5 # This document describes all commands currently supported by QMP.
7 # Most of the time their usage is exactly the same as in the user Monitor, this
8 # means that any other document which also describe commands (the manpage,
9 # QEMU's manual, etc) can and should be consulted.
11 # QMP has two types of commands: regular and query commands. Regular commands
12 # usually change the Virtual Machine's state someway, while query commands just
13 # return information. The sections below are divided accordingly.
15 # It's important to observe that all communication examples are formatted in
16 # a reader-friendly way, so that they're easier to understand. However, in real
17 # protocol usage, they're emitted as a single line.
19 # Also, the following notation is used to denote data flow:
23 # | -> data issued by the Client
24 # | <- Server data response
26 # Please, refer to the QMP specification (docs/interop/qmp-spec.txt) for
27 # detailed information on the Server command and response formats.
29 # = Stability Considerations
31 # The current QMP command set (described in this file) may be useful for a
32 # number of use cases, however it's limited and several commands have bad
33 # defined semantics, specially with regard to command completion.
35 # These problems are going to be solved incrementally in the next QEMU releases
36 # and we're going to establish a deprecation policy for badly defined commands.
38 # If you're planning to adopt QMP, please observe the following:
40 # 1. The deprecation policy will take effect and be documented soon, please
41 # check the documentation of each used command as soon as a new release of
44 # 2. DO NOT rely on anything which is not explicit documented
46 # 3. Errors, in special, are not documented. Applications should NOT check
47 # for specific errors classes or data (it's strongly recommended to only
48 # check for the "error" key)
52 { 'pragma': { 'doc-required': true } }
54 # Whitelists to permit QAPI rule violations; think twice before you
57 # Commands allowed to return a non-dictionary:
58 'returns-whitelist': [
59 'human-monitor-command',
61 'query-migrate-cache-size',
65 'name-case-whitelist': [
66 'ACPISlotType', # DIMM, visible through query-acpi-ospm-status
67 'CpuInfoMIPS', # PC, visible through query-cpu
68 'CpuInfoTricore', # PC, visible through query-cpu
69 'QapiErrorClass', # all members, visible through errors
70 'UuidInfo', # UUID, visible through query-uuid
71 'X86CPURegister32', # all members, visible indirectly through qom-get
72 'q_obj_CpuInfo-base' # CPU, visible through query-cpu
75 # Documentation generated with qapi2texi.py is in source order, with
76 # included sub-schemas inserted at the first include directive
77 # (subsequent include directives have no effect). To get a sane and
78 # stable order, it's best to include each sub-schema just once, or
79 # include it first in qapi-schema.json.
81 { 'include': 'qapi/common.json' }
82 { 'include': 'qapi/sockets.json' }
83 { 'include': 'qapi/run-state.json' }
84 { 'include': 'qapi/crypto.json' }
85 { 'include': 'qapi/block.json' }
86 { 'include': 'qapi/char.json' }
87 { 'include': 'qapi/net.json' }
88 { 'include': 'qapi/rocker.json' }
89 { 'include': 'qapi/tpm.json' }
90 { 'include': 'qapi/ui.json' }
91 { 'include': 'qapi/migration.json' }
92 { 'include': 'qapi/transaction.json' }
93 { 'include': 'qapi/trace.json' }
94 { 'include': 'qapi/introspect.json' }
103 # Enable QMP capabilities.
109 # -> { "execute": "qmp_capabilities" }
110 # <- { "return": {} }
112 # Notes: This command is valid exactly when first connecting: it must be
113 # issued before any other command will be accepted, and will fail once the
114 # monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
119 { 'command': 'qmp_capabilities' }
124 # A three-part version number.
126 # @major: The major version number.
128 # @minor: The minor version number.
130 # @micro: The micro version number.
134 { 'struct': 'VersionTriple',
135 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
141 # A description of QEMU's version.
143 # @qemu: The version of QEMU. By current convention, a micro
144 # version of 50 signifies a development branch. A micro version
145 # greater than or equal to 90 signifies a release candidate for
146 # the next minor version. A micro version of less than 50
147 # signifies a stable release.
149 # @package: QEMU will always set this field to an empty string. Downstream
150 # versions of QEMU should set this to a non-empty string. The
151 # exact format depends on the downstream however it highly
152 # recommended that a unique name is used.
156 { 'struct': 'VersionInfo',
157 'data': {'qemu': 'VersionTriple', 'package': 'str'} }
162 # Returns the current version of QEMU.
164 # Returns: A @VersionInfo object describing the current version of QEMU.
170 # -> { "execute": "query-version" }
183 { 'command': 'query-version', 'returns': 'VersionInfo' }
188 # Information about a QMP command
190 # @name: The command name
194 { 'struct': 'CommandInfo', 'data': {'name': 'str'} }
199 # Return a list of supported QMP commands by this server
201 # Returns: A list of @CommandInfo for all supported commands
207 # -> { "execute": "query-commands" }
211 # "name":"query-balloon"
214 # "name":"system_powerdown"
219 # Note: This example has been shortened as the real response is too long.
222 { 'command': 'query-commands', 'returns': ['CommandInfo'] }
227 # Policy for handling lost ticks in timer devices.
229 # @discard: throw away the missed tick(s) and continue with future injection
230 # normally. Guest time may be delayed, unless the OS has explicit
231 # handling of lost ticks
233 # @delay: continue to deliver ticks at the normal rate. Guest time will be
234 # delayed due to the late tick
236 # @merge: merge the missed tick(s) into one tick and inject. Guest time
237 # may be delayed, depending on how the OS reacts to the merging
240 # @slew: deliver ticks at a higher rate to catch up with the missed tick. The
241 # guest time should not be delayed once catchup is complete.
245 { 'enum': 'LostTickPolicy',
246 'data': ['discard', 'delay', 'merge', 'slew' ] }
251 # Allow client connections for VNC, Spice and socket based
252 # character devices to be passed in to QEMU via SCM_RIGHTS.
254 # @protocol: protocol name. Valid names are "vnc", "spice" or the
255 # name of a character device (eg. from -chardev id=XXXX)
257 # @fdname: file descriptor name previously passed via 'getfd' command
259 # @skipauth: whether to skip authentication. Only applies
260 # to "vnc" and "spice" protocols
262 # @tls: whether to perform TLS. Only applies to the "spice"
265 # Returns: nothing on success.
271 # -> { "execute": "add_client", "arguments": { "protocol": "vnc",
272 # "fdname": "myclient" } }
273 # <- { "return": {} }
276 { 'command': 'add_client',
277 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
283 # Guest name information.
285 # @name: The name of the guest
289 { 'struct': 'NameInfo', 'data': {'*name': 'str'} }
294 # Return the name information of a guest.
296 # Returns: @NameInfo of the guest
302 # -> { "execute": "query-name" }
303 # <- { "return": { "name": "qemu-name" } }
306 { 'command': 'query-name', 'returns': 'NameInfo' }
311 # Information about support for KVM acceleration
313 # @enabled: true if KVM acceleration is active
315 # @present: true if KVM acceleration is built into this executable
319 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
324 # Returns information about KVM acceleration
332 # -> { "execute": "query-kvm" }
333 # <- { "return": { "enabled": true, "present": true } }
336 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
341 # Guest UUID information (Universally Unique Identifier).
343 # @UUID: the UUID of the guest
347 # Notes: If no UUID was specified for the guest, a null UUID is returned.
349 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
354 # Query the guest UUID information.
356 # Returns: The @UuidInfo for the guest
362 # -> { "execute": "query-uuid" }
363 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
366 { 'command': 'query-uuid', 'returns': 'UuidInfo' }
371 # Information about a QMP event
373 # @name: The event name
377 { 'struct': 'EventInfo', 'data': {'name': 'str'} }
382 # Return a list of supported QMP events by this server
384 # Returns: A list of @EventInfo for all supported events
390 # -> { "execute": "query-events" }
402 # Note: This example has been shortened as the real response is too long.
