MAINTAINERS: Add artist.c to the hppa machine section
[qemu/kevin.git] / hw / ppc / spapr_hcall.c
blob522a2396c7f73ea1cfa953f8a99d4780c57b82c0
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "sysemu/tcg.h"
7 #include "qemu/log.h"
8 #include "qemu/main-loop.h"
9 #include "qemu/module.h"
10 #include "qemu/error-report.h"
11 #include "exec/exec-all.h"
12 #include "exec/tb-flush.h"
13 #include "helper_regs.h"
14 #include "hw/ppc/ppc.h"
15 #include "hw/ppc/spapr.h"
16 #include "hw/ppc/spapr_cpu_core.h"
17 #include "hw/ppc/spapr_nested.h"
18 #include "mmu-hash64.h"
19 #include "cpu-models.h"
20 #include "trace.h"
21 #include "kvm_ppc.h"
22 #include "hw/ppc/fdt.h"
23 #include "hw/ppc/spapr_ovec.h"
24 #include "hw/ppc/spapr_numa.h"
25 #include "mmu-book3s-v3.h"
26 #include "hw/mem/memory-device.h"
28 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
30 MachineState *machine = MACHINE(spapr);
31 DeviceMemoryState *dms = machine->device_memory;
33 if (addr < machine->ram_size) {
34 return true;
36 if (dms && (addr >= dms->base)
37 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
38 return true;
41 return false;
44 /* Convert a return code from the KVM ioctl()s implementing resize HPT
45 * into a PAPR hypercall return code */
46 static target_ulong resize_hpt_convert_rc(int ret)
48 if (ret >= 100000) {
49 return H_LONG_BUSY_ORDER_100_SEC;
50 } else if (ret >= 10000) {
51 return H_LONG_BUSY_ORDER_10_SEC;
52 } else if (ret >= 1000) {
53 return H_LONG_BUSY_ORDER_1_SEC;
54 } else if (ret >= 100) {
55 return H_LONG_BUSY_ORDER_100_MSEC;
56 } else if (ret >= 10) {
57 return H_LONG_BUSY_ORDER_10_MSEC;
58 } else if (ret > 0) {
59 return H_LONG_BUSY_ORDER_1_MSEC;
62 switch (ret) {
63 case 0:
64 return H_SUCCESS;
65 case -EPERM:
66 return H_AUTHORITY;
67 case -EINVAL:
68 return H_PARAMETER;
69 case -ENXIO:
70 return H_CLOSED;
71 case -ENOSPC:
72 return H_PTEG_FULL;
73 case -EBUSY:
74 return H_BUSY;
75 case -ENOMEM:
76 return H_NO_MEM;
77 default:
78 return H_HARDWARE;
82 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
83 SpaprMachineState *spapr,
84 target_ulong opcode,
85 target_ulong *args)
87 target_ulong flags = args[0];
88 int shift = args[1];
89 uint64_t current_ram_size;
90 int rc;
92 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
93 return H_AUTHORITY;
96 if (!spapr->htab_shift) {
97 /* Radix guest, no HPT */
98 return H_NOT_AVAILABLE;
101 trace_spapr_h_resize_hpt_prepare(flags, shift);
103 if (flags != 0) {
104 return H_PARAMETER;
107 if (shift && ((shift < 18) || (shift > 46))) {
108 return H_PARAMETER;
111 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
113 /* We only allow the guest to allocate an HPT one order above what
114 * we'd normally give them (to stop a small guest claiming a huge
115 * chunk of resources in the HPT */
116 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
117 return H_RESOURCE;
120 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
121 if (rc != -ENOSYS) {
122 return resize_hpt_convert_rc(rc);
125 if (kvm_enabled()) {
126 return H_HARDWARE;
129 return softmmu_resize_hpt_prepare(cpu, spapr, shift);
132 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
134 int ret;
136 cpu_synchronize_state(cs);
138 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
139 if (ret < 0) {
140 error_report("failed to push sregs to KVM: %s", strerror(-ret));
141 exit(1);
145 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
147 CPUState *cs;
150 * This is a hack for the benefit of KVM PR - it abuses the SDR1
151 * slot in kvm_sregs to communicate the userspace address of the
152 * HPT
154 if (!kvm_enabled() || !spapr->htab) {
155 return;
158 CPU_FOREACH(cs) {
159 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
163 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
164 SpaprMachineState *spapr,
165 target_ulong opcode,
166 target_ulong *args)
168 target_ulong flags = args[0];
169 target_ulong shift = args[1];
170 int rc;
172 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
173 return H_AUTHORITY;
176 if (!spapr->htab_shift) {
177 /* Radix guest, no HPT */
178 return H_NOT_AVAILABLE;
181 trace_spapr_h_resize_hpt_commit(flags, shift);
183 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
184 if (rc != -ENOSYS) {
185 rc = resize_hpt_convert_rc(rc);
186 if (rc == H_SUCCESS) {
187 /* Need to set the new htab_shift in the machine state */
188 spapr->htab_shift = shift;
190 return rc;
193 if (kvm_enabled()) {
194 return H_HARDWARE;
197 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
202 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
203 target_ulong opcode, target_ulong *args)
205 cpu_synchronize_state(CPU(cpu));
206 cpu->env.spr[SPR_SPRG0] = args[0];
208 return H_SUCCESS;
