Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20160922' into...
[qemu/kevin.git] / target-arm / kvm64.c
blob5faa76c57e069dfc136f2d03f0acd9ea0c589f65
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "exec/gdbstub.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm.h"
27 #include "kvm_arm.h"
28 #include "internals.h"
29 #include "hw/arm/arm.h"
31 static bool have_guest_debug;
34 * Although the ARM implementation of hardware assisted debugging
35 * allows for different breakpoints per-core, the current GDB
36 * interface treats them as a global pool of registers (which seems to
37 * be the case for x86, ppc and s390). As a result we store one copy
38 * of registers which is used for all active cores.
40 * Write access is serialised by virtue of the GDB protocol which
41 * updates things. Read access (i.e. when the values are copied to the
42 * vCPU) is also gated by GDB's run control.
44 * This is not unreasonable as most of the time debugging kernels you
45 * never know which core will eventually execute your function.
48 typedef struct {
49 uint64_t bcr;
50 uint64_t bvr;
51 } HWBreakpoint;
53 /* The watchpoint registers can cover more area than the requested
54 * watchpoint so we need to store the additional information
55 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
56 * when the watchpoint is hit.
58 typedef struct {
59 uint64_t wcr;
60 uint64_t wvr;
61 CPUWatchpoint details;
62 } HWWatchpoint;
64 /* Maximum and current break/watch point counts */
65 int max_hw_bps, max_hw_wps;
66 GArray *hw_breakpoints, *hw_watchpoints;
68 #define cur_hw_wps (hw_watchpoints->len)
69 #define cur_hw_bps (hw_breakpoints->len)
70 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
71 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
73 /**
74 * kvm_arm_init_debug() - check for guest debug capabilities
75 * @cs: CPUState
77 * kvm_check_extension returns the number of debug registers we have
78 * or 0 if we have none.
81 static void kvm_arm_init_debug(CPUState *cs)
83 have_guest_debug = kvm_check_extension(cs->kvm_state,
84 KVM_CAP_SET_GUEST_DEBUG);
86 max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
87 hw_watchpoints = g_array_sized_new(true, true,
88 sizeof(HWWatchpoint), max_hw_wps);
90 max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
91 hw_breakpoints = g_array_sized_new(true, true,
92 sizeof(HWBreakpoint), max_hw_bps);
93 return;
96 /**
97 * insert_hw_breakpoint()
98 * @addr: address of breakpoint
100 * See ARM ARM D2.9.1 for details but here we are only going to create
101 * simple un-linked breakpoints (i.e. we don't chain breakpoints
102 * together to match address and context or vmid). The hardware is
103 * capable of fancier matching but that will require exposing that
104 * fanciness to GDB's interface
106 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
108 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
109 * +------+------+-------+-----+----+------+-----+------+-----+---+
110 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
111 * +------+------+-------+-----+----+------+-----+------+-----+---+
113 * BT: Breakpoint type (0 = unlinked address match)
114 * LBN: Linked BP number (0 = unused)
115 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
116 * BAS: Byte Address Select (RES1 for AArch64)
117 * E: Enable bit
119 static int insert_hw_breakpoint(target_ulong addr)
121 HWBreakpoint brk = {
122 .bcr = 0x1, /* BCR E=1, enable */
123 .bvr = addr
126 if (cur_hw_bps >= max_hw_bps) {
127 return -ENOBUFS;
130 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
131 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
133 g_array_append_val(hw_breakpoints, brk);
135 return 0;
139 * delete_hw_breakpoint()
140 * @pc: address of breakpoint
142 * Delete a breakpoint and shuffle any above down
145 static int delete_hw_breakpoint(target_ulong pc)
147 int i;
148 for (i = 0; i < hw_breakpoints->len; i++) {
149 HWBreakpoint *brk = get_hw_bp(i);
150 if (brk->bvr == pc) {
151 g_array_remove_index(hw_breakpoints, i);
152 return 0;
155 return -ENOENT;
159 * insert_hw_watchpoint()
160 * @addr: address of watch point
161 * @len: size of area
162 * @type: type of watch point
164 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
165 * stuff if we want to. The watch points can be linked with the break
166 * points above to make them context aware. However for simplicity
167 * currently we only deal with simple read/write watch points.