405 { 'command': 'query-events', 'returns': ['EventInfo'] }
410 # An enumeration of cpu types that enable additional information during
415 { 'enum': 'CpuInfoArch',
416 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
421 # Information about a virtual CPU
423 # @CPU: the index of the virtual CPU
425 # @current: this only exists for backwards compatibility and should be ignored
427 # @halted: true if the virtual CPU is in the halt state. Halt usually refers
428 # to a processor specific low power mode.
430 # @qom_path: path to the CPU object in the QOM tree (since 2.4)
432 # @thread_id: ID of the underlying host thread
434 # @props: properties describing to which node/socket/core/thread
435 # virtual CPU belongs to, provided if supported by board (since 2.10)
437 # @arch: architecture of the cpu, which determines which additional fields
438 # will be listed (since 2.6)
442 # Notes: @halted is a transient state that changes frequently. By the time the
443 # data is sent to the client, the guest may no longer be halted.
445 { 'union': 'CpuInfo',
446 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
447 'qom_path': 'str', 'thread_id': 'int',
448 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
449 'discriminator': 'arch',
450 'data': { 'x86': 'CpuInfoX86',
451 'sparc': 'CpuInfoSPARC',
453 'mips': 'CpuInfoMIPS',
454 'tricore': 'CpuInfoTricore',
455 'other': 'CpuInfoOther' } }
460 # Additional information about a virtual i386 or x86_64 CPU
462 # @pc: the 64-bit instruction pointer
466 { 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
471 # Additional information about a virtual SPARC CPU
473 # @pc: the PC component of the instruction pointer
475 # @npc: the NPC component of the instruction pointer
479 { 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
484 # Additional information about a virtual PPC CPU
486 # @nip: the instruction pointer
490 { 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
495 # Additional information about a virtual MIPS CPU
497 # @PC: the instruction pointer
501 { 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
506 # Additional information about a virtual Tricore CPU
508 # @PC: the instruction pointer
512 { 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
517 # No additional information is available about the virtual CPU
522 { 'struct': 'CpuInfoOther', 'data': { } }
527 # Returns a list of information about each virtual CPU.
529 # Returns: a list of @CpuInfo for each virtual CPU
535 # -> { "execute": "query-cpus" }
541 # "qom_path":"/machine/unattached/device[0]",
550 # "qom_path":"/machine/unattached/device[2]",
559 { 'command': 'query-cpus', 'returns': ['CpuInfo'] }
564 # Information about an iothread
566 # @id: the identifier of the iothread
568 # @thread-id: ID of the underlying host thread
570 # @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
573 # @poll-grow: how many ns will be added to polling time, 0 means that it's not
574 # configured (since 2.9)
576 # @poll-shrink: how many ns will be removed from polling time, 0 means that
577 # it's not configured (since 2.9)
581 { 'struct': 'IOThreadInfo',
582 'data': {'id': 'str',
584 'poll-max-ns': 'int',
586 'poll-shrink': 'int' } }
591 # Returns a list of information about each iothread.
593 # Note: this list excludes the QEMU main loop thread, which is not declared
594 # using the -object iothread command-line option. It is always the main thread
597 # Returns: a list of @IOThreadInfo for each iothread
603 # -> { "execute": "query-iothreads" }
617 { 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
622 # Information about the guest balloon device.
624 # @actual: the number of bytes the balloon currently contains
629 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
634 # Return information about the balloon device.
636 # Returns: @BalloonInfo on success
638 # If the balloon driver is enabled but not functional because the KVM
639 # kernel module cannot support it, KvmMissingCap
641 # If no balloon device is present, DeviceNotActive
647 # -> { "execute": "query-balloon" }
649 # "actual": 1073741824,
654 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
659 # Emitted when the guest changes the actual BALLOON level. This value is
660 # equivalent to the @actual field return by the 'query-balloon' command
662 # @actual: actual level of the guest memory balloon in bytes
664 # Note: this event is rate-limited.
670 # <- { "event": "BALLOON_CHANGE",
671 # "data": { "actual": 944766976 },
672 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
675 { 'event': 'BALLOON_CHANGE',
676 'data': { 'actual': 'int' } }
681 # A PCI device memory region
683 # @base: the starting address (guest physical)
685 # @limit: the ending address (guest physical)
689 { 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
694 # Information about a PCI device I/O region.
696 # @bar: the index of the Base Address Register for this region
698 # @type: 'io' if the region is a PIO region
699 # 'memory' if the region is a MMIO region
703 # @prefetch: if @type is 'memory', true if the memory is prefetchable
705 # @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
709 { 'struct': 'PciMemoryRegion',
710 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
711 '*prefetch': 'bool', '*mem_type_64': 'bool' } }
716 # Information about a bus of a PCI Bridge device
718 # @number: primary bus interface number. This should be the number of the
719 # bus the device resides on.
721 # @secondary: secondary bus interface number. This is the number of the
722 # main bus for the bridge
724 # @subordinate: This is the highest number bus that resides below the
727 # @io_range: The PIO range for all devices on this bridge
729 # @memory_range: The MMIO range for all devices on this bridge
731 # @prefetchable_range: The range of prefetchable MMIO for all devices on
736 { 'struct': 'PciBusInfo',
737 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
738 'io_range': 'PciMemoryRange',
739 'memory_range': 'PciMemoryRange',
740 'prefetchable_range': 'PciMemoryRange' } }
745 # Information about a PCI Bridge device
747 # @bus: information about the bus the device resides on
749 # @devices: a list of @PciDeviceInfo for each device on this bridge
753 { 'struct': 'PciBridgeInfo',
754 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
759 # Information about the Class of a PCI device
761 # @desc: a string description of the device's class
763 # @class: the class code of the device
767 { 'struct': 'PciDeviceClass',
768 'data': {'*desc': 'str', 'class': 'int'} }
773 # Information about the Id of a PCI device
775 # @device: the PCI device id
777 # @vendor: the PCI vendor id
781 { 'struct': 'PciDeviceId',
782 'data': {'device': 'int', 'vendor': 'int'} }
787 # Information about a PCI device
789 # @bus: the bus number of the device
791 # @slot: the slot the device is located in
793 # @function: the function of the slot used by the device
795 # @class_info: the class of the device
797 # @id: the PCI device id
799 # @irq: if an IRQ is assigned to the device, the IRQ number
801 # @qdev_id: the device name of the PCI device
803 # @pci_bridge: if the device is a PCI bridge, the bridge information
805 # @regions: a list of the PCI I/O regions associated with the device
807 # Notes: the contents of @class_info.desc are not stable and should only be
808 # treated as informational.
812 { 'struct': 'PciDeviceInfo',
813 'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
814 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
815 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
816 'regions': ['PciMemoryRegion']} }
821 # Information about a PCI bus
823 # @bus: the bus index
825 # @devices: a list of devices on this bus
829 { 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
834 # Return information about the PCI bus topology of the guest.
836 # Returns: a list of @PciInfo for each PCI bus. Each bus is
837 # represented by a json-object, which has a key with a json-array of
838 # all PCI devices attached to it. Each device is represented by a
845 # -> { "execute": "query-pci" }
856 # "desc": "Host bridge"
872 # "desc": "ISA bridge"
888 # "desc": "IDE controller"
910 # "desc": "VGA controller"
920 # "mem_type_64": false,
923 # "address": 4026531840,
928 # "mem_type_64": false,
931 # "address": 4060086272,
936 # "mem_type_64": false,
951 # "desc": "RAM controller"
972 # Note: This example has been shortened as the real response is too long.
975 { 'command': 'query-pci', 'returns': ['PciInfo'] }
980 # This command will cause the QEMU process to exit gracefully. While every
981 # attempt is made to send the QMP response before terminating, this is not
982 # guaranteed. When using this interface, a premature EOF would not be
989 # -> { "execute": "quit" }
990 # <- { "return": {} }
992 { 'command': 'quit' }
997 # Stop all guest VCPU execution.