211 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
212 target_ulong opcode, target_ulong *args)
214 if (!ppc_has_spr(cpu, SPR_DABR)) {
215 return H_HARDWARE; /* DABR register not available */
217 cpu_synchronize_state(CPU(cpu));
219 if (ppc_has_spr(cpu, SPR_DABRX)) {
220 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
221 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
222 return H_RESERVED_DABR;
225 cpu->env.spr[SPR_DABR] = args[0];
226 return H_SUCCESS;
229 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
230 target_ulong opcode, target_ulong *args)
232 target_ulong dabrx = args[1];
234 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
235 return H_HARDWARE;
238 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
239 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
240 return H_PARAMETER;
243 cpu_synchronize_state(CPU(cpu));
244 cpu->env.spr[SPR_DABRX] = dabrx;
245 cpu->env.spr[SPR_DABR] = args[0];
247 return H_SUCCESS;
250 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
251 target_ulong opcode, target_ulong *args)
253 target_ulong flags = args[0];
254 hwaddr dst = args[1];
255 hwaddr src = args[2];
256 hwaddr len = TARGET_PAGE_SIZE;
257 uint8_t *pdst, *psrc;
258 target_long ret = H_SUCCESS;
260 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
261 | H_COPY_PAGE | H_ZERO_PAGE)) {
262 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
263 flags);
264 return H_PARAMETER;
267 /* Map-in destination */
268 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
269 return H_PARAMETER;
271 pdst = cpu_physical_memory_map(dst, &len, true);
272 if (!pdst || len != TARGET_PAGE_SIZE) {
273 return H_PARAMETER;
276 if (flags & H_COPY_PAGE) {
277 /* Map-in source, copy to destination, and unmap source again */
278 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
279 ret = H_PARAMETER;
280 goto unmap_out;
282 psrc = cpu_physical_memory_map(src, &len, false);
283 if (!psrc || len != TARGET_PAGE_SIZE) {
284 ret = H_PARAMETER;
285 goto unmap_out;
287 memcpy(pdst, psrc, len);
288 cpu_physical_memory_unmap(psrc, len, 0, len);
289 } else if (flags & H_ZERO_PAGE) {
290 memset(pdst, 0, len); /* Just clear the destination page */
293 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
294 kvmppc_dcbst_range(cpu, pdst, len);
296 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
297 if (kvm_enabled()) {
298 kvmppc_icbi_range(cpu, pdst, len);
299 } else {
300 tb_flush(CPU(cpu));
304 unmap_out:
305 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
306 return ret;
309 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
310 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
311 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
312 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
313 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
314 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
316 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
318 CPUState *cs = CPU(cpu);
319 CPUPPCState *env = &cpu->env;
320 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
321 uint16_t size;
322 uint8_t tmp;
324 if (vpa == 0) {
325 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
326 return H_HARDWARE;
329 if (vpa % env->dcache_line_size) {
330 return H_PARAMETER;
332 /* FIXME: bounds check the address */
334 size = lduw_be_phys(cs->as, vpa + 0x4);
336 if (size < VPA_MIN_SIZE) {
337 return H_PARAMETER;
340 /* VPA is not allowed to cross a page boundary */
341 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
342 return H_PARAMETER;
345 spapr_cpu->vpa_addr = vpa;
347 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
348 tmp |= VPA_SHARED_PROC_VAL;
349 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
351 return H_SUCCESS;
354 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
356 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
358 if (spapr_cpu->slb_shadow_addr) {
359 return H_RESOURCE;
362 if (spapr_cpu->dtl_addr) {
363 return H_RESOURCE;
366 spapr_cpu->vpa_addr = 0;
367 return H_SUCCESS;
370 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
372 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
373 uint32_t size;
375 if (addr == 0) {
376 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
377 return H_HARDWARE;
380 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
381 if (size < 0x8) {
382 return H_PARAMETER;
385 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
386 return H_PARAMETER;
389 if (!spapr_cpu->vpa_addr) {
390 return H_RESOURCE;
393 spapr_cpu->slb_shadow_addr = addr;
394 spapr_cpu->slb_shadow_size = size;
396 return H_SUCCESS;
399 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
401 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
