define TB_EXIT_IDXMAX 1
1265 #define TB_EXIT_REQUESTED 3
1267 #ifdef HAVE_TCG_QEMU_TB_EXEC
1268 uintptr_t tcg_qemu_tb_exec(CPUArchState
*env
, uint8_t *tb_ptr
);
1270 # define tcg_qemu_tb_exec(env, tb_ptr) \
1271 ((uintptr_t (*)(void *, void *))tcg_ctx->code_gen_prologue)(env, tb_ptr)
1274 void tcg_register_jit(void *buf
, size_t buf_size
);
1276 #if TCG_TARGET_MAYBE_vec
1277 /* Return zero if the tuple (opc, type, vece) is unsupportable;
1278 return > 0 if it is directly supportable;
1279 return < 0 if we must call tcg_expand_vec_op. */
1280 int tcg_can_emit_vec_op(TCGOpcode
, TCGType
, unsigned);
1282 static inline int tcg_can_emit_vec_op(TCGOpcode o
, TCGType t
, unsigned ve
)
1288 /* Expand the tuple (opc, type, vece) on the given arguments. */
1289 void tcg_expand_vec_op(TCGOpcode
, TCGType
, unsigned, TCGArg
, ...);
1291 /* Replicate a constant C accoring to the log2 of the element size. */
1292 uint64_t dup_const(unsigned vece
, uint64_t c
);
1294 #define dup_const(VECE, C) \
1295 (__builtin_constant_p(VECE) \
1296 ? ( (VECE) == MO_8 ? 0x0101010101010101ull * (uint8_t)(C) \
1297 : (VECE) == MO_16 ? 0x0001000100010001ull * (uint16_t)(C) \
1298 : (VECE) == MO_32 ? 0x0000000100000001ull * (uint32_t)(C) \
1299 : dup_const(VECE, C)) \
1300 : dup_const(VECE, C))
1304 * Memory helpers that will be used by TCG generated code.
1306 #ifdef CONFIG_SOFTMMU
1307 /* Value zero-extended to tcg register size. */
1308 tcg_target_ulong
helper_ret_ldub_mmu(CPUArchState
*env
, target_ulong addr
,
1309 TCGMemOpIdx oi
, uintptr_t retaddr
);
1310 tcg_target_ulong
helper_le_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
1311 TCGMemOpIdx oi
, uintptr_t retaddr
);
1312 tcg_target_ulong
helper_le_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
1313 TCGMemOpIdx oi
, uintptr_t retaddr
);
1314 uint64_t helper_le_ldq_mmu(CPUArchState
*env
, target_ulong addr
,
1315 TCGMemOpIdx oi
, uintptr_t retaddr
);
1316 tcg_target_ulong
helper_be_lduw_mmu(CPUArchState
*env
, target_ulong addr
,
1317 TCGMemOpIdx oi
, uintptr_t retaddr
);
1318 tcg_target_ulong
helper_be_ldul_mmu(CPUArchState
*env
, target_ulong addr
,
1319 TCGMemOpIdx oi
, uintptr_t retaddr
);
1320 uint64_t helper_be_ldq_mmu(CPUArchState
*env
, target_ulong addr
,
1321 TCGMemOpIdx oi
, uintptr_t retaddr
);
1323 /* Value sign-extended to tcg register size. */
1324 tcg_target_ulong
helper_ret_ldsb_mmu(CPUArchState
*env
, target_ulong addr
,
1325 TCGMemOpIdx oi
, uintptr_t retaddr
);
1326 tcg_target_ulong
helper_le_ldsw_mmu(CPUArchState
*env
, target_ulong addr
,
1327 TCGMemOpIdx oi
, uintptr_t retaddr
);
1328 tcg_target_ulong
helper_le_ldsl_mmu(CPUArchState
*env
, target_ulong addr
,
1329 TCGMemOpIdx oi
, uintptr_t retaddr
);
1330 tcg_target_ulong
helper_be_ldsw_mmu(CPUArchState
*env
, target_ulong addr
,
1331 TCGMemOpIdx oi
, uintptr_t retaddr
);
1332 tcg_target_ulong
helper_be_ldsl_mmu(CPUArchState
*env
, target_ulong addr
,
1333 TCGMemOpIdx oi
, uintptr_t retaddr
);
1335 void helper_ret_stb_mmu(CPUArchState
*env
, target_ulong addr
, uint8_t val
,
1336 TCGMemOpIdx oi
, uintptr_t retaddr
);
1337 void helper_le_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
1338 TCGMemOpIdx oi
, uintptr_t retaddr
);
1339 void helper_le_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
1340 TCGMemOpIdx oi
, uintptr_t retaddr
);
1341 void helper_le_stq_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