1001 # Notes: This function will succeed even if the guest is already in the stopped
1002 # state. In "inmigrate" state, it will ensure that the guest
1003 # remains paused once migration finishes, as if the -S option was
1004 # passed on the command line.
1008 # -> { "execute": "stop" }
1009 # <- { "return": {} }
1012 { 'command': 'stop' }
1017 # Performs a hard reset of a guest.
1023 # -> { "execute": "system_reset" }
1024 # <- { "return": {} }
1027 { 'command': 'system_reset' }
1030 # @system_powerdown:
1032 # Requests that a guest perform a powerdown operation.
1036 # Notes: A guest may or may not respond to this command. This command
1037 # returning does not indicate that a guest has accepted the request or
1038 # that it has shut down. Many guests will respond to this command by
1039 # prompting the user in some way.
1042 # -> { "execute": "system_powerdown" }
1043 # <- { "return": {} }
1046 { 'command': 'system_powerdown' }
1051 # This command is a nop that is only provided for the purposes of compatibility.
1055 # Notes: Do not use this command.
1057 { 'command': 'cpu', 'data': {'index': 'int'} }
1062 # Adds CPU with specified ID
1064 # @id: ID of CPU to be created, valid values [0..max_cpus)
1066 # Returns: Nothing on success
1072 # -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1073 # <- { "return": {} }
1076 { 'command': 'cpu-add', 'data': {'id': 'int'} }
1081 # Save a portion of guest memory to a file.
1083 # @val: the virtual address of the guest to start from
1085 # @size: the size of memory region to save
1087 # @filename: the file to save the memory to as binary data
1089 # @cpu-index: the index of the virtual CPU to use for translating the
1090 # virtual address (defaults to CPU 0)
1092 # Returns: Nothing on success
1096 # Notes: Errors were not reliably returned until 1.1
1100 # -> { "execute": "memsave",
1101 # "arguments": { "val": 10,
1103 # "filename": "/tmp/virtual-mem-dump" } }
1104 # <- { "return": {} }
1107 { 'command': 'memsave',
1108 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1113 # Save a portion of guest physical memory to a file.
1115 # @val: the physical address of the guest to start from
1117 # @size: the size of memory region to save
1119 # @filename: the file to save the memory to as binary data
1121 # Returns: Nothing on success
1125 # Notes: Errors were not reliably returned until 1.1
1129 # -> { "execute": "pmemsave",
1130 # "arguments": { "val": 10,
1132 # "filename": "/tmp/physical-mem-dump" } }
1133 # <- { "return": {} }
1136 { 'command': 'pmemsave',
1137 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1142 # Resume guest VCPU execution.
1146 # Returns: If successful, nothing
1148 # Notes: This command will succeed if the guest is currently running. It
1149 # will also succeed if the guest is in the "inmigrate" state; in
1150 # this case, the effect of the command is to make sure the guest
1151 # starts once migration finishes, removing the effect of the -S
1152 # command line option if it was passed.
1156 # -> { "execute": "cont" }
1157 # <- { "return": {} }
1160 { 'command': 'cont' }
1165 # Wakeup guest from suspend. Does nothing in case the guest isn't suspended.
1173 # -> { "execute": "system_wakeup" }
1174 # <- { "return": {} }
1177 { 'command': 'system_wakeup' }
1182 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1183 # The command fails when the guest doesn't support injecting.
1185 # Returns: If successful, nothing
1189 # Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1193 # -> { "execute": "inject-nmi" }
1194 # <- { "return": {} }
1197 { 'command': 'inject-nmi' }
1202 # Request the balloon driver to change its balloon size.
1204 # @value: the target size of the balloon in bytes
1206 # Returns: Nothing on success
1207 # If the balloon driver is enabled but not functional because the KVM
1208 # kernel module cannot support it, KvmMissingCap
1209 # If no balloon device is present, DeviceNotActive
1211 # Notes: This command just issues a request to the guest. When it returns,
1212 # the balloon size may not have changed. A guest can change the balloon
1213 # size independent of this command.
1219 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1220 # <- { "return": {} }
1223 { 'command': 'balloon', 'data': {'value': 'int'} }
1226 # @human-monitor-command:
1228 # Execute a command on the human monitor and return the output.
1230 # @command-line: the command to execute in the human monitor
1232 # @cpu-index: The CPU to use for commands that require an implicit CPU
1234 # Returns: the output of the command as a string
1238 # Notes: This command only exists as a stop-gap. Its use is highly
1239 # discouraged. The semantics of this command are not
1240 # guaranteed: this means that command names, arguments and
1241 # responses can change or be removed at ANY time. Applications
1242 # that rely on long term stability guarantees should NOT
1245 # Known limitations:
1247 # * This command is stateless, this means that commands that depend
1248 # on state information (such as getfd) might not work
1250 # * Commands that prompt the user for data don't currently work
1254 # -> { "execute": "human-monitor-command",
1255 # "arguments": { "command-line": "info kvm" } }
1256 # <- { "return": "kvm support: enabled\r\n" }
1259 { 'command': 'human-monitor-command',
1260 'data': {'command-line': 'str', '*cpu-index': 'int'},
1264 # @ObjectPropertyInfo:
1266 # @name: the name of the property
1268 # @type: the type of the property. This will typically come in one of four
1271 # 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1272 # These types are mapped to the appropriate JSON type.
1274 # 2) A child type in the form 'child<subtype>' where subtype is a qdev
1275 # device type name. Child properties create the composition tree.
1277 # 3) A link type in the form 'link<subtype>' where subtype is a qdev
1278 # device type name. Link properties form the device model graph.
1282 { 'struct': 'ObjectPropertyInfo',
1283 'data': { 'name': 'str', 'type': 'str' } }
1288 # This command will list any properties of a object given a path in the object
1291 # @path: the path within the object model. See @qom-get for a description of
1294 # Returns: a list of @ObjectPropertyInfo that describe the properties of the
1299 { 'command': 'qom-list',
1300 'data': { 'path': 'str' },
1301 'returns': [ 'ObjectPropertyInfo' ] }
1306 # This command will get a property from a object model path and return the
1309 # @path: The path within the object model. There are two forms of supported
1310 # paths--absolute and partial paths.
1312 # Absolute paths are derived from the root object and can follow child<>
1313 # or link<> properties. Since they can follow link<> properties, they
1314 # can be arbitrarily long. Absolute paths look like absolute filenames
1315 # and are prefixed with a leading slash.
1317 # Partial paths look like relative filenames. They do not begin
1318 # with a prefix. The matching rules for partial paths are subtle but
1319 # designed to make specifying objects easy. At each level of the
1320 # composition tree, the partial path is matched as an absolute path.
1321 # The first match is not returned. At least two matches are searched
1322 # for. A successful result is only returned if only one match is
1323 # found. If more than one match is found, a flag is return to
1324 # indicate that the match was ambiguous.
1326 # @property: The property name to read
1328 # Returns: The property value. The type depends on the property
1329 # type. child<> and link<> properties are returned as #str
1330 # pathnames. All integer property types (u8, u16, etc) are
1335 { 'command': 'qom-get',
1336 'data': { 'path': 'str', 'property': 'str' },
1342 # This command will set a property from a object model path.
1344 # @path: see @qom-get for a description of this parameter
1346 # @property: the property name to set
1348 # @value: a value who's type is appropriate for the property type. See @qom-get
1349 # for a description of type mapping.
1353 { 'command': 'qom-set',
1354 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1359 # This command is multiple commands multiplexed together.
1361 # @device: This is normally the name of a block device but it may also be 'vnc'.
1362 # when it's 'vnc', then sub command depends on @target
1364 # @target: If @device is a block device, then this is the new filename.