403 spapr_cpu->slb_shadow_addr = 0;
404 spapr_cpu->slb_shadow_size = 0;
405 return H_SUCCESS;
408 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
410 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
411 uint32_t size;
413 if (addr == 0) {
414 hcall_dprintf("Can't cope with DTL at logical 0\n");
415 return H_HARDWARE;
418 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
420 if (size < 48) {
421 return H_PARAMETER;
424 if (!spapr_cpu->vpa_addr) {
425 return H_RESOURCE;
428 spapr_cpu->dtl_addr = addr;
429 spapr_cpu->dtl_size = size;
431 return H_SUCCESS;
434 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
436 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
438 spapr_cpu->dtl_addr = 0;
439 spapr_cpu->dtl_size = 0;
441 return H_SUCCESS;
444 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
445 target_ulong opcode, target_ulong *args)
447 target_ulong flags = args[0];
448 target_ulong procno = args[1];
449 target_ulong vpa = args[2];
450 target_ulong ret = H_PARAMETER;
451 PowerPCCPU *tcpu;
453 tcpu = spapr_find_cpu(procno);
454 if (!tcpu) {
455 return H_PARAMETER;
458 switch (flags) {
459 case FLAGS_REGISTER_VPA:
460 ret = register_vpa(tcpu, vpa);
461 break;
463 case FLAGS_DEREGISTER_VPA:
464 ret = deregister_vpa(tcpu, vpa);
465 break;
467 case FLAGS_REGISTER_SLBSHADOW:
468 ret = register_slb_shadow(tcpu, vpa);
469 break;
471 case FLAGS_DEREGISTER_SLBSHADOW:
472 ret = deregister_slb_shadow(tcpu, vpa);
473 break;
475 case FLAGS_REGISTER_DTL:
476 ret = register_dtl(tcpu, vpa);
477 break;
479 case FLAGS_DEREGISTER_DTL:
480 ret = deregister_dtl(tcpu, vpa);
481 break;
484 return ret;
487 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
488 target_ulong opcode, target_ulong *args)
490 CPUPPCState *env = &cpu->env;
491 CPUState *cs = CPU(cpu);
492 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
494 env->msr |= (1ULL << MSR_EE);
495 hreg_compute_hflags(env);
496 ppc_maybe_interrupt(env);
498 if (spapr_cpu->prod) {
499 spapr_cpu->prod = false;
500 return H_SUCCESS;
503 if (!cpu_has_work(cs)) {
504 cs->halted = 1;
505 cs->exception_index = EXCP_HLT;
506 cs->exit_request = 1;
507 ppc_maybe_interrupt(env);
510 return H_SUCCESS;
514 * Confer to self, aka join. Cede could use the same pattern as well, if
515 * EXCP_HLT can be changed to ECXP_HALTED.
517 static target_ulong h_confer_self(PowerPCCPU *cpu)
519 CPUState *cs = CPU(cpu);
520 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
522 if (spapr_cpu->prod) {
523 spapr_cpu->prod = false;
524 return H_SUCCESS;
526 cs->halted = 1;
527 cs->exception_index = EXCP_HALTED;
528 cs->exit_request = 1;
529 ppc_maybe_interrupt(&cpu->env);
531 return H_SUCCESS;
534 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
535 target_ulong opcode, target_ulong *args)
537 CPUPPCState *env = &cpu->env;
538 CPUState *cs;
539 bool last_unjoined = true;
541 if (env->msr & (1ULL << MSR_EE)) {
542 return H_BAD_MODE;
546 * Must not join the last CPU running. Interestingly, no such restriction
547 * for H_CONFER-to-self, but that is probably not intended to be used
548 * when H_JOIN is available.
550 CPU_FOREACH(cs) {
551 PowerPCCPU *c = POWERPC_CPU(cs);
552 CPUPPCState *e = &c->env;
553 if (c == cpu) {
554 continue;
557 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
558 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
559 last_unjoined = false;
560 break;
563 if (last_unjoined) {
564 return H_CONTINUE;
567 return h_confer_self(cpu);
570 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
571 target_ulong opcode, target_ulong *args)
573 target_long target = args[0];
574 uint32_t dispatch = args[1];
575 CPUState *cs = CPU(cpu);
576 SpaprCpuState *spapr_cpu;
579 * -1 means confer to all other CPUs without dispatch counter check,
580 * otherwise it's a targeted confer.
582 if (target != -1) {
583 PowerPCCPU *target_cpu = spapr_find_cpu(target);
584 uint32_t target_dispatch;
586 if (!target_cpu) {
587 return H_PARAMETER;
591 * target == self is a special case, we wait until prodded, without
592 * dispatch counter check.
594 if (cpu == target_cpu) {
595 return h_confer_self(cpu);
598 spapr_cpu = spapr_cpu_state(target_cpu);
599 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
600 return H_SUCCESS;
603 target_dispatch = ldl_be_phys(cs->as,
604 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
605 if (target_dispatch != dispatch) {
606 return H_SUCCESS;
610 * The targeted confer does not do anything special beyond yielding
611 * the current vCPU, but even this should be better than nothing.
612 * At least for single-threaded tcg, it gives the target a chance to
613 * run before we run again. Multi-threaded tcg does not really do
614 * anything with EXCP_YIELD yet.