169 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
171 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
172 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
173 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
174 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
176 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
177 * WT: 0 - unlinked, 1 - linked (not currently used)
178 * LBN: Linked BP number (not currently used)
179 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
180 * BAS: Byte Address Select
181 * LSC: Load/Store control (01: load, 10: store, 11: both)
182 * E: Enable
184 * The bottom 2 bits of the value register are masked. Therefore to
185 * break on any sizes smaller than an unaligned word you need to set
186 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
187 * need to ensure you mask the address as required and set BAS=0xff
190 static int insert_hw_watchpoint(target_ulong addr,
191 target_ulong len, int type)
193 HWWatchpoint wp = {
194 .wcr = 1, /* E=1, enable */
195 .wvr = addr & (~0x7ULL),
196 .details = { .vaddr = addr, .len = len }
199 if (cur_hw_wps >= max_hw_wps) {
200 return -ENOBUFS;
204 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
205 * valid whether EL3 is implemented or not
207 wp.wcr = deposit32(wp.wcr, 1, 2, 3);
209 switch (type) {
210 case GDB_WATCHPOINT_READ:
211 wp.wcr = deposit32(wp.wcr, 3, 2, 1);
212 wp.details.flags = BP_MEM_READ;
213 break;
214 case GDB_WATCHPOINT_WRITE:
215 wp.wcr = deposit32(wp.wcr, 3, 2, 2);
216 wp.details.flags = BP_MEM_WRITE;
217 break;
218 case GDB_WATCHPOINT_ACCESS:
219 wp.wcr = deposit32(wp.wcr, 3, 2, 3);
220 wp.details.flags = BP_MEM_ACCESS;
221 break;
222 default:
223 g_assert_not_reached();
224 break;
226 if (len <= 8) {
227 /* we align the address and set the bits in BAS */
228 int off = addr & 0x7;
229 int bas = (1 << len) - 1;
231 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
232 } else {
233 /* For ranges above 8 bytes we need to be a power of 2 */
234 if (is_power_of_2(len)) {
235 int bits = ctz64(len);
237 wp.wvr &= ~((1 << bits) - 1);
238 wp.wcr = deposit32(wp.wcr, 24, 4, bits);
239 wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
240 } else {
241 return -ENOBUFS;
245 g_array_append_val(hw_watchpoints, wp);
246 return 0;
250 static bool check_watchpoint_in_range(int i, target_ulong addr)
252 HWWatchpoint *wp = get_hw_wp(i);
253 uint64_t addr_top, addr_bottom = wp->wvr;
254 int bas = extract32(wp->wcr, 5, 8);
255 int mask = extract32(wp->wcr, 24, 4);
257 if (mask) {
258 addr_top = addr_bottom + (1 << mask);
259 } else {
260 /* BAS must be contiguous but can offset against the base
261 * address in DBGWVR */
262 addr_bottom = addr_bottom + ctz32(bas);
263 addr_top = addr_bottom + clo32(bas);
266 if (addr >= addr_bottom && addr <= addr_top) {
267 return true;
270 return false;
274 * delete_hw_watchpoint()
275 * @addr: address of breakpoint
277 * Delete a breakpoint and shuffle any above down
280 static int delete_hw_watchpoint(target_ulong addr,
281 target_ulong len, int type)
283 int i;
284 for (i = 0; i < cur_hw_wps; i++) {
285 if (check_watchpoint_in_range(i, addr)) {
286 g_array_remove_index(hw_watchpoints, i);
287 return 0;
290 return -ENOENT;
294 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
295 target_ulong len, int type)
297 switch (type) {
298 case GDB_BREAKPOINT_HW:
299 return insert_hw_breakpoint(addr);
300 break;
301 case GDB_WATCHPOINT_READ:
302 case GDB_WATCHPOINT_WRITE:
303 case GDB_WATCHPOINT_ACCESS:
304 return insert_hw_watchpoint(addr, len, type);
305 default:
306 return -ENOSYS;
310 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
311 target_ulong len, int type)
313 switch (type) {