1365 # If @device is 'vnc', then if the value 'password' selects the vnc
1366 # change password command. Otherwise, this specifies a new server URI
1367 # address to listen to for VNC connections.
1369 # @arg: If @device is a block device, then this is an optional format to open
1371 # If @device is 'vnc' and @target is 'password', this is the new VNC
1372 # password to set. See change-vnc-password for additional notes.
1374 # Returns: Nothing on success.
1375 # If @device is not a valid block device, DeviceNotFound
1377 # Notes: This interface is deprecated, and it is strongly recommended that you
1378 # avoid using it. For changing block devices, use
1379 # blockdev-change-medium; for changing VNC parameters, use
1380 # change-vnc-password.
1386 # 1. Change a removable medium
1388 # -> { "execute": "change",
1389 # "arguments": { "device": "ide1-cd0",
1390 # "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1391 # <- { "return": {} }
1393 # 2. Change VNC password
1395 # -> { "execute": "change",
1396 # "arguments": { "device": "vnc", "target": "password",
1397 # "arg": "foobar1" } }
1398 # <- { "return": {} }
1401 { 'command': 'change',
1402 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1407 # This structure describes a search result from @qom-list-types
1409 # @name: the type name found in the search
1411 # @abstract: the type is abstract and can't be directly instantiated.
1412 # Omitted if false. (since 2.10)
1414 # @parent: Name of parent type, if any (since 2.10)
1418 { 'struct': 'ObjectTypeInfo',
1419 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1424 # This command will return a list of types given search parameters
1426 # @implements: if specified, only return types that implement this type name
1428 # @abstract: if true, include abstract types in the results
1430 # Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1434 { 'command': 'qom-list-types',
1435 'data': { '*implements': 'str', '*abstract': 'bool' },
1436 'returns': [ 'ObjectTypeInfo' ] }
1439 # @DevicePropertyInfo:
1441 # Information about device properties.
1443 # @name: the name of the property
1444 # @type: the typename of the property
1445 # @description: if specified, the description of the property.
1450 { 'struct': 'DevicePropertyInfo',
1451 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1454 # @device-list-properties:
1456 # List properties associated with a device.
1458 # @typename: the type name of a device
1460 # Returns: a list of DevicePropertyInfo describing a devices properties
1464 { 'command': 'device-list-properties',
1465 'data': { 'typename': 'str'},
1466 'returns': [ 'DevicePropertyInfo' ] }
1469 # @xen-set-global-dirty-log:
1471 # Enable or disable the global dirty log mode.
1473 # @enable: true to enable, false to disable.
1481 # -> { "execute": "xen-set-global-dirty-log",
1482 # "arguments": { "enable": true } }
1483 # <- { "return": {} }
1486 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1491 # @driver: the name of the new device's driver
1493 # @bus: the device's parent bus (device tree path)
1495 # @id: the device's ID, must be unique
1497 # Additional arguments depend on the type.
1502 # 1. For detailed information about this command, please refer to the
1503 # 'docs/qdev-device-use.txt' file.
1505 # 2. It's possible to list device properties by running QEMU with the
1506 # "-device DEVICE,help" command-line argument, where DEVICE is the
1511 # -> { "execute": "device_add",
1512 # "arguments": { "driver": "e1000", "id": "net1",
1514 # "mac": "52:54:00:12:34:56" } }
1515 # <- { "return": {} }
1517 # TODO: This command effectively bypasses QAPI completely due to its
1518 # "additional arguments" business. It shouldn't have been added to
1519 # the schema in this form. It should be qapified properly, or
1520 # replaced by a properly qapified command.
1524 { 'command': 'device_add',
1525 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1526 'gen': false } # so we can get the additional arguments
1531 # Remove a device from a guest
1533 # @id: the device's ID or QOM path
1535 # Returns: Nothing on success
1536 # If @id is not a valid device, DeviceNotFound
1538 # Notes: When this command completes, the device may not be removed from the
1539 # guest. Hot removal is an operation that requires guest cooperation.
1540 # This command merely requests that the guest begin the hot removal
1541 # process. Completion of the device removal process is signaled with a
1542 # DEVICE_DELETED event. Guest reset will automatically complete removal
1549 # -> { "execute": "device_del",
1550 # "arguments": { "id": "net1" } }
1551 # <- { "return": {} }
1553 # -> { "execute": "device_del",
1554 # "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1555 # <- { "return": {} }
1558 { 'command': 'device_del', 'data': {'id': 'str'} }
1563 # Emitted whenever the device removal completion is acknowledged by the guest.
1564 # At this point, it's safe to reuse the specified device ID. Device removal can
1565 # be initiated by the guest or by HMP/QMP commands.
1567 # @device: device name
1569 # @path: device path
1575 # <- { "event": "DEVICE_DELETED",
1576 # "data": { "device": "virtio-net-pci-0",
1577 # "path": "/machine/peripheral/virtio-net-pci-0" },
1578 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1581 { 'event': 'DEVICE_DELETED',
1582 'data': { '*device': 'str', 'path': 'str' } }
1585 # @DumpGuestMemoryFormat:
1587 # An enumeration of guest-memory-dump's format.
1591 # @kdump-zlib: kdump-compressed format with zlib-compressed
1593 # @kdump-lzo: kdump-compressed format with lzo-compressed
1595 # @kdump-snappy: kdump-compressed format with snappy-compressed
1599 { 'enum': 'DumpGuestMemoryFormat',
1600 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1603 # @dump-guest-memory:
1605 # Dump guest's memory to vmcore. It is a synchronous operation that can take
1606 # very long depending on the amount of guest memory.
1608 # @paging: if true, do paging to get guest's memory mapping. This allows
1609 # using gdb to process the core file.
1611 # IMPORTANT: this option can make QEMU allocate several gigabytes
1612 # of RAM. This can happen for a large guest, or a
1613 # malicious guest pretending to be large.
1615 # Also, paging=true has the following limitations:
1617 # 1. The guest may be in a catastrophic state or can have corrupted
1618 # memory, which cannot be trusted
1619 # 2. The guest can be in real-mode even if paging is enabled. For
1620 # example, the guest uses ACPI to sleep, and ACPI sleep state
1622 # 3. Currently only supported on i386 and x86_64.
1624 # @protocol: the filename or file descriptor of the vmcore. The supported
1627 # 1. file: the protocol starts with "file:", and the following
1628 # string is the file's path.
1629 # 2. fd: the protocol starts with "fd:", and the following string
1632 # @detach: if true, QMP will return immediately rather than
1633 # waiting for the dump to finish. The user can track progress
1634 # using "query-dump". (since 2.6).
1636 # @begin: if specified, the starting physical address.
1638 # @length: if specified, the memory size, in bytes. If you don't
1639 # want to dump all guest's memory, please specify the start @begin
1642 # @format: if specified, the format of guest memory dump. But non-elf
1643 # format is conflict with paging and filter, ie. @paging, @begin and
1644 # @length is not allowed to be specified with non-elf @format at the
1645 # same time (since 2.0)
1647 # Note: All boolean arguments default to false
1649 # Returns: nothing on success
1655 # -> { "execute": "dump-guest-memory",
1656 # "arguments": { "protocol": "fd:dump" } }
1657 # <- { "return": {} }
1660 { 'command': 'dump-guest-memory',
1661 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1662 '*begin': 'int', '*length': 'int',
1663 '*format': 'DumpGuestMemoryFormat'} }
1668 # Describe the status of a long-running background guest memory dump.
1670 # @none: no dump-guest-memory has started yet.
1672 # @active: there is one dump running in background.
1674 # @completed: the last dump has finished successfully.
1676 # @failed: the last dump has failed.
1680 { 'enum': 'DumpStatus',
1681 'data': [ 'none', 'active', 'completed', 'failed' ] }
1686 # The result format for 'query-dump'.