618 cs->exception_index = EXCP_YIELD;
619 cs->exit_request = 1;
620 cpu_loop_exit(cs);
622 return H_SUCCESS;
625 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
626 target_ulong opcode, target_ulong *args)
628 target_long target = args[0];
629 PowerPCCPU *tcpu;
630 CPUState *cs;
631 SpaprCpuState *spapr_cpu;
633 tcpu = spapr_find_cpu(target);
634 cs = CPU(tcpu);
635 if (!cs) {
636 return H_PARAMETER;
639 spapr_cpu = spapr_cpu_state(tcpu);
640 spapr_cpu->prod = true;
641 cs->halted = 0;
642 ppc_maybe_interrupt(&cpu->env);
643 qemu_cpu_kick(cs);
645 return H_SUCCESS;
648 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
649 target_ulong opcode, target_ulong *args)
651 target_ulong rtas_r3 = args[0];
652 uint32_t token = rtas_ld(rtas_r3, 0);
653 uint32_t nargs = rtas_ld(rtas_r3, 1);
654 uint32_t nret = rtas_ld(rtas_r3, 2);
656 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
657 nret, rtas_r3 + 12 + 4*nargs);
660 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
661 target_ulong opcode, target_ulong *args)
663 CPUState *cs = CPU(cpu);
664 target_ulong size = args[0];
665 target_ulong addr = args[1];
667 switch (size) {
668 case 1:
669 args[0] = ldub_phys(cs->as, addr);
670 return H_SUCCESS;
671 case 2:
672 args[0] = lduw_phys(cs->as, addr);
673 return H_SUCCESS;
674 case 4:
675 args[0] = ldl_phys(cs->as, addr);
676 return H_SUCCESS;
677 case 8:
678 args[0] = ldq_phys(cs->as, addr);
679 return H_SUCCESS;
681 return H_PARAMETER;
684 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
685 target_ulong opcode, target_ulong *args)
687 CPUState *cs = CPU(cpu);
689 target_ulong size = args[0];
690 target_ulong addr = args[1];
691 target_ulong val = args[2];
693 switch (size) {
694 case 1:
695 stb_phys(cs->as, addr, val);
696 return H_SUCCESS;
697 case 2:
698 stw_phys(cs->as, addr, val);
699 return H_SUCCESS;
700 case 4:
701 stl_phys(cs->as, addr, val);
702 return H_SUCCESS;
703 case 8:
704 stq_phys(cs->as, addr, val);
705 return H_SUCCESS;
707 return H_PARAMETER;
710 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
711 target_ulong opcode, target_ulong *args)
713 CPUState *cs = CPU(cpu);
715 target_ulong dst = args[0]; /* Destination address */
716 target_ulong src = args[1]; /* Source address */
717 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
718 target_ulong count = args[3]; /* Element count */
719 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
720 uint64_t tmp;
721 unsigned int mask = (1 << esize) - 1;
722 int step = 1 << esize;
724 if (count > 0x80000000) {
725 return H_PARAMETER;
728 if ((dst & mask) || (src & mask) || (op > 1)) {
729 return H_PARAMETER;
732 if (dst >= src && dst < (src + (count << esize))) {
733 dst = dst + ((count - 1) << esize);
734 src = src + ((count - 1) << esize);
735 step = -step;
738 while (count--) {
739 switch (esize) {
740 case 0:
741 tmp = ldub_phys(cs->as, src);
742 break;
743 case 1:
744 tmp = lduw_phys(cs->as, src);
745 break;
746 case 2:
747 tmp = ldl_phys(cs->as, src);
748 break;
749 case 3:
750 tmp = ldq_phys(cs->as, src);
751 break;
752 default:
753 return H_PARAMETER;
755 if (op == 1) {
756 tmp = ~tmp;
758 switch (esize) {
759 case 0:
760 stb_phys(cs->as, dst, tmp);
761 break;
762 case 1:
763 stw_phys(cs->as, dst, tmp);
764 break;
765 case 2:
766 stl_phys(cs->as, dst, tmp);
767 break;
768 case 3:
769 stq_phys(cs->as, dst, tmp);
770 break;
772 dst = dst + step;
773 src = src + step;
776 return H_SUCCESS;
779 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
780 target_ulong opcode, target_ulong *args)
782 /* Nothing to do on emulation, KVM will trap this in the kernel */
783 return H_SUCCESS;
786 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
787 target_ulong opcode, target_ulong *args)
789 /* Nothing to do on emulation, KVM will trap this in the kernel */
790 return H_SUCCESS;
793 static target_ulong h_set_mode_resource_set_ciabr(PowerPCCPU *cpu,
794 SpaprMachineState *spapr,
795 target_ulong mflags,
796 target_ulong value1,
797 target_ulong value2)
799 CPUPPCState *env = &cpu->env;
801 assert(tcg_enabled()); /* KVM will have handled this */
803 if (mflags) {
804 return H_UNSUPPORTED_FLAG;
806 if (value2) {
807 return H_P4;
809 if ((value1 & PPC_BITMASK(62, 63)) == 0x3) {
810 return H_P3;
813 ppc_store_ciabr(env, value1);
815 return H_SUCCESS;
818 static target_ulong h_set_mode_resource_set_dawr0(PowerPCCPU *cpu,
819 SpaprMachineState *spapr,
820 target_ulong mflags,
821 target_ulong value1,
822 target_ulong value2)
824 CPUPPCState *env = &cpu->env;
826 assert(tcg_enabled()); /* KVM will have handled this */
828 if (mflags) {
829 return H_UNSUPPORTED_FLAG;
831 if (value2 & PPC_BIT(61)) {
832 return H_P4;
835 ppc_store_dawr0(env, value1);
836 ppc_store_dawrx0(env, value2);
838 return H_SUCCESS;
841 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
842 SpaprMachineState *spapr,
843 target_ulong mflags,
844 target_ulong value1,
845 target_ulong value2)
847 if (value1) {
848 return H_P3;
850 if (value2) {
851 return H_P4;
854 switch (mflags) {
855 case H_SET_MODE_ENDIAN_BIG:
856 spapr_set_all_lpcrs(0, LPCR_ILE);
857 spapr_pci_switch_vga(spapr, true);
858 return H_SUCCESS;
860 case H_SET_MODE_ENDIAN_LITTLE:
861 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
862 spapr_pci_switch_vga(spapr, false);
863 return H_SUCCESS;
866 return H_UNSUPPORTED_FLAG;
869 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
870 SpaprMachineState *spapr,
871 target_ulong mflags,
872 target_ulong value1,
873 target_ulong value2)
875 if (value1) {
876 return H_P3;
879 if (value2) {
880 return H_P4;
884 * AIL-1 is not architected, and AIL-2 is not supported by QEMU spapr.