1342 TCGMemOpIdx oi
, uintptr_t retaddr
);
1343 void helper_be_stw_mmu(CPUArchState
*env
, target_ulong addr
, uint16_t val
,
1344 TCGMemOpIdx oi
, uintptr_t retaddr
);
1345 void helper_be_stl_mmu(CPUArchState
*env
, target_ulong addr
, uint32_t val
,
1346 TCGMemOpIdx oi
, uintptr_t retaddr
);
1347 void helper_be_stq_mmu(CPUArchState
*env
, target_ulong addr
, uint64_t val
,
1348 TCGMemOpIdx oi
, uintptr_t retaddr
);
1350 uint8_t helper_ret_ldb_cmmu(CPUArchState
*env
, target_ulong addr
,
1351 TCGMemOpIdx oi
, uintptr_t retaddr
);
1352 uint16_t helper_le_ldw_cmmu(CPUArchState
*env
, target_ulong addr
,
1353 TCGMemOpIdx oi
, uintptr_t retaddr
);
1354 uint32_t helper_le_ldl_cmmu(CPUArchState
*env
, target_ulong addr
,
1355 TCGMemOpIdx oi
, uintptr_t retaddr
);
1356 uint64_t helper_le_ldq_cmmu(CPUArchState
*env
, target_ulong addr
,
1357 TCGMemOpIdx oi
, uintptr_t retaddr
);
1358 uint16_t helper_be_ldw_cmmu(CPUArchState
*env
, target_ulong addr
,
1359 TCGMemOpIdx oi
, uintptr_t retaddr
);
1360 uint32_t helper_be_ldl_cmmu(CPUArchState
*env
, target_ulong addr
,
1361 TCGMemOpIdx oi
, uintptr_t retaddr
);
1362 uint64_t helper_be_ldq_cmmu(CPUArchState
*env
, target_ulong addr
,
1363 TCGMemOpIdx oi
, uintptr_t retaddr
);
1365 /* Temporary aliases until backends are converted. */
1366 #ifdef TARGET_WORDS_BIGENDIAN
1367 # define helper_ret_ldsw_mmu helper_be_ldsw_mmu
1368 # define helper_ret_lduw_mmu helper_be_lduw_mmu
1369 # define helper_ret_ldsl_mmu helper_be_ldsl_mmu
1370 # define helper_ret_ldul_mmu helper_be_ldul_mmu
1371 # define helper_ret_ldl_mmu helper_be_ldul_mmu
1372 # define helper_ret_ldq_mmu helper_be_ldq_mmu
1373 # define helper_ret_stw_mmu helper_be_stw_mmu
1374 # define helper_ret_stl_mmu helper_be_stl_mmu
1375 # define helper_ret_stq_mmu helper_be_stq_mmu
1376 # define helper_ret_ldw_cmmu helper_be_ldw_cmmu
1377 # define helper_ret_ldl_cmmu helper_be_ldl_cmmu
1378 # define helper_ret_ldq_cmmu helper_be_ldq_cmmu
1380 # define helper_ret_ldsw_mmu helper_le_ldsw_mmu
1381 # define helper_ret_lduw_mmu helper_le_lduw_mmu
1382 # define helper_ret_ldsl_mmu helper_le_ldsl_mmu
1383 # define helper_ret_ldul_mmu helper_le_ldul_mmu
1384 # define helper_ret_ldl_mmu helper_le_ldul_mmu
1385 # define helper_ret_ldq_mmu helper_le_ldq_mmu
1386 # define helper_ret_stw_mmu helper_le_stw_mmu
1387 # define helper_ret_stl_mmu helper_le_stl_mmu
1388 # define helper_ret_stq_mmu helper_le_stq_mmu
1389 # define helper_ret_ldw_cmmu helper_le_ldw_cmmu
1390 # define helper_ret_ldl_cmmu helper_le_ldl_cmmu
1391 # define helper_ret_ldq_cmmu helper_le_ldq_cmmu
1394 uint32_t helper_atomic_cmpxchgb_mmu(CPUArchState
*env
, target_ulong addr
,
1395 uint32_t cmpv
, uint32_t newv
,
1396 TCGMemOpIdx oi
, uintptr_t retaddr
);
1397 uint32_t helper_atomic_cmpxchgw_le_mmu(CPUArchState
*env
, target_ulong addr
,
1398 uint32_t cmpv
, uint32_t newv
,
1399 TCGMemOpIdx oi
, uintptr_t retaddr
);
1400 uint32_t helper_atomic_cmpxchgl_le_mmu(CPUArchState
*env
, target_ulong addr
,
1401 uint32_t cmpv
, uint32_t newv
,
1402 TCGMemOpIdx oi
, uintptr_t retaddr
);
1403 uint64_t helper_atomic_cmpxchgq_le_mmu(CPUArchState
*env
, target_ulong addr
,
1404 uint64_t cmpv
, uint64_t newv
,
1405 TCGMemOpIdx oi
, uintptr_t retaddr
);
1406 uint32_t helper_atomic_cmpxchgw_be_mmu(CPUArchState
*env
, target_ulong addr
,
1407 uint32_t cmpv
, uint32_t newv
,
1408 TCGMemOpIdx oi
, uintptr_t retaddr
);
1409 uint32_t helper_atomic_cmpxchgl_be_mmu(CPUArchState
*env
, target_ulong addr
,
1410 uint32_t cmpv
, uint32_t newv
,
1411 TCGMemOpIdx oi
, uintptr_t retaddr
);
1412 uint64_t helper_atomic_cmpxchgq_be_mmu(CPUArchState
*env
, target_ulong addr
,
1413 uint64_t cmpv
, uint64_t newv
,
1414 TCGMemOpIdx oi
, uintptr_t retaddr
);
1416 #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \
1417 TYPE helper_atomic_ ## NAME ## SUFFIX ## _mmu \
1418 (CPUArchState *env, target_ulong addr, TYPE val, \
1419 TCGMemOpIdx oi, uintptr_t retaddr);
1421 #ifdef CONFIG_ATOMIC64
1422 #define GEN_ATOMIC_HELPER_ALL(NAME) \
1423 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
1424 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
1425 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
1426 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
1427 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \
1428 GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \
1429 GEN_ATOMIC_HELPER(NAME, uint64_t, q_be)
1431 #define GEN_ATOMIC_HELPER_ALL(NAME) \
1432 GEN_ATOMIC_HELPER(NAME, uint32_t, b) \
1433 GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \
1434 GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \
1435 GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \
1436 GEN_ATOMIC_HELPER(NAME, uint32_t, l_be)
1439 GEN_ATOMIC_HELPER_ALL(fetch_add
)
1440 GEN_ATOMIC_HELPER_ALL(fetch_sub
)
1441 GEN_ATOMIC_HELPER_ALL(fetch_and
)
1442 GEN_ATOMIC_HELPER_ALL(fetch_or
)
1443 GEN_ATOMIC_HELPER_ALL(fetch_xor
)
1444 GEN_ATOMIC_HELPER_ALL(fetch_smin
)
1445 GEN_ATOMIC_HELPER_ALL(fetch_umin
)
1446 GEN_ATOMIC_HELPER_ALL(fetch_smax
)
1447 GEN_ATOMIC_HELPER_ALL(fetch_umax
)
1449 GEN_ATOMIC_HELPER_ALL(add_fetch
)
1450 GEN_ATOMIC_HELPER_ALL(sub_fetch
)
1451 GEN_ATOMIC_HELPER_ALL(and_fetch
)
1452 GEN_ATOMIC_HELPER_ALL(or_fetch
)
1453 GEN_ATOMIC_HELPER_ALL(xor_fetch
)
1454 GEN_ATOMIC_HELPER_ALL(smin_fetch
)
1455 GEN_ATOMIC_HELPER_ALL(umin_fetch
)
1456 GEN_ATOMIC_HELPER_ALL(smax_fetch
)
1457 GEN_ATOMIC_HELPER_ALL(umax_fetch
)
1459 GEN_ATOMIC_HELPER_ALL(xchg
)
1461 #undef GEN_ATOMIC_HELPER_ALL
1462 #undef GEN_ATOMIC_HELPER
1463 #endif /* CONFIG_SOFTMMU */
1466 * These aren't really a "proper" helpers because TCG cannot manage Int128.
1467 * However, use the same format as the others, for use by the backends.
1469 * The cmpxchg functions are only defined if HAVE_CMPXCHG128;
1470 * the ld/st functions are only defined if HAVE_ATOMIC128,
1471 * as defined by <qemu/atomic128.h>.
1473 Int128
helper_atomic_cmpxchgo_le_mmu(CPUArchState
*env
, target_ulong addr
,
1474 Int128 cmpv
, Int128 newv
,
1475 TCGMemOpIdx oi
, uintptr_t retaddr
);
1476 Int128
helper_atomic_cmpxchgo_be_mmu(CPUArchState
*env
, target_ulong addr
,
1477 Int128 cmpv
, Int128 newv
,
1478 TCGMemOpIdx oi
, uintptr_t retaddr
);
1480 Int128
helper_atomic_ldo_le_mmu(CPUArchState
*env
, target_ulong addr
,
1481 TCGMemOpIdx oi
, uintptr_t retaddr
);
1482 Int128
helper_atomic_ldo_be_mmu(CPUArchState
*env
, target_ulong addr
,
1483 TCGMemOpIdx oi
, uintptr_t retaddr
);
1484 void helper_atomic_sto_le_mmu(CPUArchState
*env
, target_ulong addr
, Int128 val
,
1485 TCGMemOpIdx oi
, uintptr_t retaddr
);
1486 void helper_atomic_sto_be_mmu(CPUArchState
*env
, target_ulong addr
, Int128 val
,
1487 TCGMemOpIdx oi
, uintptr_t retaddr
);