1688 # @status: enum of @DumpStatus, which shows current dump status
1690 # @completed: bytes written in latest dump (uncompressed)
1692 # @total: total bytes to be written in latest dump (uncompressed)
1696 { 'struct': 'DumpQueryResult',
1697 'data': { 'status': 'DumpStatus',
1704 # Query latest dump status.
1706 # Returns: A @DumpStatus object showing the dump status.
1712 # -> { "execute": "query-dump" }
1713 # <- { "return": { "status": "active", "completed": 1024000,
1714 # "total": 2048000 } }
1717 { 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1722 # Emitted when background dump has completed
1724 # @result: DumpQueryResult type described in qapi-schema.json.
1726 # @error: human-readable error string that provides
1727 # hint on why dump failed. Only presents on failure. The
1728 # user should not try to interpret the error string.
1734 # { "event": "DUMP_COMPLETED",
1735 # "data": {"result": {"total": 1090650112, "status": "completed",
1736 # "completed": 1090650112} } }
1739 { 'event': 'DUMP_COMPLETED' ,
1740 'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1743 # @DumpGuestMemoryCapability:
1745 # A list of the available formats for dump-guest-memory
1749 { 'struct': 'DumpGuestMemoryCapability',
1751 'formats': ['DumpGuestMemoryFormat'] } }
1754 # @query-dump-guest-memory-capability:
1756 # Returns the available formats for dump-guest-memory
1758 # Returns: A @DumpGuestMemoryCapability object listing available formats for
1765 # -> { "execute": "query-dump-guest-memory-capability" }
1766 # <- { "return": { "formats":
1767 # ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1770 { 'command': 'query-dump-guest-memory-capability',
1771 'returns': 'DumpGuestMemoryCapability' }
1776 # Dump guest's storage keys
1778 # @filename: the path to the file to dump to
1780 # This command is only supported on s390 architecture.
1786 # -> { "execute": "dump-skeys",
1787 # "arguments": { "filename": "/tmp/skeys" } }
1788 # <- { "return": {} }
1791 { 'command': 'dump-skeys',
1792 'data': { 'filename': 'str' } }
1797 # Create a QOM object.
1799 # @qom-type: the class name for the object to be created
1801 # @id: the name of the new object
1803 # @props: a dictionary of properties to be passed to the backend
1805 # Returns: Nothing on success
1806 # Error if @qom-type is not a valid class name
1812 # -> { "execute": "object-add",
1813 # "arguments": { "qom-type": "rng-random", "id": "rng1",
1814 # "props": { "filename": "/dev/hwrng" } } }
1815 # <- { "return": {} }
1818 { 'command': 'object-add',
1819 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1824 # Remove a QOM object.
1826 # @id: the name of the QOM object to remove
1828 # Returns: Nothing on success
1829 # Error if @id is not a valid id for a QOM object
1835 # -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1836 # <- { "return": {} }
1839 { 'command': 'object-del', 'data': {'id': 'str'} }
1844 # Receive a file descriptor via SCM rights and assign it a name
1846 # @fdname: file descriptor name
1848 # Returns: Nothing on success
1852 # Notes: If @fdname already exists, the file descriptor assigned to
1853 # it will be closed and replaced by the received file
1856 # The 'closefd' command can be used to explicitly close the
1857 # file descriptor when it is no longer needed.
1861 # -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1862 # <- { "return": {} }
1865 { 'command': 'getfd', 'data': {'fdname': 'str'} }
1870 # Close a file descriptor previously passed via SCM rights
1872 # @fdname: file descriptor name
1874 # Returns: Nothing on success
1880 # -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1881 # <- { "return": {} }
1884 { 'command': 'closefd', 'data': {'fdname': 'str'} }
1889 # Information describing a machine.
1891 # @name: the name of the machine
1893 # @alias: an alias for the machine name
1895 # @is-default: whether the machine is default
1897 # @cpu-max: maximum number of CPUs supported by the machine type
1900 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1904 { 'struct': 'MachineInfo',
1905 'data': { 'name': 'str', '*alias': 'str',
1906 '*is-default': 'bool', 'cpu-max': 'int',
1907 'hotpluggable-cpus': 'bool'} }
1912 # Return a list of supported machines
1914 # Returns: a list of MachineInfo
1918 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
1921 # @CpuDefinitionInfo:
1923 # Virtual CPU definition.
1925 # @name: the name of the CPU definition
1927 # @migration-safe: whether a CPU definition can be safely used for
1928 # migration in combination with a QEMU compatibility machine
1929 # when migrating between different QMU versions and between
1930 # hosts with different sets of (hardware or software)
1931 # capabilities. If not provided, information is not available
1932 # and callers should not assume the CPU definition to be
1933 # migration-safe. (since 2.8)
1935 # @static: whether a CPU definition is static and will not change depending on
1936 # QEMU version, machine type, machine options and accelerator options.
1937 # A static model is always migration-safe. (since 2.8)
1939 # @unavailable-features: List of properties that prevent
1940 # the CPU model from running in the current
1942 # @typename: Type name that can be used as argument to @device-list-properties,
1943 # to introspect properties configurable using -cpu or -global.
1946 # @unavailable-features is a list of QOM property names that
1947 # represent CPU model attributes that prevent the CPU from running.
1948 # If the QOM property is read-only, that means there's no known
1949 # way to make the CPU model run in the current host. Implementations
1950 # that choose not to provide specific information return the
1951 # property name "type".
1952 # If the property is read-write, it means that it MAY be possible
1953 # to run the CPU model in the current host if that property is
1954 # changed. Management software can use it as hints to suggest or
1955 # choose an alternative for the user, or just to generate meaningful
1956 # error messages explaining why the CPU model can't be used.
1957 # If @unavailable-features is an empty list, the CPU model is
1958 # runnable using the current host and machine-type.
1959 # If @unavailable-features is not present, runnability
1960 # information for the CPU is not available.
1964 { 'struct': 'CpuDefinitionInfo',
1965 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
1966 '*unavailable-features': [ 'str' ], 'typename': 'str' } }
1969 # @query-cpu-definitions:
1971 # Return a list of supported virtual CPU definitions
1973 # Returns: a list of CpuDefInfo
1977 { 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
1982 # Virtual CPU model.
1984 # A CPU model consists of the name of a CPU definition, to which
1985 # delta changes are applied (e.g. features added/removed). Most magic values
1986 # that an architecture might require should be hidden behind the name.
1987 # However, if required, architectures can expose relevant properties.
1989 # @name: the name of the CPU definition the model is based on
1990 # @props: a dictionary of QOM properties to be applied
1994 { 'struct': 'CpuModelInfo',
1995 'data': { 'name': 'str',
1999 # @CpuModelExpansionType:
2001 # An enumeration of CPU model expansion types.
2003 # @static: Expand to a static CPU model, a combination of a static base
2004 # model name and property delta changes. As the static base model will
2005 # never change, the expanded CPU model will be the same, independant of
2006 # independent of QEMU version, machine type, machine options, and
2007 # accelerator options. Therefore, the resulting model can be used by
2008 # tooling without having to specify a compatibility machine - e.g. when
2009 # displaying the "host" model. static CPU models are migration-safe.
2011 # @full: Expand all properties. The produced model is not guaranteed to be
2012 # migration-safe, but allows tooling to get an insight and work with
2015 # Note: When a non-migration-safe CPU model is expanded in static mode, some
2016 # features enabled by the CPU model may be omitted, because they can't be
2017 # implemented by a static CPU model definition (e.g. cache info passthrough and
2018 # PMU passthrough in x86). If you need an accurate representation of the
2019 # features enabled by a non-migration-safe CPU model, use @full. If you need a
2020 # static representation that will keep ABI compatibility even when changing QEMU
2021 # version or machine-type, use @static (but keep in mind that some features may
2026 { 'enum': 'CpuModelExpansionType',
2027 'data': [ 'static', 'full' ] }
2031 # @CpuModelExpansionInfo:
2033 # The result of a cpu model expansion.