885 * It is supported for faithful emulation of bare metal systems, but for
886 * compatibility concerns we leave it out of the pseries machine.
888 if (mflags != 0 && mflags != 3) {
889 return H_UNSUPPORTED_FLAG;
892 if (mflags == 3) {
893 if (!spapr_get_cap(spapr, SPAPR_CAP_AIL_MODE_3)) {
894 return H_UNSUPPORTED_FLAG;
898 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
900 return H_SUCCESS;
903 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
904 target_ulong opcode, target_ulong *args)
906 target_ulong resource = args[1];
907 target_ulong ret = H_P2;
909 switch (resource) {
910 case H_SET_MODE_RESOURCE_SET_CIABR:
911 ret = h_set_mode_resource_set_ciabr(cpu, spapr, args[0], args[2],
912 args[3]);
913 break;
914 case H_SET_MODE_RESOURCE_SET_DAWR0:
915 ret = h_set_mode_resource_set_dawr0(cpu, spapr, args[0], args[2],
916 args[3]);
917 break;
918 case H_SET_MODE_RESOURCE_LE:
919 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
920 break;
921 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
922 ret = h_set_mode_resource_addr_trans_mode(cpu, spapr, args[0],
923 args[2], args[3]);
924 break;
927 return ret;
930 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
931 target_ulong opcode, target_ulong *args)
933 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
934 opcode, " (H_CLEAN_SLB)");
935 return H_FUNCTION;
938 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
939 target_ulong opcode, target_ulong *args)
941 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
942 opcode, " (H_INVALIDATE_PID)");
943 return H_FUNCTION;
946 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
947 uint64_t patbe_old, uint64_t patbe_new)
950 * We have 4 Options:
951 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
952 * HASH->RADIX : Free HPT
953 * RADIX->HASH : Allocate HPT
954 * NOTHING->HASH : Allocate HPT
955 * Note: NOTHING implies the case where we said the guest could choose
956 * later and so assumed radix and now it's called H_REG_PROC_TBL
959 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
960 /* We assume RADIX, so this catches all the "Do Nothing" cases */
961 } else if (!(patbe_old & PATE1_GR)) {
962 /* HASH->RADIX : Free HPT */
963 spapr_free_hpt(spapr);
964 } else if (!(patbe_new & PATE1_GR)) {
965 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
966 spapr_setup_hpt(spapr);
968 return;
971 #define FLAGS_MASK 0x01FULL
972 #define FLAG_MODIFY 0x10
973 #define FLAG_REGISTER 0x08
974 #define FLAG_RADIX 0x04
975 #define FLAG_HASH_PROC_TBL 0x02
976 #define FLAG_GTSE 0x01
978 static target_ulong h_register_process_table(PowerPCCPU *cpu,
979 SpaprMachineState *spapr,
980 target_ulong opcode,
981 target_ulong *args)
983 target_ulong flags = args[0];
984 target_ulong proc_tbl = args[1];
985 target_ulong page_size = args[2];
986 target_ulong table_size = args[3];
987 target_ulong update_lpcr = 0;
988 target_ulong table_byte_size;
989 uint64_t cproc;
991 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
992 return H_PARAMETER;
994 if (flags & FLAG_MODIFY) {
995 if (flags & FLAG_REGISTER) {
996 /* Check process table alignment */
997 table_byte_size = 1ULL << (table_size + 12);
998 if (proc_tbl & (table_byte_size - 1)) {
999 qemu_log_mask(LOG_GUEST_ERROR,
1000 "%s: process table not properly aligned: proc_tbl 0x"
1001 TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
1002 __func__, proc_tbl, table_byte_size);
1004 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1005 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1006 return H_P2;
1007 } else if (page_size) {
1008 return H_P3;
1009 } else if (table_size > 24) {
1010 return H_P4;
1012 cproc = PATE1_GR | proc_tbl | table_size;
1013 } else { /* Register new HPT process table */
1014 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1015 /* TODO - Not Supported */
1016 /* Technically caused by flag bits => H_PARAMETER */
1017 return H_PARAMETER;
1018 } else { /* Hash with SLB */
1019 if (proc_tbl >> 38) {
1020 return H_P2;
1021 } else if (page_size & ~0x7) {
1022 return H_P3;
1023 } else if (table_size > 24) {
1024 return H_P4;
1027 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1030 } else { /* Deregister current process table */
1032 * Set to benign value: (current GR) | 0. This allows
1033 * deregistration in KVM to succeed even if the radix bit
1034 * in flags doesn't match the radix bit in the old PATE.