314 case GDB_BREAKPOINT_HW:
315 return delete_hw_breakpoint(addr);
316 break;
317 case GDB_WATCHPOINT_READ:
318 case GDB_WATCHPOINT_WRITE:
319 case GDB_WATCHPOINT_ACCESS:
320 return delete_hw_watchpoint(addr, len, type);
321 default:
322 return -ENOSYS;
327 void kvm_arch_remove_all_hw_breakpoints(void)
329 if (cur_hw_wps > 0) {
330 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
332 if (cur_hw_bps > 0) {
333 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
337 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
339 int i;
340 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
342 for (i = 0; i < max_hw_wps; i++) {
343 HWWatchpoint *wp = get_hw_wp(i);
344 ptr->dbg_wcr[i] = wp->wcr;
345 ptr->dbg_wvr[i] = wp->wvr;
347 for (i = 0; i < max_hw_bps; i++) {
348 HWBreakpoint *bp = get_hw_bp(i);
349 ptr->dbg_bcr[i] = bp->bcr;
350 ptr->dbg_bvr[i] = bp->bvr;
354 bool kvm_arm_hw_debug_active(CPUState *cs)
356 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
359 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
361 int i;
363 for (i = 0; i < cur_hw_bps; i++) {
364 HWBreakpoint *bp = get_hw_bp(i);
365 if (bp->bvr == pc) {
366 return true;
369 return false;
372 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
374 int i;
376 for (i = 0; i < cur_hw_wps; i++) {
377 if (check_watchpoint_in_range(i, addr)) {
378 return &get_hw_wp(i)->details;
381 return NULL;
384 static bool kvm_arm_pmu_support_ctrl(CPUState *cs, struct kvm_device_attr *attr)
386 return kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr) == 0;
389 int kvm_arm_pmu_create(CPUState *cs, int irq)
391 int err;
393 struct kvm_device_attr attr = {
394 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
395 .addr = (intptr_t)&irq,
396 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
397 .flags = 0,
400 if (!kvm_arm_pmu_support_ctrl(cs, &attr)) {
401 return 0;
404 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
405 if (err < 0) {
406 fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
407 strerror(-err));
408 abort();
411 attr.group = KVM_ARM_VCPU_PMU_V3_CTRL;
412 attr.attr = KVM_ARM_VCPU_PMU_V3_INIT;
413 attr.addr = 0;
414 attr.flags = 0;
416 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
417 if (err < 0) {
418 fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
419 strerror(-err));
420 abort();
423 return 1;
426 static inline void set_feature(uint64_t *features, int feature)
428 *features |= 1ULL << feature;
431 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
433 /* Identify the feature bits corresponding to the host CPU, and
434 * fill out the ARMHostCPUClass fields accordingly. To do this
435 * we have to create a scratch VM, create a single CPU inside it,
436 * and then query that CPU for the relevant ID registers.
437 * For AArch64 we currently don't care about ID registers at
438 * all; we just want to know the CPU type.
440 int fdarray[3];
441 uint64_t features = 0;
442 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
443 * we know these will only support creating one kind of guest CPU,
444 * which is its preferred CPU type. Fortunately these old kernels
445 * support only a very limited number of CPUs.
447 static const uint32_t cpus_to_try[] = {
448 KVM_ARM_TARGET_AEM_V8,
449 KVM_ARM_TARGET_FOUNDATION_V8,
450 KVM_ARM_TARGET_CORTEX_A57,
451 QEMU_KVM_ARM_TARGET_NONE
453 struct kvm_vcpu_init init;
455 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
456 return false;
459 ahcc->target = init.target;
460 ahcc->dtb_compatible = "arm,arm-v8";
462 kvm_arm_destroy_scratch_host_vcpu(fdarray);
464 /* We can assume any KVM supporting CPU is at least a v8
465 * with VFPv4+Neon; this in turn implies most of the other
466 * feature bits.
468 set_feature(&features, ARM_FEATURE_V8);
469 set_feature(&features, ARM_FEATURE_VFP4);
470 set_feature(&features, ARM_FEATURE_NEON);
471 set_feature(&features, ARM_FEATURE_AARCH64);
473 ahcc->features = features;
475 return true;
478 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
480 int kvm_arch_init_vcpu(CPUState *cs)
482 int ret;
483 uint64_t mpidr;
484 ARMCPU *cpu = ARM_CPU(cs);
486 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
487 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
488 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
489 return -EINVAL;
492 /* Determine init features for this CPU */
493 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
494 if (cpu->start_powered_off) {
495 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
497 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
498 cpu->psci_version = 2;
499 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
501 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
502 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
504 if (kvm_irqchip_in_kernel() &&
505 kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
506 cpu->has_pmu = true;
507 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
510 /* Do KVM_ARM_VCPU_INIT ioctl */
511 ret = kvm_arm_vcpu_init(cs);
512 if (ret) {
513 return ret;
517 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
518 * Currently KVM has its own idea about MPIDR assignment, so we
519 * override our defaults with what we get from KVM.
521 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
522 if (ret) {
523 return ret;
525 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
527 kvm_arm_init_debug(cs);
529 return kvm_arm_init_cpreg_list(cpu);
532 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
534 /* Return true if the regidx is a register we should synchronize
535 * via the cpreg_tuples array (ie is not a core reg we sync by
536 * hand in kvm_arch_get/put_registers())
538 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
539 case KVM_REG_ARM_CORE:
540 return false;
541 default:
542 return true;
546 typedef struct CPRegStateLevel {
547 uint64_t regidx;
548 int level;
549 } CPRegStateLevel;
551 /* All system registers not listed in the following table are assumed to be
552 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
553 * often, you must add it to this table with a state of either
554 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
556 static const CPRegStateLevel non_runtime_cpregs[] = {
557 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
560 int kvm_arm_cpreg_level(uint64_t regidx)
562 int i;
564 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
565 const CPRegStateLevel *l = &non_runtime_cpregs[i];
566 if (l->regidx == regidx) {
567 return l->level;
571 return KVM_PUT_RUNTIME_STATE;
574 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
575 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
577 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
578 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
580 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
581 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
583 int kvm_arch_put_registers(CPUState *cs, int level)
585 struct kvm_one_reg reg;
586 uint32_t fpr;
587 uint64_t val;
588 int i;
589 int ret;
590 unsigned int el;
592 ARMCPU *cpu = ARM_CPU(cs);
593 CPUARMState *env = &cpu->env;
595 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
596 * AArch64 registers before pushing them out to 64-bit KVM.
598 if (!is_a64(env)) {
599 aarch64_sync_32_to_64(env);
602 for (i = 0; i < 31; i++) {
603 reg.id = AARCH64_CORE_REG(regs.regs[i]);
604 reg.addr = (uintptr_t) &env->xregs[i];
605 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
606 if (ret) {
607 return ret;
611 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
612 * QEMU side we keep the current SP in xregs[31] as well.
614 aarch64_save_sp(env, 1);
616 reg.id = AARCH64_CORE_REG(regs.sp);
617 reg.addr = (uintptr_t) &env->sp_el[0];
618 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
619 if (ret) {
620 return ret;
623 reg.id = AARCH64_CORE_REG(sp_el1);
624 reg.addr = (uintptr_t) &env->sp_el[1];
625 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
626 if (ret) {
627 return ret;
630 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
631 if (is_a64(env)) {
632 val = pstate_read(env);
633 } else {
634 val = cpsr_read(env);
636 reg.id = AARCH64_CORE_REG(regs.pstate);
637 reg.addr = (uintptr_t) &val;
638 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639 if (ret) {
640 return ret;
643 reg.id = AARCH64_CORE_REG(regs.pc);
644 reg.addr = (uintptr_t) &env->pc;
645 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
646 if (ret) {
647 return ret;
650 reg.id = AARCH64_CORE_REG(elr_el1);
651 reg.addr = (uintptr_t) &env->elr_el[1];
652 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
653 if (ret) {
654 return ret;
657 /* Saved Program State Registers
659 * Before we restore from the banked_spsr[] array we need to
660 * ensure that any modifications to env->spsr are correctly
661 * reflected in the banks.
663 el = arm_current_el(env);
664 if (el > 0 && !is_a64(env)) {
665 i = bank_number(env->uncached_cpsr & CPSR_M);
666 env->banked_spsr[i] = env->spsr;
669 /* KVM 0-4 map to QEMU banks 1-5 */
670 for (i = 0; i < KVM_NR_SPSR; i++) {
671 reg.id = AARCH64_CORE_REG(spsr[i]);
672 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
673 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
674 if (ret) {
675 return ret;
679 /* Advanced SIMD and FP registers
680 * We map Qn = regs[2n+1]:regs[2n]
682 for (i = 0; i < 32; i++) {
683 int rd = i << 1;
684 uint64_t fp_val[2];
685 #ifdef HOST_WORDS_BIGENDIAN
686 fp_val[0] = env->vfp.regs[rd + 1];
687 fp_val[1] = env->vfp.regs[rd];
688 #else
689 fp_val[1] = env->vfp.regs[rd + 1];
690 fp_val[0] = env->vfp.regs[rd];
691 #endif
692 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
693 reg.addr = (uintptr_t)(&fp_val);
694 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
695 if (ret) {
696 return ret;
700 reg.addr = (uintptr_t)(&fpr);
701 fpr = vfp_get_fpsr(env);
702 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
703 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
704 if (ret) {
705 return ret;
708 fpr = vfp_get_fpcr(env);
709 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
710 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
711 if (ret) {
712 return ret;
715 if (!write_list_to_kvmstate(cpu, level)) {
716 return EINVAL;
719 kvm_arm_sync_mpstate_to_kvm(cpu);
721 return ret;
724 int kvm_arch_get_registers(CPUState *cs)
726 struct kvm_one_reg reg;
727 uint64_t val;
728 uint32_t fpr;
729 unsigned int el;
730 int i;
731 int ret;
733 ARMCPU *cpu = ARM_CPU(cs);
734 CPUARMState *env = &cpu->env;
736 for (i = 0; i < 31; i++) {
737 reg.id = AARCH64_CORE_REG(regs.regs[i]);
738 reg.addr = (uintptr_t) &env->xregs[i];
739 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
740 if (ret) {
741 return ret;
745 reg.id = AARCH64_CORE_REG(regs.sp);
746 reg.addr = (uintptr_t) &env->sp_el[0];
747 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
748 if (ret) {
749 return ret;
752 reg.id = AARCH64_CORE_REG(sp_el1);
753 reg.addr = (uintptr_t) &env->sp_el[1];
754 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
755 if (ret) {
756 return ret;
759 reg.id = AARCH64_CORE_REG(regs.pstate);
760 reg.addr = (uintptr_t) &val;
761 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
762 if (ret) {
763 return ret;
766 env->aarch64 = ((val & PSTATE_nRW) == 0);
767 if (is_a64(env)) {
768 pstate_write(env, val);
769 } else {
770 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
773 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
774 * QEMU side we keep the current SP in xregs[31] as well.
776 aarch64_restore_sp(env, 1);
778 reg.id = AARCH64_CORE_REG(regs.pc);
779 reg.addr = (uintptr_t) &env->pc;
780 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
781 if (ret) {
782 return ret;
785 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
786 * incoming AArch64 regs received from 64-bit KVM.
787 * We must perform this after all of the registers have been acquired from
788 * the kernel.
790 if (!is_a64(env)) {
791 aarch64_sync_64_to_32(env);
794 reg.id = AARCH64_CORE_REG(elr_el1);
795 reg.addr = (uintptr_t) &env->elr_el[1];
796 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
797 if (ret) {
798 return ret;
801 /* Fetch the SPSR registers
803 * KVM SPSRs 0-4 map to QEMU banks 1-5
805 for (i = 0; i < KVM_NR_SPSR; i++) {
806 reg.id = AARCH64_CORE_REG(spsr[i]);
807 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
808 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
809 if (ret) {
810 return ret;
814 el = arm_current_el(env);
815 if (el > 0 && !is_a64(env)) {
816 i = bank_number(env->uncached_cpsr & CPSR_M);
817 env->spsr = env->banked_spsr[i];
820 /* Advanced SIMD and FP registers
821 * We map Qn = regs[2n+1]:regs[2n]
823 for (i = 0; i < 32; i++) {
824 uint64_t fp_val[2];
825 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
826 reg.addr = (uintptr_t)(&fp_val);
827 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
828 if (ret) {
829 return ret;
830 } else {
831 int rd = i << 1;
832 #ifdef HOST_WORDS_BIGENDIAN
833 env->vfp.regs[rd + 1] = fp_val[0];
834 env->vfp.regs[rd] = fp_val[1];
835 #else
836 env->vfp.regs[rd + 1] = fp_val[1];
837 env->vfp.regs[rd] = fp_val[0];
838 #endif
842 reg.addr = (uintptr_t)(&fpr);
843 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
844 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
845 if (ret) {
846 return ret;
848 vfp_set_fpsr(env, fpr);
850 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
851 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
852 if (ret) {
853 return ret;
855 vfp_set_fpcr(env, fpr);
857 if (!write_kvmstate_to_list(cpu)) {
858 return EINVAL;
860 /* Note that it's OK to have registers which aren't in CPUState,
861 * so we can ignore a failure return here.
863 write_list_to_cpustate(cpu);
865 kvm_arm_sync_mpstate_to_qemu(cpu);
867 /* TODO: other registers */
868 return ret;
871 /* C6.6.29 BRK instruction */
872 static const uint32_t brk_insn = 0xd4200000;
874 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
876 if (have_guest_debug) {
877 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
878 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
879 return -EINVAL;
881 return 0;
882 } else {
883 error_report("guest debug not supported on this kernel");
884 return -EINVAL;
888 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
890 static uint32_t brk;
892 if (have_guest_debug) {
893 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
894 brk != brk_insn ||
895 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
896 return -EINVAL;
898 return 0;
899 } else {
900 error_report("guest debug not supported on this kernel");
901 return -EINVAL;
905 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
907 * To minimise translating between kernel and user-space the kernel
908 * ABI just provides user-space with the full exception syndrome
909 * register value to be decoded in QEMU.
912 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
914 int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
915 ARMCPU *cpu = ARM_CPU(cs);
916 CPUClass *cc = CPU_GET_CLASS(cs);
917 CPUARMState *env = &cpu->env;
919 /* Ensure PC is synchronised */
920 kvm_cpu_synchronize_state(cs);
922 switch (hsr_ec) {
923 case EC_SOFTWARESTEP:
924 if (cs->singlestep_enabled) {
925 return true;
926 } else {
928 * The kernel should have suppressed the guest's ability to
929 * single step at this point so something has gone wrong.
931 error_report("%s: guest single-step while debugging unsupported"
932 " (%"PRIx64", %"PRIx32")\n",
933 __func__, env->pc, debug_exit->hsr);
934 return false;
936 break;
937 case EC_AA64_BKPT:
938 if (kvm_find_sw_breakpoint(cs, env->pc)) {
939 return true;
941 break;
942 case EC_BREAKPOINT:
943 if (find_hw_breakpoint(cs, env->pc)) {
944 return true;
946 break;
947 case EC_WATCHPOINT:
949 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
950 if (wp) {
951 cs->watchpoint_hit = wp;
952 return true;
954 break;
956 default:
957 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n",
958 __func__, debug_exit->hsr, env->pc);
961 /* If we are not handling the debug exception it must belong to
962 * the guest. Let's re-use the existing TCG interrupt code to set
963 * everything up properly.
965 cs->exception_index = EXCP_BKPT;
966 env->exception.syndrome = debug_exit->hsr;
967 env->exception.vaddress = debug_exit->far;
968 cc->do_interrupt(cs);
970 return false;