2035 # @model: the expanded CpuModelInfo.
2039 { 'struct': 'CpuModelExpansionInfo',
2040 'data': { 'model': 'CpuModelInfo' } }
2044 # @query-cpu-model-expansion:
2046 # Expands a given CPU model (or a combination of CPU model + additional options)
2047 # to different granularities, allowing tooling to get an understanding what a
2048 # specific CPU model looks like in QEMU under a certain configuration.
2050 # This interface can be used to query the "host" CPU model.
2052 # The data returned by this command may be affected by:
2054 # * QEMU version: CPU models may look different depending on the QEMU version.
2055 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2056 # * machine-type: CPU model may look different depending on the machine-type.
2057 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2058 # * machine options (including accelerator): in some architectures, CPU models
2059 # may look different depending on machine and accelerator options. (Except for
2060 # CPU models reported as "static" in query-cpu-definitions.)
2061 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2062 # global properties may affect expansion of CPU models. Using
2063 # query-cpu-model-expansion while using these is not advised.
2065 # Some architectures may not support all expansion types. s390x supports
2066 # "full" and "static".
2068 # Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2069 # not supported, if the model cannot be expanded, if the model contains
2070 # an unknown CPU definition name, unknown properties or properties
2071 # with a wrong type. Also returns an error if an expansion type is
2076 { 'command': 'query-cpu-model-expansion',
2077 'data': { 'type': 'CpuModelExpansionType',
2078 'model': 'CpuModelInfo' },
2079 'returns': 'CpuModelExpansionInfo' }
2082 # @CpuModelCompareResult:
2084 # An enumeration of CPU model comparation results. The result is usually
2085 # calculated using e.g. CPU features or CPU generations.
2087 # @incompatible: If model A is incompatible to model B, model A is not
2088 # guaranteed to run where model B runs and the other way around.
2090 # @identical: If model A is identical to model B, model A is guaranteed to run
2091 # where model B runs and the other way around.
2093 # @superset: If model A is a superset of model B, model B is guaranteed to run
2094 # where model A runs. There are no guarantees about the other way.
2096 # @subset: If model A is a subset of model B, model A is guaranteed to run
2097 # where model B runs. There are no guarantees about the other way.
2101 { 'enum': 'CpuModelCompareResult',
2102 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2105 # @CpuModelCompareInfo:
2107 # The result of a CPU model comparison.
2109 # @result: The result of the compare operation.
2110 # @responsible-properties: List of properties that led to the comparison result
2111 # not being identical.
2113 # @responsible-properties is a list of QOM property names that led to
2114 # both CPUs not being detected as identical. For identical models, this
2116 # If a QOM property is read-only, that means there's no known way to make the
2117 # CPU models identical. If the special property name "type" is included, the
2118 # models are by definition not identical and cannot be made identical.
2122 { 'struct': 'CpuModelCompareInfo',
2123 'data': {'result': 'CpuModelCompareResult',
2124 'responsible-properties': ['str']
2129 # @query-cpu-model-comparison:
2131 # Compares two CPU models, returning how they compare in a specific
2132 # configuration. The results indicates how both models compare regarding
2133 # runnability. This result can be used by tooling to make decisions if a
2134 # certain CPU model will run in a certain configuration or if a compatible
2135 # CPU model has to be created by baselining.
2137 # Usually, a CPU model is compared against the maximum possible CPU model
2138 # of a certain configuration (e.g. the "host" model for KVM). If that CPU
2139 # model is identical or a subset, it will run in that configuration.
2141 # The result returned by this command may be affected by:
2143 # * QEMU version: CPU models may look different depending on the QEMU version.
2144 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2145 # * machine-type: CPU model may look different depending on the machine-type.
2146 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2147 # * machine options (including accelerator): in some architectures, CPU models
2148 # may look different depending on machine and accelerator options. (Except for
2149 # CPU models reported as "static" in query-cpu-definitions.)
2150 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2151 # global properties may affect expansion of CPU models. Using
2152 # query-cpu-model-expansion while using these is not advised.
2154 # Some architectures may not support comparing CPU models. s390x supports
2155 # comparing CPU models.
2157 # Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2158 # not supported, if a model cannot be used, if a model contains
2159 # an unknown cpu definition name, unknown properties or properties
2164 { 'command': 'query-cpu-model-comparison',
2165 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2166 'returns': 'CpuModelCompareInfo' }
2169 # @CpuModelBaselineInfo:
2171 # The result of a CPU model baseline.
2173 # @model: the baselined CpuModelInfo.
2177 { 'struct': 'CpuModelBaselineInfo',
2178 'data': { 'model': 'CpuModelInfo' } }
2181 # @query-cpu-model-baseline:
2183 # Baseline two CPU models, creating a compatible third model. The created
2184 # model will always be a static, migration-safe CPU model (see "static"
2185 # CPU model expansion for details).
2187 # This interface can be used by tooling to create a compatible CPU model out
2188 # two CPU models. The created CPU model will be identical to or a subset of
2189 # both CPU models when comparing them. Therefore, the created CPU model is
2190 # guaranteed to run where the given CPU models run.
2192 # The result returned by this command may be affected by:
2194 # * QEMU version: CPU models may look different depending on the QEMU version.
2195 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2196 # * machine-type: CPU model may look different depending on the machine-type.
2197 # (Except for CPU models reported as "static" in query-cpu-definitions.)
2198 # * machine options (including accelerator): in some architectures, CPU models
2199 # may look different depending on machine and accelerator options. (Except for
2200 # CPU models reported as "static" in query-cpu-definitions.)
2201 # * "-cpu" arguments and global properties: arguments to the -cpu option and
2202 # global properties may affect expansion of CPU models. Using
2203 # query-cpu-model-expansion while using these is not advised.
2205 # Some architectures may not support baselining CPU models. s390x supports
2206 # baselining CPU models.
2208 # Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2209 # not supported, if a model cannot be used, if a model contains
2210 # an unknown cpu definition name, unknown properties or properties
2215 { 'command': 'query-cpu-model-baseline',
2216 'data': { 'modela': 'CpuModelInfo',
2217 'modelb': 'CpuModelInfo' },
2218 'returns': 'CpuModelBaselineInfo' }
2223 # Information about a file descriptor that was added to an fd set.
2225 # @fdset-id: The ID of the fd set that @fd was added to.
2227 # @fd: The file descriptor that was received via SCM rights and
2228 # added to the fd set.
2232 { 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2237 # Add a file descriptor, that was passed via SCM rights, to an fd set.
2239 # @fdset-id: The ID of the fd set to add the file descriptor to.
2241 # @opaque: A free-form string that can be used to describe the fd.
2243 # Returns: @AddfdInfo on success
2245 # If file descriptor was not received, FdNotSupplied
2247 # If @fdset-id is a negative value, InvalidParameterValue
2249 # Notes: The list of fd sets is shared by all monitor connections.
2251 # If @fdset-id is not specified, a new fd set will be created.
2257 # -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2258 # <- { "return": { "fdset-id": 1, "fd": 3 } }
2261 { 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2262 'returns': 'AddfdInfo' }
2267 # Remove a file descriptor from an fd set.
2269 # @fdset-id: The ID of the fd set that the file descriptor belongs to.
2271 # @fd: The file descriptor that is to be removed.
2273 # Returns: Nothing on success
2274 # If @fdset-id or @fd is not found, FdNotFound
2278 # Notes: The list of fd sets is shared by all monitor connections.
2280 # If @fd is not specified, all file descriptors in @fdset-id
2285 # -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2286 # <- { "return": {} }
2289 { 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2294 # Information about a file descriptor that belongs to an fd set.
2296 # @fd: The file descriptor value.
2298 # @opaque: A free-form string that can be used to describe the fd.