1036 cproc = spapr->patb_entry & PATE1_GR;
1038 } else { /* Maintain current registration */
1039 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1040 /* Technically caused by flag bits => H_PARAMETER */
1041 return H_PARAMETER; /* Existing Process Table Mismatch */
1043 cproc = spapr->patb_entry;
1046 /* Check if we need to setup OR free the hpt */
1047 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1049 spapr->patb_entry = cproc; /* Save new process table */
1051 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1052 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
1053 update_lpcr |= (LPCR_UPRT | LPCR_HR);
1054 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1055 update_lpcr |= LPCR_UPRT;
1056 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
1057 update_lpcr |= LPCR_GTSE;
1059 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1061 if (kvm_enabled()) {
1062 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1063 flags & FLAG_GTSE, cproc);
1065 return H_SUCCESS;
1068 #define H_SIGNAL_SYS_RESET_ALL -1
1069 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1071 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1072 SpaprMachineState *spapr,
1073 target_ulong opcode, target_ulong *args)
1075 target_long target = args[0];
1076 CPUState *cs;
1078 if (target < 0) {
1079 /* Broadcast */
1080 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1081 return H_PARAMETER;
1084 CPU_FOREACH(cs) {
1085 PowerPCCPU *c = POWERPC_CPU(cs);
1087 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1088 if (c == cpu) {
1089 continue;
1092 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1094 return H_SUCCESS;
1096 } else {
1097 /* Unicast */
1098 cs = CPU(spapr_find_cpu(target));
1099 if (cs) {
1100 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1101 return H_SUCCESS;
1103 return H_PARAMETER;
1107 /* Returns either a logical PVR or zero if none was found */
1108 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1109 target_ulong *addr, bool *raw_mode_supported)
1111 bool explicit_match = false; /* Matched the CPU's real PVR */
1112 uint32_t best_compat = 0;
1113 int i;
1116 * We scan the supplied table of PVRs looking for two things
1117 * 1. Is our real CPU PVR in the list?
1118 * 2. What's the "best" listed logical PVR
1120 for (i = 0; i < 512; ++i) {
1121 uint32_t pvr, pvr_mask;
1123 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1124 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1125 *addr += 8;
1127 if (~pvr_mask & pvr) {
1128 break; /* Terminator record */
1131 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1132 explicit_match = true;
1133 } else {
1134 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1135 best_compat = pvr;
1140 *raw_mode_supported = explicit_match;
1142 /* Parsing finished */
1143 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1145 return best_compat;
1148 static
1149 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1150 SpaprMachineState *spapr,
1151 target_ulong vec,
1152 target_ulong fdt_bufsize)
1154 target_ulong ov_table; /* Working address in data buffer */
1155 uint32_t cas_pvr;
1156 SpaprOptionVector *ov1_guest, *ov5_guest;
1157 bool guest_radix;
1158 bool raw_mode_supported = false;
1159 bool guest_xive;
1160 CPUState *cs;
1161 void *fdt;
1162 uint32_t max_compat = spapr->max_compat_pvr;
1164 /* CAS is supposed to be called early when only the boot vCPU is active. */
1165 CPU_FOREACH(cs) {
1166 if (cs == CPU(cpu)) {
1167 continue;
1169 if (!cs->halted) {
1170 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1171 return H_MULTI_THREADS_ACTIVE;
1175 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1176 if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1178 * We couldn't find a suitable compatibility mode, and either
1179 * the guest doesn't support "raw" mode for this CPU, or "raw"
1180 * mode is disabled because a maximum compat mode is set.
1182 error_report("Couldn't negotiate a suitable PVR during CAS");
1183 return H_HARDWARE;
1186 /* Update CPUs */
1187 if (cpu->compat_pvr != cas_pvr) {
1188 Error *local_err = NULL;
1190 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1191 /* We fail to set compat mode (likely because running with KVM PR),
1192 * but maybe we can fallback to raw mode if the guest supports it.
1194 if (!raw_mode_supported) {
1195 error_report_err(local_err);
1196 return H_HARDWARE;
1198 error_free(local_err);
1202 /* For the future use: here @ov_table points to the first option vector */
1203 ov_table = vec;
1205 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1206 if (!ov1_guest) {
1207 warn_report("guest didn't provide option vector 1");
1208 return H_PARAMETER;
1210 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1211 if (!ov5_guest) {
1212 spapr_ovec_cleanup(ov1_guest);
1213 warn_report("guest didn't provide option vector 5");
1214 return H_PARAMETER;
1216 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1217 error_report("guest requested hash and radix MMU, which is invalid.");
1218 exit(EXIT_FAILURE);
1220 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1221 error_report("guest requested an invalid interrupt mode");
1222 exit(EXIT_FAILURE);
1225 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1227 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1230 * HPT resizing is a bit of a special case, because when enabled
1231 * we assume an HPT guest will support it until it says it
1232 * doesn't, instead of assuming it won't support it until it says
1233 * it does. Strictly speaking that approach could break for
1234 * guests which don't make a CAS call, but those are so old we
1235 * don't care about them. Without that assumption we'd have to
1236 * make at least a temporary allocation of an HPT sized for max
1237 * memory, which could be impossibly difficult under KVM HV if
1238 * maxram is large.
1240 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1241 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1243 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1244 error_report(
1245 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1246 exit(1);
1249 if (spapr->htab_shift < maxshift) {
1250 /* Guest doesn't know about HPT resizing, so we
1251 * pre-emptively resize for the maximum permitted RAM. At
1252 * the point this is called, nothing should have been
1253 * entered into the existing HPT */
1254 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1255 push_sregs_to_kvm_pr(spapr);
1259 /* NOTE: there are actually a number of ov5 bits where input from the
1260 * guest is always zero, and the platform/QEMU enables them independently
1261 * of guest input. To model these properly we'd want some sort of mask,
1262 * but since they only currently apply to memory migration as defined
1263 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1264 * to worry about this for now.
1267 /* full range of negotiated ov5 capabilities */
1268 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1269 spapr_ovec_cleanup(ov5_guest);
1271 spapr_check_mmu_mode(guest_radix);
1273 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1274 spapr_ovec_cleanup(ov1_guest);
1277 * Check for NUMA affinity conditions now that we know which NUMA
1278 * affinity the guest will use.
1280 spapr_numa_associativity_check(spapr);
1283 * Ensure the guest asks for an interrupt mode we support;
1284 * otherwise terminate the boot.
1286 if (guest_xive) {
1287 if (!spapr->irq->xive) {
1288 error_report(
1289 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1290 exit(EXIT_FAILURE);
1292 } else {
1293 if (!spapr->irq->xics) {
1294 error_report(
1295 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1296 exit(EXIT_FAILURE);
1300 spapr_irq_update_active_intc(spapr);
1303 * Process all pending hot-plug/unplug requests now. An updated full
1304 * rendered FDT will be returned to the guest.
1306 spapr_drc_reset_all(spapr);
1307 spapr_clear_pending_hotplug_events(spapr);
1310 * If spapr_machine_reset() did not set up a HPT but one is necessary
1311 * (because the guest isn't going to use radix) then set it up here.
1313 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1314 /* legacy hash or new hash: */
1315 spapr_setup_hpt(spapr);
1318 fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1319 g_free(spapr->fdt_blob);
1320 spapr->fdt_size = fdt_totalsize(fdt);
1321 spapr->fdt_initial_size = spapr->fdt_size;
1322 spapr->fdt_blob = fdt;
1325 * Set the machine->fdt pointer again since we just freed
1326 * it above (by freeing spapr->fdt_blob). We set this
1327 * pointer to enable support for the 'dumpdtb' QMP/HMP
1328 * command.
1330 MACHINE(spapr)->fdt = fdt;
1332 return H_SUCCESS;
1335 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1336 SpaprMachineState *spapr,
1337 target_ulong opcode,
1338 target_ulong *args)
1340 target_ulong vec = ppc64_phys_to_real(args[0]);
1341 target_ulong fdt_buf = args[1];
1342 target_ulong fdt_bufsize = args[2];
1343 target_ulong ret;
1344 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1346 if (fdt_bufsize < sizeof(hdr)) {
1347 error_report("SLOF provided insufficient CAS buffer "
1348 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1349 exit(EXIT_FAILURE);
1352 fdt_bufsize -= sizeof(hdr);
1354 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1355 if (ret == H_SUCCESS) {
1356 _FDT((fdt_pack(spapr->fdt_blob)));
1357 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1358 spapr->fdt_initial_size = spapr->fdt_size;
1360 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1361 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1362 spapr->fdt_size);
1363 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1366 return ret;
1369 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1370 CPUState *cs,
1371 target_ulong ovec_addr)
1373 SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1375 target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1376 ovec_addr, FDT_MAX_SIZE);
1379 * This adds stdout and generates phandles for boottime and CAS FDTs.
1380 * It is alright to update the FDT here as do_client_architecture_support()
1381 * does not pack it.
1383 spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1385 return ret;
1388 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1389 SpaprMachineState *spapr,
1390 target_ulong opcode,
1391 target_ulong *args)
1393 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1394 ~H_CPU_CHAR_THR_RECONF_TRIG;
1395 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1396 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1397 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1398 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1399 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1400 SPAPR_CAP_CCF_ASSIST);
1402 switch (safe_cache) {
1403 case SPAPR_CAP_WORKAROUND:
1404 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1405 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1406 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1407 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1408 break;
1409 case SPAPR_CAP_FIXED:
1410 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1411 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1412 break;
1413 default: /* broken */
1414 assert(safe_cache == SPAPR_CAP_BROKEN);
1415 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1416 break;
1419 switch (safe_bounds_check) {
1420 case SPAPR_CAP_WORKAROUND:
1421 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1422 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1423 break;
1424 case SPAPR_CAP_FIXED:
1425 break;
1426 default: /* broken */
1427 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1428 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1429 break;
1432 switch (safe_indirect_branch) {
1433 case SPAPR_CAP_FIXED_NA:
1434 break;
1435 case SPAPR_CAP_FIXED_CCD:
1436 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1437 break;
1438 case SPAPR_CAP_FIXED_IBS:
1439 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1440 break;
1441 case SPAPR_CAP_WORKAROUND:
1442 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1443 if (count_cache_flush_assist) {
1444 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1446 break;
1447 default: /* broken */
1448 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1449 break;
1452 args[0] = characteristics;
1453 args[1] = behaviour;
1454 return H_SUCCESS;
1457 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1458 target_ulong opcode, target_ulong *args)
1460 target_ulong dt = ppc64_phys_to_real(args[0]);
1461 struct fdt_header hdr = { 0 };
1462 unsigned cb;
1463 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1464 void *fdt;
1466 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1467 cb = fdt32_to_cpu(hdr.totalsize);
1469 if (!smc->update_dt_enabled) {
1470 return H_SUCCESS;
1473 /* Check that the fdt did not grow out of proportion */
1474 if (cb > spapr->fdt_initial_size * 2) {
1475 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1476 fdt32_to_cpu(hdr.magic));
1477 return H_PARAMETER;
1480 fdt = g_malloc0(cb);
1481 cpu_physical_memory_read(dt, fdt, cb);
1483 /* Check the fdt consistency */
1484 if (fdt_check_full(fdt, cb)) {
1485 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1486 fdt32_to_cpu(hdr.magic));
1487 return H_PARAMETER;
1490 g_free(spapr->fdt_blob);
1491 spapr->fdt_size = cb;
1492 spapr->fdt_blob = fdt;
1493 trace_spapr_update_dt(cb);
1495 return H_SUCCESS;
1498 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1499 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1500 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1502 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1504 spapr_hcall_fn *slot;
1506 if (opcode <= MAX_HCALL_OPCODE) {
1507 assert((opcode & 0x3) == 0);
1509 slot = &papr_hypercall_table[opcode / 4];
1510 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1511 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1512 assert((opcode & 0x3) == 0);
1514 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1515 } else {
1516 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1518 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1521 assert(!(*slot));
1522 *slot = fn;
1525 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1526 target_ulong *args)
1528 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1530 if ((opcode <= MAX_HCALL_OPCODE)
1531 && ((opcode & 0x3) == 0)) {
1532 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1534 if (fn) {
1535 return fn(cpu, spapr, opcode, args);
1537 } else if ((opcode >= SVM_HCALL_BASE) &&
1538 (opcode <= SVM_HCALL_MAX)) {
1539 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1541 if (fn) {
1542 return fn(cpu, spapr, opcode, args);
1544 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1545 (opcode <= KVMPPC_HCALL_MAX)) {
1546 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1548 if (fn) {
1549 return fn(cpu, spapr, opcode, args);
1553 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1554 opcode);
1555 return H_FUNCTION;
1558 #ifdef CONFIG_TCG
1559 static void hypercall_register_softmmu(void)
1561 /* DO NOTHING */
1563 #else
1564 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1565 target_ulong opcode, target_ulong *args)
1567 g_assert_not_reached();
1570 static void hypercall_register_softmmu(void)
1572 /* hcall-pft */
1573 spapr_register_hypercall(H_ENTER, h_softmmu);
1574 spapr_register_hypercall(H_REMOVE, h_softmmu);
1575 spapr_register_hypercall(H_PROTECT, h_softmmu);
1576 spapr_register_hypercall(H_READ, h_softmmu);
1578 /* hcall-bulk */
1579 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1581 #endif
1583 static void hypercall_register_types(void)
1585 hypercall_register_softmmu();
1587 /* hcall-hpt-resize */
1588 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1589 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1591 /* hcall-splpar */
1592 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1593 spapr_register_hypercall(H_CEDE, h_cede);
1594 spapr_register_hypercall(H_CONFER, h_confer);
1595 spapr_register_hypercall(H_PROD, h_prod);
1597 /* hcall-join */
1598 spapr_register_hypercall(H_JOIN, h_join);
1600 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1602 /* processor register resource access h-calls */
1603 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1604 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1605 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1606 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1607 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1609 /* In Memory Table MMU h-calls */
1610 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1611 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1612 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1614 /* hcall-get-cpu-characteristics */
1615 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1616 h_get_cpu_characteristics);
1618 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differentiate
1619 * here between the "CI" and the "CACHE" variants, they will use whatever
1620 * mapping attributes qemu is using. When using KVM, the kernel will
1621 * enforce the attributes more strongly
1623 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1624 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1625 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1626 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1627 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1628 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1629 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1631 /* qemu/KVM-PPC specific hcalls */
1632 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1634 /* ibm,client-architecture-support support */
1635 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1637 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1639 spapr_register_nested();
1642 type_init(hypercall_register_types)