2302 { 'struct': 'FdsetFdInfo',
2303 'data': {'fd': 'int', '*opaque': 'str'} }
2308 # Information about an fd set.
2310 # @fdset-id: The ID of the fd set.
2312 # @fds: A list of file descriptors that belong to this fd set.
2316 { 'struct': 'FdsetInfo',
2317 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2322 # Return information describing all fd sets.
2324 # Returns: A list of @FdsetInfo
2328 # Note: The list of fd sets is shared by all monitor connections.
2332 # -> { "execute": "query-fdsets" }
2338 # "opaque": "rdonly:/path/to/file"
2342 # "opaque": "rdwr:/path/to/file"
2362 { 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2367 # Information describing the QEMU target.
2369 # @arch: the target architecture (eg "x86_64", "i386", etc)
2373 { 'struct': 'TargetInfo',
2374 'data': { 'arch': 'str' } }
2379 # Return information about the target for this QEMU
2381 # Returns: TargetInfo
2385 { 'command': 'query-target', 'returns': 'TargetInfo' }
2388 # @AcpiTableOptions:
2390 # Specify an ACPI table on the command line to load.
2392 # At most one of @file and @data can be specified. The list of files specified
2393 # by any one of them is loaded and concatenated in order. If both are omitted,
2396 # Other fields / optargs can be used to override fields of the generic ACPI
2397 # table header; refer to the ACPI specification 5.0, section 5.2.6 System
2398 # Description Table Header. If a header field is not overridden, then the
2399 # corresponding value from the concatenated blob is used (in case of @file), or
2400 # it is filled in with a hard-coded value (in case of @data).
2402 # String fields are copied into the matching ACPI member from lowest address
2403 # upwards, and silently truncated / NUL-padded to length.
2405 # @sig: table signature / identifier (4 bytes)
2407 # @rev: table revision number (dependent on signature, 1 byte)
2409 # @oem_id: OEM identifier (6 bytes)
2411 # @oem_table_id: OEM table identifier (8 bytes)
2413 # @oem_rev: OEM-supplied revision number (4 bytes)
2415 # @asl_compiler_id: identifier of the utility that created the table
2418 # @asl_compiler_rev: revision number of the utility that created the
2421 # @file: colon (:) separated list of pathnames to load and
2422 # concatenate as table data. The resultant binary blob is expected to
2423 # have an ACPI table header. At least one file is required. This field
2426 # @data: colon (:) separated list of pathnames to load and
2427 # concatenate as table data. The resultant binary blob must not have an
2428 # ACPI table header. At least one file is required. This field excludes
2433 { 'struct': 'AcpiTableOptions',
2438 '*oem_table_id': 'str',
2439 '*oem_rev': 'uint32',
2440 '*asl_compiler_id': 'str',
2441 '*asl_compiler_rev': 'uint32',
2446 # @CommandLineParameterType:
2448 # Possible types for an option parameter.
2450 # @string: accepts a character string
2452 # @boolean: accepts "on" or "off"
2454 # @number: accepts a number
2456 # @size: accepts a number followed by an optional suffix (K)ilo,
2457 # (M)ega, (G)iga, (T)era
2461 { 'enum': 'CommandLineParameterType',
2462 'data': ['string', 'boolean', 'number', 'size'] }
2465 # @CommandLineParameterInfo:
2467 # Details about a single parameter of a command line option.
2469 # @name: parameter name
2471 # @type: parameter @CommandLineParameterType
2473 # @help: human readable text string, not suitable for parsing.
2475 # @default: default value string (since 2.1)
2479 { 'struct': 'CommandLineParameterInfo',
2480 'data': { 'name': 'str',
2481 'type': 'CommandLineParameterType',
2483 '*default': 'str' } }
2486 # @CommandLineOptionInfo:
2488 # Details about a command line option, including its list of parameter details
2490 # @option: option name
2492 # @parameters: an array of @CommandLineParameterInfo
2496 { 'struct': 'CommandLineOptionInfo',
2497 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2500 # @query-command-line-options:
2502 # Query command line option schema.
2504 # @option: option name
2506 # Returns: list of @CommandLineOptionInfo for all options (or for the given
2507 # @option). Returns an error if the given @option doesn't exist.
2513 # -> { "execute": "query-command-line-options",
2514 # "arguments": { "option": "option-rom" } }
2519 # "name": "romfile",
2523 # "name": "bootindex",
2527 # "option": "option-rom"
2533 {'command': 'query-command-line-options', 'data': { '*option': 'str' },
2534 'returns': ['CommandLineOptionInfo'] }
2537 # @X86CPURegister32:
2539 # A X86 32-bit register
2543 { 'enum': 'X86CPURegister32',
2544 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2547 # @X86CPUFeatureWordInfo:
2549 # Information about a X86 CPU feature word
2551 # @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2553 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2556 # @cpuid-register: Output register containing the feature bits
2558 # @features: value of output register, containing the feature bits
2562 { 'struct': 'X86CPUFeatureWordInfo',
2563 'data': { 'cpuid-input-eax': 'int',
2564 '*cpuid-input-ecx': 'int',
2565 'cpuid-register': 'X86CPURegister32',
2566 'features': 'int' } }
2569 # @DummyForceArrays:
2571 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2575 { 'struct': 'DummyForceArrays',
2576 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2582 # @node: NUMA nodes configuration
2584 # @dist: NUMA distance configuration (since 2.10)
2586 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
2590 { 'enum': 'NumaOptionsType',
2591 'data': [ 'node', 'dist', 'cpu' ] }
2596 # A discriminated record of NUMA options. (for OptsVisitor)
2600 { 'union': 'NumaOptions',
2601 'base': { 'type': 'NumaOptionsType' },
2602 'discriminator': 'type',
2604 'node': 'NumaNodeOptions',
2605 'dist': 'NumaDistOptions',
2606 'cpu': 'NumaCpuOptions' }}
2611 # Create a guest NUMA node. (for OptsVisitor)
2613 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2615 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2618 # @mem: memory size of this node; mutually exclusive with @memdev.
2619 # Equally divide total memory among nodes if both @mem and @memdev are
2622 # @memdev: memory backend object. If specified for one node,
2623 # it must be specified for all nodes.
2627 { 'struct': 'NumaNodeOptions',
2629 '*nodeid': 'uint16',
2630 '*cpus': ['uint16'],
2637 # Set the distance between 2 NUMA nodes.
2639 # @src: source NUMA node.
2641 # @dst: destination NUMA node.
2643 # @val: NUMA distance from source node to destination node.
2644 # When a node is unreachable from another node, set the distance
2645 # between them to 255.
2649 { 'struct': 'NumaDistOptions',
2658 # Option "-numa cpu" overrides default cpu to node mapping.
2659 # It accepts the same set of cpu properties as returned by
2660 # query-hotpluggable-cpus[].props, where node-id could be used to
2661 # override default node mapping.
2665 { 'struct': 'NumaCpuOptions',
2666 'base': 'CpuInstanceProperties',
2672 # Host memory policy types
2674 # @default: restore default policy, remove any nondefault policy
2676 # @preferred: set the preferred host nodes for allocation
2678 # @bind: a strict policy that restricts memory allocation to the
2679 # host nodes specified
2681 # @interleave: memory allocations are interleaved across the set
2682 # of host nodes specified
2686 { 'enum': 'HostMemPolicy',
2687 'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2692 # Information about memory backend
2694 # @id: backend's ID if backend has 'id' property (since 2.9)
2696 # @size: memory backend size
2698 # @merge: enables or disables memory merge support
2700 # @dump: includes memory backend's memory in a core dump or not
2702 # @prealloc: enables or disables memory preallocation
2704 # @host-nodes: host nodes for its memory policy
2706 # @policy: memory policy of memory backend
2710 { 'struct': 'Memdev',
2717 'host-nodes': ['uint16'],
2718 'policy': 'HostMemPolicy' }}
2723 # Returns information for all memory backends.
2725 # Returns: a list of @Memdev.
2731 # -> { "execute": "query-memdev" }
2735 # "size": 536870912,
2738 # "prealloc": false,
2739 # "host-nodes": [0, 1],
2743 # "size": 536870912,
2747 # "host-nodes": [2, 3],
2748 # "policy": "preferred"
2754 { 'command': 'query-memdev', 'returns': ['Memdev'] }
2757 # @PCDIMMDeviceInfo:
2759 # PCDIMMDevice state information
2763 # @addr: physical address, where device is mapped
2765 # @size: size of memory that the device provides
2767 # @slot: slot number at which device is plugged in
2769 # @node: NUMA node number where device is plugged in
2771 # @memdev: memory backend linked with device
2773 # @hotplugged: true if device was hotplugged
2775 # @hotpluggable: true if device if could be added/removed while machine is running
2779 { 'struct': 'PCDIMMDeviceInfo',
2780 'data': { '*id': 'str',
2786 'hotplugged': 'bool',
2787 'hotpluggable': 'bool'
2792 # @MemoryDeviceInfo:
2794 # Union containing information about a memory device
2798 { 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
2801 # @query-memory-devices:
2803 # Lists available memory devices and their state
2809 # -> { "execute": "query-memory-devices" }
2810 # <- { "return": [ { "data":
2811 # { "addr": 5368709120,
2812 # "hotpluggable": true,
2813 # "hotplugged": true,
2815 # "memdev": "/objects/memX",
2817 # "size": 1073741824,
2823 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2826 # @MEM_UNPLUG_ERROR:
2828 # Emitted when memory hot unplug error occurs.
2830 # @device: device name
2832 # @msg: Informative message
2838 # <- { "event": "MEM_UNPLUG_ERROR"
2839 # "data": { "device": "dimm1",
2840 # "msg": "acpi: device unplug for unsupported device"
2842 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2845 { 'event': 'MEM_UNPLUG_ERROR',
2846 'data': { 'device': 'str', 'msg': 'str' } }
2851 # @DIMM: memory slot
2852 # @CPU: logical CPU slot (since 2.7)
2854 { 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2859 # OSPM Status Indication for a device
2860 # For description of possible values of @source and @status fields
2861 # see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2863 # @device: device ID associated with slot
2865 # @slot: slot ID, unique per slot of a given @slot-type
2867 # @slot-type: type of the slot
2869 # @source: an integer containing the source event
2871 # @status: an integer containing the status code
2875 { 'struct': 'ACPIOSTInfo',
2876 'data' : { '*device': 'str',
2878 'slot-type': 'ACPISlotType',
2883 # @query-acpi-ospm-status:
2885 # Return a list of ACPIOSTInfo for devices that support status
2886 # reporting via ACPI _OST method.
2892 # -> { "execute": "query-acpi-ospm-status" }
2893 # <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2894 # { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2895 # { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2896 # { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2900 { 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2905 # Emitted when guest executes ACPI _OST method.
2907 # @info: ACPIOSTInfo type as described in qapi-schema.json
2913 # <- { "event": "ACPI_DEVICE_OST",
2914 # "data": { "device": "d1", "slot": "0",
2915 # "slot-type": "DIMM", "source": 1, "status": 0 } }
2918 { 'event': 'ACPI_DEVICE_OST',
2919 'data': { 'info': 'ACPIOSTInfo' } }
2922 # @rtc-reset-reinjection:
2924 # This command will reset the RTC interrupt reinjection backlog.
2925 # Can be used if another mechanism to synchronize guest time
2926 # is in effect, for example QEMU guest agent's guest-set-time
2933 # -> { "execute": "rtc-reset-reinjection" }
2934 # <- { "return": {} }
2937 { 'command': 'rtc-reset-reinjection' }
2942 # Emitted when the guest changes the RTC time.
2944 # @offset: offset between base RTC clock (as specified by -rtc base), and
2945 # new RTC clock value
2947 # Note: This event is rate-limited.
2953 # <- { "event": "RTC_CHANGE",
2954 # "data": { "offset": 78 },
2955 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
2958 { 'event': 'RTC_CHANGE',
2959 'data': { 'offset': 'int' } }
2964 # Mode of the replay subsystem.
2966 # @none: normal execution mode. Replay or record are not enabled.
2968 # @record: record mode. All non-deterministic data is written into the
2971 # @play: replay mode. Non-deterministic data required for system execution
2972 # is read from the log.
2976 { 'enum': 'ReplayMode',
2977 'data': [ 'none', 'record', 'play' ] }
2980 # @xen-load-devices-state:
2982 # Load the state of all devices from file. The RAM and the block devices
2983 # of the VM are not loaded by this command.
2985 # @filename: the file to load the state of the devices from as binary
2986 # data. See xen-save-devices-state.txt for a description of the binary
2993 # -> { "execute": "xen-load-devices-state",
2994 # "arguments": { "filename": "/tmp/resume" } }
2995 # <- { "return": {} }
2998 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3003 # The struct describes capability for a specific GIC (Generic
3004 # Interrupt Controller) version. These bits are not only decided by
3005 # QEMU/KVM software version, but also decided by the hardware that
3006 # the program is running upon.
3008 # @version: version of GIC to be described. Currently, only 2 and 3
3011 # @emulated: whether current QEMU/hardware supports emulated GIC
3012 # device in user space.
3014 # @kernel: whether current QEMU/hardware supports hardware
3015 # accelerated GIC device in kernel.
3019 { 'struct': 'GICCapability',
3020 'data': { 'version': 'int',
3022 'kernel': 'bool' } }
3025 # @query-gic-capabilities:
3027 # This command is ARM-only. It will return a list of GICCapability
3028 # objects that describe its capability bits.
3030 # Returns: a list of GICCapability objects.
3036 # -> { "execute": "query-gic-capabilities" }
3037 # <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3038 # { "version": 3, "emulated": false, "kernel": true } ] }
3041 { 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3044 # @CpuInstanceProperties:
3046 # List of properties to be used for hotplugging a CPU instance,
3047 # it should be passed by management with device_add command when
3048 # a CPU is being hotplugged.
3050 # @node-id: NUMA node ID the CPU belongs to
3051 # @socket-id: socket number within node/board the CPU belongs to
3052 # @core-id: core number within socket the CPU belongs to
3053 # @thread-id: thread number within core the CPU belongs to
3055 # Note: currently there are 4 properties that could be present
3056 # but management should be prepared to pass through other
3057 # properties with device_add command to allow for future
3058 # interface extension. This also requires the filed names to be kept in
3059 # sync with the properties passed to -device/device_add.
3063 { 'struct': 'CpuInstanceProperties',
3064 'data': { '*node-id': 'int',
3065 '*socket-id': 'int',
3074 # @type: CPU object type for usage with device_add command
3075 # @props: list of properties to be used for hotplugging CPU
3076 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3077 # @qom-path: link to existing CPU object if CPU is present or
3078 # omitted if CPU is not present.
3082 { 'struct': 'HotpluggableCPU',
3083 'data': { 'type': 'str',
3084 'vcpus-count': 'int',
3085 'props': 'CpuInstanceProperties',
3091 # @query-hotpluggable-cpus:
3093 # Returns: a list of HotpluggableCPU objects.
3099 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3101 # -> { "execute": "query-hotpluggable-cpus" }
3103 # { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3104 # "vcpus-count": 1 },
3105 # { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3106 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3109 # For pc machine type started with -smp 1,maxcpus=2:
3111 # -> { "execute": "query-hotpluggable-cpus" }
3114 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3115 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3118 # "qom-path": "/machine/unattached/device[0]",
3119 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3120 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3125 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3132 # @guid: the globally unique identifier
3136 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3139 # @query-vm-generation-id:
3141 # Show Virtual Machine Generation ID
3145 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }