4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
24 #include "qemu-common.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/boards.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
48 #include "qemu/rcu_queue.h"
49 #include "qemu/main-loop.h"
50 #include "translate-all.h"
51 #include "sysemu/replay.h"
53 #include "exec/memory-internal.h"
54 #include "exec/ram_addr.h"
57 #include "qemu/range.h"
59 #include "qemu/mmap-alloc.h"
62 //#define DEBUG_SUBPAGE
64 #if !defined(CONFIG_USER_ONLY)
65 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
68 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
70 static MemoryRegion
*system_memory
;
71 static MemoryRegion
*system_io
;
73 AddressSpace address_space_io
;
74 AddressSpace address_space_memory
;
76 MemoryRegion io_mem_rom
, io_mem_notdirty
;
77 static MemoryRegion io_mem_unassigned
;
79 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80 #define RAM_PREALLOC (1 << 0)
82 /* RAM is mmap-ed with MAP_SHARED */
83 #define RAM_SHARED (1 << 1)
85 /* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
88 #define RAM_RESIZEABLE (1 << 2)
92 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
93 /* current CPU in the current thread. It is only valid inside
95 __thread CPUState
*current_cpu
;
96 /* 0 = Do not count executed instructions.
97 1 = Precise instruction counting.
98 2 = Adaptive rate instruction counting. */
101 #if !defined(CONFIG_USER_ONLY)
103 typedef struct PhysPageEntry PhysPageEntry
;
105 struct PhysPageEntry
{
106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
112 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114 /* Size of the L2 (and L3, etc) page tables. */
115 #define ADDR_SPACE_BITS 64
118 #define P_L2_SIZE (1 << P_L2_BITS)
120 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122 typedef PhysPageEntry Node
[P_L2_SIZE
];
124 typedef struct PhysPageMap
{
127 unsigned sections_nb
;
128 unsigned sections_nb_alloc
;
130 unsigned nodes_nb_alloc
;
132 MemoryRegionSection
*sections
;
135 struct AddressSpaceDispatch
{
138 MemoryRegionSection
*mru_section
;
139 /* This is a multi-level map on the physical address space.
140 * The bottom level has pointers to MemoryRegionSections.
142 PhysPageEntry phys_map
;
147 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148 typedef struct subpage_t
{
152 uint16_t sub_section
[TARGET_PAGE_SIZE
];
155 #define PHYS_SECTION_UNASSIGNED 0
156 #define PHYS_SECTION_NOTDIRTY 1
157 #define PHYS_SECTION_ROM 2
158 #define PHYS_SECTION_WATCH 3
160 static void io_mem_init(void);
161 static void memory_map_init(void);
162 static void tcg_commit(MemoryListener
*listener
);
164 static MemoryRegion io_mem_watch
;
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
173 struct CPUAddressSpace
{
176 struct AddressSpaceDispatch
*memory_dispatch
;
177 MemoryListener tcg_as_listener
;
182 #if !defined(CONFIG_USER_ONLY)
184 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
186 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
187 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
188 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
189 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
193 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
200 ret
= map
->nodes_nb
++;
202 assert(ret
!= PHYS_MAP_NODE_NIL
);
203 assert(ret
!= map
->nodes_nb_alloc
);
205 e
.skip
= leaf
? 0 : 1;
206 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
207 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
208 memcpy(&p
[i
], &e
, sizeof(e
));
213 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
214 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
218 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
220 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
221 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
223 p
= map
->nodes
[lp
->ptr
];
224 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
226 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
227 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
233 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
239 static void phys_page_set(AddressSpaceDispatch
*d
,
240 hwaddr index
, hwaddr nb
,
243 /* Wildly overreserve - it doesn't matter much. */
244 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
246 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
249 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
252 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
254 unsigned valid_ptr
= P_L2_SIZE
;
259 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
264 for (i
= 0; i
< P_L2_SIZE
; i
++) {
265 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
272 phys_page_compact(&p
[i
], nodes
, compacted
);
276 /* We can only compress if there's only one child. */
281 assert(valid_ptr
< P_L2_SIZE
);
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
288 lp
->ptr
= p
[valid_ptr
].ptr
;
289 if (!p
[valid_ptr
].skip
) {
290 /* If our only child is a leaf, make this a leaf. */
291 /* By design, we should have made this node a leaf to begin with so we
292 * should never reach here.
293 * But since it's so simple to handle this, let's do it just in case we
298 lp
->skip
+= p
[valid_ptr
].skip
;
302 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
304 DECLARE_BITMAP(compacted
, nodes_nb
);
306 if (d
->phys_map
.skip
) {
307 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
311 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
314 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
315 * the section must cover the entire address space.
317 return section
->size
.hi
||
318 range_covers_byte(section
->offset_within_address_space
,
319 section
->size
.lo
, addr
);
322 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
323 Node
*nodes
, MemoryRegionSection
*sections
)
326 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
329 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
330 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
331 return §ions
[PHYS_SECTION_UNASSIGNED
];
334 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
337 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
338 return §ions
[lp
.ptr
];
340 return §ions
[PHYS_SECTION_UNASSIGNED
];
344 bool memory_region_is_unassigned(MemoryRegion
*mr
)
346 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
347 && mr
!= &io_mem_watch
;
350 /* Called from RCU critical section */
351 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
353 bool resolve_subpage
)
355 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
359 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
360 section_covers_addr(section
, addr
)) {
363 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
367 if (resolve_subpage
&& section
->mr
->subpage
) {
368 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
369 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
372 atomic_set(&d
->mru_section
, section
);
377 /* Called from RCU critical section */
378 static MemoryRegionSection
*
379 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
380 hwaddr
*plen
, bool resolve_subpage
)
382 MemoryRegionSection
*section
;
386 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
387 /* Compute offset within MemoryRegionSection */
388 addr
-= section
->offset_within_address_space
;
390 /* Compute offset within MemoryRegion */
391 *xlat
= addr
+ section
->offset_within_region
;
395 /* MMIO registers can be expected to perform full-width accesses based only
396 * on their address, without considering adjacent registers that could
397 * decode to completely different MemoryRegions. When such registers
398 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
399 * regions overlap wildly. For this reason we cannot clamp the accesses
402 * If the length is small (as is the case for address_space_ldl/stl),
403 * everything works fine. If the incoming length is large, however,
404 * the caller really has to do the clamping through memory_access_size.
406 if (memory_region_is_ram(mr
)) {
407 diff
= int128_sub(section
->size
, int128_make64(addr
));
408 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
413 /* Called from RCU critical section */
414 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
415 hwaddr
*xlat
, hwaddr
*plen
,
419 MemoryRegionSection
*section
;
423 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
424 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
427 if (!mr
->iommu_ops
) {
431 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
432 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
433 | (addr
& iotlb
.addr_mask
));
434 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
435 if (!(iotlb
.perm
& (1 << is_write
))) {
436 mr
= &io_mem_unassigned
;
440 as
= iotlb
.target_as
;
443 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
444 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
445 *plen
= MIN(page
, *plen
);
452 /* Called from RCU critical section */
453 MemoryRegionSection
*
454 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
455 hwaddr
*xlat
, hwaddr
*plen
)
457 MemoryRegionSection
*section
;
458 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
460 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
462 assert(!section
->mr
->iommu_ops
);
467 #if !defined(CONFIG_USER_ONLY)
469 static int cpu_common_post_load(void *opaque
, int version_id
)
471 CPUState
*cpu
= opaque
;
473 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
474 version_id is increased. */
475 cpu
->interrupt_request
&= ~0x01;
481 static int cpu_common_pre_load(void *opaque
)
483 CPUState
*cpu
= opaque
;
485 cpu
->exception_index
= -1;
490 static bool cpu_common_exception_index_needed(void *opaque
)
492 CPUState
*cpu
= opaque
;
494 return tcg_enabled() && cpu
->exception_index
!= -1;
497 static const VMStateDescription vmstate_cpu_common_exception_index
= {
498 .name
= "cpu_common/exception_index",
500 .minimum_version_id
= 1,
501 .needed
= cpu_common_exception_index_needed
,
502 .fields
= (VMStateField
[]) {
503 VMSTATE_INT32(exception_index
, CPUState
),
504 VMSTATE_END_OF_LIST()
508 static bool cpu_common_crash_occurred_needed(void *opaque
)
510 CPUState
*cpu
= opaque
;
512 return cpu
->crash_occurred
;
515 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
516 .name
= "cpu_common/crash_occurred",
518 .minimum_version_id
= 1,
519 .needed
= cpu_common_crash_occurred_needed
,
520 .fields
= (VMStateField
[]) {
521 VMSTATE_BOOL(crash_occurred
, CPUState
),
522 VMSTATE_END_OF_LIST()
526 const VMStateDescription vmstate_cpu_common
= {
527 .name
= "cpu_common",
529 .minimum_version_id
= 1,
530 .pre_load
= cpu_common_pre_load
,
531 .post_load
= cpu_common_post_load
,
532 .fields
= (VMStateField
[]) {
533 VMSTATE_UINT32(halted
, CPUState
),
534 VMSTATE_UINT32(interrupt_request
, CPUState
),
535 VMSTATE_END_OF_LIST()
537 .subsections
= (const VMStateDescription
*[]) {
538 &vmstate_cpu_common_exception_index
,
539 &vmstate_cpu_common_crash_occurred
,
546 CPUState
*qemu_get_cpu(int index
)
551 if (cpu
->cpu_index
== index
) {
559 #if !defined(CONFIG_USER_ONLY)
560 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
562 CPUAddressSpace
*newas
;
564 /* Target code should have set num_ases before calling us */
565 assert(asidx
< cpu
->num_ases
);
568 /* address space 0 gets the convenience alias */
572 /* KVM cannot currently support multiple address spaces. */
573 assert(asidx
== 0 || !kvm_enabled());
575 if (!cpu
->cpu_ases
) {
576 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
579 newas
= &cpu
->cpu_ases
[asidx
];
583 newas
->tcg_as_listener
.commit
= tcg_commit
;
584 memory_listener_register(&newas
->tcg_as_listener
, as
);
588 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
590 /* Return the AddressSpace corresponding to the specified index */
591 return cpu
->cpu_ases
[asidx
].as
;
595 #ifndef CONFIG_USER_ONLY
596 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
598 static int cpu_get_free_index(Error
**errp
)
600 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
602 if (cpu
>= MAX_CPUMASK_BITS
) {
603 error_setg(errp
, "Trying to use more CPUs than max of %d",
608 bitmap_set(cpu_index_map
, cpu
, 1);
612 void cpu_exec_exit(CPUState
*cpu
)
614 if (cpu
->cpu_index
== -1) {
615 /* cpu_index was never allocated by this @cpu or was already freed. */
619 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
624 static int cpu_get_free_index(Error
**errp
)
629 CPU_FOREACH(some_cpu
) {
635 void cpu_exec_exit(CPUState
*cpu
)
640 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
642 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
644 Error
*local_err
= NULL
;
649 #ifndef CONFIG_USER_ONLY
650 cpu
->thread_id
= qemu_get_thread_id();
652 /* This is a softmmu CPU object, so create a property for it
653 * so users can wire up its memory. (This can't go in qom/cpu.c
654 * because that file is compiled only once for both user-mode
655 * and system builds.) The default if no link is set up is to use
656 * the system address space.
658 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
659 (Object
**)&cpu
->memory
,
660 qdev_prop_allow_set_link_before_realize
,
661 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
663 cpu
->memory
= system_memory
;
664 object_ref(OBJECT(cpu
->memory
));
667 #if defined(CONFIG_USER_ONLY)
670 cpu_index
= cpu
->cpu_index
= cpu_get_free_index(&local_err
);
672 error_propagate(errp
, local_err
);
673 #if defined(CONFIG_USER_ONLY)
678 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
679 #if defined(CONFIG_USER_ONLY)
682 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
683 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
685 if (cc
->vmsd
!= NULL
) {
686 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
690 #if defined(CONFIG_USER_ONLY)
691 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
693 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
696 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
699 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
700 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
702 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
703 phys
| (pc
& ~TARGET_PAGE_MASK
));
708 #if defined(CONFIG_USER_ONLY)
709 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
714 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
720 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
724 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
725 int flags
, CPUWatchpoint
**watchpoint
)
730 /* Add a watchpoint. */
731 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
732 int flags
, CPUWatchpoint
**watchpoint
)
736 /* forbid ranges which are empty or run off the end of the address space */
737 if (len
== 0 || (addr
+ len
- 1) < addr
) {
738 error_report("tried to set invalid watchpoint at %"
739 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
742 wp
= g_malloc(sizeof(*wp
));
748 /* keep all GDB-injected watchpoints in front */
749 if (flags
& BP_GDB
) {
750 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
752 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
755 tlb_flush_page(cpu
, addr
);
762 /* Remove a specific watchpoint. */
763 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
768 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
769 if (addr
== wp
->vaddr
&& len
== wp
->len
770 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
771 cpu_watchpoint_remove_by_ref(cpu
, wp
);
778 /* Remove a specific watchpoint by reference. */
779 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
781 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
783 tlb_flush_page(cpu
, watchpoint
->vaddr
);
788 /* Remove all matching watchpoints. */
789 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
791 CPUWatchpoint
*wp
, *next
;
793 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
794 if (wp
->flags
& mask
) {
795 cpu_watchpoint_remove_by_ref(cpu
, wp
);
800 /* Return true if this watchpoint address matches the specified
801 * access (ie the address range covered by the watchpoint overlaps
802 * partially or completely with the address range covered by the
805 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
809 /* We know the lengths are non-zero, but a little caution is
810 * required to avoid errors in the case where the range ends
811 * exactly at the top of the address space and so addr + len
812 * wraps round to zero.
814 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
815 vaddr addrend
= addr
+ len
- 1;
817 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
822 /* Add a breakpoint. */
823 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
824 CPUBreakpoint
**breakpoint
)
828 bp
= g_malloc(sizeof(*bp
));
833 /* keep all GDB-injected breakpoints in front */
834 if (flags
& BP_GDB
) {
835 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
837 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
840 breakpoint_invalidate(cpu
, pc
);
848 /* Remove a specific breakpoint. */
849 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
853 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
854 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
855 cpu_breakpoint_remove_by_ref(cpu
, bp
);
862 /* Remove a specific breakpoint by reference. */
863 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
865 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
867 breakpoint_invalidate(cpu
, breakpoint
->pc
);
872 /* Remove all matching breakpoints. */
873 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
875 CPUBreakpoint
*bp
, *next
;
877 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
878 if (bp
->flags
& mask
) {
879 cpu_breakpoint_remove_by_ref(cpu
, bp
);
884 /* enable or disable single step mode. EXCP_DEBUG is returned by the
885 CPU loop after each instruction */
886 void cpu_single_step(CPUState
*cpu
, int enabled
)
888 if (cpu
->singlestep_enabled
!= enabled
) {
889 cpu
->singlestep_enabled
= enabled
;
891 kvm_update_guest_debug(cpu
, 0);
893 /* must flush all the translated code to avoid inconsistencies */
894 /* XXX: only flush what is necessary */
900 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
907 fprintf(stderr
, "qemu: fatal: ");
908 vfprintf(stderr
, fmt
, ap
);
909 fprintf(stderr
, "\n");
910 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
911 if (qemu_log_separate()) {
912 qemu_log("qemu: fatal: ");
913 qemu_log_vprintf(fmt
, ap2
);
915 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
922 #if defined(CONFIG_USER_ONLY)
924 struct sigaction act
;
925 sigfillset(&act
.sa_mask
);
926 act
.sa_handler
= SIG_DFL
;
927 sigaction(SIGABRT
, &act
, NULL
);
933 #if !defined(CONFIG_USER_ONLY)
934 /* Called from RCU critical section */
935 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
939 block
= atomic_rcu_read(&ram_list
.mru_block
);
940 if (block
&& addr
- block
->offset
< block
->max_length
) {
943 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
944 if (addr
- block
->offset
< block
->max_length
) {
949 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
953 /* It is safe to write mru_block outside the iothread lock. This
958 * xxx removed from list
962 * call_rcu(reclaim_ramblock, xxx);
965 * atomic_rcu_set is not needed here. The block was already published
966 * when it was placed into the list. Here we're just making an extra
967 * copy of the pointer.
969 ram_list
.mru_block
= block
;
973 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
980 end
= TARGET_PAGE_ALIGN(start
+ length
);
981 start
&= TARGET_PAGE_MASK
;
984 block
= qemu_get_ram_block(start
);
985 assert(block
== qemu_get_ram_block(end
- 1));
986 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
988 tlb_reset_dirty(cpu
, start1
, length
);
993 /* Note: start and end must be within the same ram block. */
994 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
998 DirtyMemoryBlocks
*blocks
;
999 unsigned long end
, page
;
1006 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1007 page
= start
>> TARGET_PAGE_BITS
;
1011 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1013 while (page
< end
) {
1014 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1015 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1016 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1018 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1025 if (dirty
&& tcg_enabled()) {
1026 tlb_reset_dirty_range_all(start
, length
);
1032 /* Called from RCU critical section */
1033 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1034 MemoryRegionSection
*section
,
1036 hwaddr paddr
, hwaddr xlat
,
1038 target_ulong
*address
)
1043 if (memory_region_is_ram(section
->mr
)) {
1045 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1047 if (!section
->readonly
) {
1048 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1050 iotlb
|= PHYS_SECTION_ROM
;
1053 AddressSpaceDispatch
*d
;
1055 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1056 iotlb
= section
- d
->map
.sections
;
1060 /* Make accesses to pages with watchpoints go via the
1061 watchpoint trap routines. */
1062 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1063 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1064 /* Avoid trapping reads of pages with a write breakpoint. */
1065 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1066 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1067 *address
|= TLB_MMIO
;
1075 #endif /* defined(CONFIG_USER_ONLY) */
1077 #if !defined(CONFIG_USER_ONLY)
1079 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1081 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1083 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1084 qemu_anon_ram_alloc
;
1087 * Set a custom physical guest memory alloator.
1088 * Accelerators with unusual needs may need this. Hopefully, we can
1089 * get rid of it eventually.
1091 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1093 phys_mem_alloc
= alloc
;
1096 static uint16_t phys_section_add(PhysPageMap
*map
,
1097 MemoryRegionSection
*section
)
1099 /* The physical section number is ORed with a page-aligned
1100 * pointer to produce the iotlb entries. Thus it should
1101 * never overflow into the page-aligned value.
1103 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1105 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1106 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1107 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1108 map
->sections_nb_alloc
);
1110 map
->sections
[map
->sections_nb
] = *section
;
1111 memory_region_ref(section
->mr
);
1112 return map
->sections_nb
++;
1115 static void phys_section_destroy(MemoryRegion
*mr
)
1117 bool have_sub_page
= mr
->subpage
;
1119 memory_region_unref(mr
);
1121 if (have_sub_page
) {
1122 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1123 object_unref(OBJECT(&subpage
->iomem
));
1128 static void phys_sections_free(PhysPageMap
*map
)
1130 while (map
->sections_nb
> 0) {
1131 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1132 phys_section_destroy(section
->mr
);
1134 g_free(map
->sections
);
1138 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1141 hwaddr base
= section
->offset_within_address_space
1143 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1144 d
->map
.nodes
, d
->map
.sections
);
1145 MemoryRegionSection subsection
= {
1146 .offset_within_address_space
= base
,
1147 .size
= int128_make64(TARGET_PAGE_SIZE
),
1151 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1153 if (!(existing
->mr
->subpage
)) {
1154 subpage
= subpage_init(d
->as
, base
);
1155 subsection
.address_space
= d
->as
;
1156 subsection
.mr
= &subpage
->iomem
;
1157 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1158 phys_section_add(&d
->map
, &subsection
));
1160 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1162 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1163 end
= start
+ int128_get64(section
->size
) - 1;
1164 subpage_register(subpage
, start
, end
,
1165 phys_section_add(&d
->map
, section
));
1169 static void register_multipage(AddressSpaceDispatch
*d
,
1170 MemoryRegionSection
*section
)
1172 hwaddr start_addr
= section
->offset_within_address_space
;
1173 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1174 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1178 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1181 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1183 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1184 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1185 MemoryRegionSection now
= *section
, remain
= *section
;
1186 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1188 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1189 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1190 - now
.offset_within_address_space
;
1192 now
.size
= int128_min(int128_make64(left
), now
.size
);
1193 register_subpage(d
, &now
);
1195 now
.size
= int128_zero();
1197 while (int128_ne(remain
.size
, now
.size
)) {
1198 remain
.size
= int128_sub(remain
.size
, now
.size
);
1199 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1200 remain
.offset_within_region
+= int128_get64(now
.size
);
1202 if (int128_lt(remain
.size
, page_size
)) {
1203 register_subpage(d
, &now
);
1204 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1205 now
.size
= page_size
;
1206 register_subpage(d
, &now
);
1208 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1209 register_multipage(d
, &now
);
1214 void qemu_flush_coalesced_mmio_buffer(void)
1217 kvm_flush_coalesced_mmio_buffer();
1220 void qemu_mutex_lock_ramlist(void)
1222 qemu_mutex_lock(&ram_list
.mutex
);
1225 void qemu_mutex_unlock_ramlist(void)
1227 qemu_mutex_unlock(&ram_list
.mutex
);
1231 static void *file_ram_alloc(RAMBlock
*block
,
1236 bool unlink_on_error
= false;
1238 char *sanitized_name
;
1244 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1246 "host lacks kvm mmu notifiers, -mem-path unsupported");
1251 fd
= open(path
, O_RDWR
);
1253 /* @path names an existing file, use it */
1256 if (errno
== ENOENT
) {
1257 /* @path names a file that doesn't exist, create it */
1258 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1260 unlink_on_error
= true;
1263 } else if (errno
== EISDIR
) {
1264 /* @path names a directory, create a file there */
1265 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1266 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1267 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1273 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1275 g_free(sanitized_name
);
1277 fd
= mkstemp(filename
);
1285 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1286 error_setg_errno(errp
, errno
,
1287 "can't open backing store %s for guest RAM",
1292 * Try again on EINTR and EEXIST. The latter happens when
1293 * something else creates the file between our two open().
1297 page_size
= qemu_fd_getpagesize(fd
);
1298 block
->mr
->align
= page_size
;
1300 if (memory
< page_size
) {
1301 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1302 "or larger than page size 0x%" PRIx64
,
1307 memory
= ROUND_UP(memory
, page_size
);
1310 * ftruncate is not supported by hugetlbfs in older
1311 * hosts, so don't bother bailing out on errors.
1312 * If anything goes wrong with it under other filesystems,
1315 if (ftruncate(fd
, memory
)) {
1316 perror("ftruncate");
1319 area
= qemu_ram_mmap(fd
, memory
, page_size
, block
->flags
& RAM_SHARED
);
1320 if (area
== MAP_FAILED
) {
1321 error_setg_errno(errp
, errno
,
1322 "unable to map backing store for guest RAM");
1328 os_mem_prealloc(fd
, area
, memory
);
1335 if (unlink_on_error
) {
1343 /* Called with the ramlist lock held. */
1344 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1346 RAMBlock
*block
, *next_block
;
1347 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1349 assert(size
!= 0); /* it would hand out same offset multiple times */
1351 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1355 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1356 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1358 end
= block
->offset
+ block
->max_length
;
1360 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1361 if (next_block
->offset
>= end
) {
1362 next
= MIN(next
, next_block
->offset
);
1365 if (next
- end
>= size
&& next
- end
< mingap
) {
1367 mingap
= next
- end
;
1371 if (offset
== RAM_ADDR_MAX
) {
1372 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1380 ram_addr_t
last_ram_offset(void)
1383 ram_addr_t last
= 0;
1386 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1387 last
= MAX(last
, block
->offset
+ block
->max_length
);
1393 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1397 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1398 if (!machine_dump_guest_core(current_machine
)) {
1399 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1401 perror("qemu_madvise");
1402 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1403 "but dump_guest_core=off specified\n");
1408 /* Called within an RCU critical section, or while the ramlist lock
1411 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1415 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1416 if (block
->offset
== addr
) {
1424 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1429 /* Called with iothread lock held. */
1430 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1432 RAMBlock
*new_block
, *block
;
1435 new_block
= find_ram_block(addr
);
1437 assert(!new_block
->idstr
[0]);
1440 char *id
= qdev_get_dev_path(dev
);
1442 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1446 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1448 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1449 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1450 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1458 /* Called with iothread lock held. */
1459 void qemu_ram_unset_idstr(ram_addr_t addr
)
1463 /* FIXME: arch_init.c assumes that this is not called throughout
1464 * migration. Ignore the problem since hot-unplug during migration
1465 * does not work anyway.
1469 block
= find_ram_block(addr
);
1471 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1476 static int memory_try_enable_merging(void *addr
, size_t len
)
1478 if (!machine_mem_merge(current_machine
)) {
1479 /* disabled by the user */
1483 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1486 /* Only legal before guest might have detected the memory size: e.g. on
1487 * incoming migration, or right after reset.
1489 * As memory core doesn't know how is memory accessed, it is up to
1490 * resize callback to update device state and/or add assertions to detect
1491 * misuse, if necessary.
1493 int qemu_ram_resize(ram_addr_t base
, ram_addr_t newsize
, Error
**errp
)
1495 RAMBlock
*block
= find_ram_block(base
);
1499 newsize
= HOST_PAGE_ALIGN(newsize
);
1501 if (block
->used_length
== newsize
) {
1505 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1506 error_setg_errno(errp
, EINVAL
,
1507 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1508 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1509 newsize
, block
->used_length
);
1513 if (block
->max_length
< newsize
) {
1514 error_setg_errno(errp
, EINVAL
,
1515 "Length too large: %s: 0x" RAM_ADDR_FMT
1516 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1517 newsize
, block
->max_length
);
1521 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1522 block
->used_length
= newsize
;
1523 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1525 memory_region_set_size(block
->mr
, newsize
);
1526 if (block
->resized
) {
1527 block
->resized(block
->idstr
, newsize
, block
->host
);
1532 /* Called with ram_list.mutex held */
1533 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1534 ram_addr_t new_ram_size
)
1536 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1537 DIRTY_MEMORY_BLOCK_SIZE
);
1538 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1539 DIRTY_MEMORY_BLOCK_SIZE
);
1542 /* Only need to extend if block count increased */
1543 if (new_num_blocks
<= old_num_blocks
) {
1547 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1548 DirtyMemoryBlocks
*old_blocks
;
1549 DirtyMemoryBlocks
*new_blocks
;
1552 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1553 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1554 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1556 if (old_num_blocks
) {
1557 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1558 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1561 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1562 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1565 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1568 g_free_rcu(old_blocks
, rcu
);
1573 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1576 RAMBlock
*last_block
= NULL
;
1577 ram_addr_t old_ram_size
, new_ram_size
;
1580 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1582 qemu_mutex_lock_ramlist();
1583 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1585 if (!new_block
->host
) {
1586 if (xen_enabled()) {
1587 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1588 new_block
->mr
, &err
);
1590 error_propagate(errp
, err
);
1591 qemu_mutex_unlock_ramlist();
1594 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1595 &new_block
->mr
->align
);
1596 if (!new_block
->host
) {
1597 error_setg_errno(errp
, errno
,
1598 "cannot set up guest memory '%s'",
1599 memory_region_name(new_block
->mr
));
1600 qemu_mutex_unlock_ramlist();
1602 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1606 new_ram_size
= MAX(old_ram_size
,
1607 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1608 if (new_ram_size
> old_ram_size
) {
1609 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1610 dirty_memory_extend(old_ram_size
, new_ram_size
);
1612 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1613 * QLIST (which has an RCU-friendly variant) does not have insertion at
1614 * tail, so save the last element in last_block.
1616 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1618 if (block
->max_length
< new_block
->max_length
) {
1623 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1624 } else if (last_block
) {
1625 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1626 } else { /* list is empty */
1627 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1629 ram_list
.mru_block
= NULL
;
1631 /* Write list before version */
1634 qemu_mutex_unlock_ramlist();
1636 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1637 new_block
->used_length
,
1640 if (new_block
->host
) {
1641 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1642 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1643 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1644 if (kvm_enabled()) {
1645 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1651 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1652 bool share
, const char *mem_path
,
1655 RAMBlock
*new_block
;
1656 Error
*local_err
= NULL
;
1658 if (xen_enabled()) {
1659 error_setg(errp
, "-mem-path not supported with Xen");
1663 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1665 * file_ram_alloc() needs to allocate just like
1666 * phys_mem_alloc, but we haven't bothered to provide
1670 "-mem-path not supported with this accelerator");
1674 size
= HOST_PAGE_ALIGN(size
);
1675 new_block
= g_malloc0(sizeof(*new_block
));
1677 new_block
->used_length
= size
;
1678 new_block
->max_length
= size
;
1679 new_block
->flags
= share
? RAM_SHARED
: 0;
1680 new_block
->host
= file_ram_alloc(new_block
, size
,
1682 if (!new_block
->host
) {
1687 ram_block_add(new_block
, &local_err
);
1690 error_propagate(errp
, local_err
);
1698 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1699 void (*resized
)(const char*,
1702 void *host
, bool resizeable
,
1703 MemoryRegion
*mr
, Error
**errp
)
1705 RAMBlock
*new_block
;
1706 Error
*local_err
= NULL
;
1708 size
= HOST_PAGE_ALIGN(size
);
1709 max_size
= HOST_PAGE_ALIGN(max_size
);
1710 new_block
= g_malloc0(sizeof(*new_block
));
1712 new_block
->resized
= resized
;
1713 new_block
->used_length
= size
;
1714 new_block
->max_length
= max_size
;
1715 assert(max_size
>= size
);
1717 new_block
->host
= host
;
1719 new_block
->flags
|= RAM_PREALLOC
;
1722 new_block
->flags
|= RAM_RESIZEABLE
;
1724 ram_block_add(new_block
, &local_err
);
1727 error_propagate(errp
, local_err
);
1733 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1734 MemoryRegion
*mr
, Error
**errp
)
1736 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1739 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1741 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1744 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1745 void (*resized
)(const char*,
1748 MemoryRegion
*mr
, Error
**errp
)
1750 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1753 static void reclaim_ramblock(RAMBlock
*block
)
1755 if (block
->flags
& RAM_PREALLOC
) {
1757 } else if (xen_enabled()) {
1758 xen_invalidate_map_cache_entry(block
->host
);
1760 } else if (block
->fd
>= 0) {
1761 qemu_ram_munmap(block
->host
, block
->max_length
);
1765 qemu_anon_ram_free(block
->host
, block
->max_length
);
1770 void qemu_ram_free(RAMBlock
*block
)
1772 qemu_mutex_lock_ramlist();
1773 QLIST_REMOVE_RCU(block
, next
);
1774 ram_list
.mru_block
= NULL
;
1775 /* Write list before version */
1778 call_rcu(block
, reclaim_ramblock
, rcu
);
1779 qemu_mutex_unlock_ramlist();
1783 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1790 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1791 offset
= addr
- block
->offset
;
1792 if (offset
< block
->max_length
) {
1793 vaddr
= ramblock_ptr(block
, offset
);
1794 if (block
->flags
& RAM_PREALLOC
) {
1796 } else if (xen_enabled()) {
1800 if (block
->fd
>= 0) {
1801 flags
|= (block
->flags
& RAM_SHARED
?
1802 MAP_SHARED
: MAP_PRIVATE
);
1803 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1804 flags
, block
->fd
, offset
);
1807 * Remap needs to match alloc. Accelerators that
1808 * set phys_mem_alloc never remap. If they did,
1809 * we'd need a remap hook here.
1811 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1813 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1814 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1817 if (area
!= vaddr
) {
1818 fprintf(stderr
, "Could not remap addr: "
1819 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1823 memory_try_enable_merging(vaddr
, length
);
1824 qemu_ram_setup_dump(vaddr
, length
);
1829 #endif /* !_WIN32 */
1831 int qemu_get_ram_fd(ram_addr_t addr
)
1837 block
= qemu_get_ram_block(addr
);
1843 void qemu_set_ram_fd(ram_addr_t addr
, int fd
)
1848 block
= qemu_get_ram_block(addr
);
1853 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1859 block
= qemu_get_ram_block(addr
);
1860 ptr
= ramblock_ptr(block
, 0);
1865 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1866 * This should not be used for general purpose DMA. Use address_space_map
1867 * or address_space_rw instead. For local memory (e.g. video ram) that the
1868 * device owns, use memory_region_get_ram_ptr.
1870 * Called within RCU critical section.
1872 void *qemu_get_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1874 RAMBlock
*block
= ram_block
;
1876 if (block
== NULL
) {
1877 block
= qemu_get_ram_block(addr
);
1880 if (xen_enabled() && block
->host
== NULL
) {
1881 /* We need to check if the requested address is in the RAM
1882 * because we don't want to map the entire memory in QEMU.
1883 * In that case just map until the end of the page.
1885 if (block
->offset
== 0) {
1886 return xen_map_cache(addr
, 0, 0);
1889 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1891 return ramblock_ptr(block
, addr
- block
->offset
);
1894 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1895 * but takes a size argument.
1897 * Called within RCU critical section.
1899 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1902 RAMBlock
*block
= ram_block
;
1903 ram_addr_t offset_inside_block
;
1908 if (block
== NULL
) {
1909 block
= qemu_get_ram_block(addr
);
1911 offset_inside_block
= addr
- block
->offset
;
1912 *size
= MIN(*size
, block
->max_length
- offset_inside_block
);
1914 if (xen_enabled() && block
->host
== NULL
) {
1915 /* We need to check if the requested address is in the RAM
1916 * because we don't want to map the entire memory in QEMU.
1917 * In that case just map the requested area.
1919 if (block
->offset
== 0) {
1920 return xen_map_cache(addr
, *size
, 1);
1923 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1926 return ramblock_ptr(block
, offset_inside_block
);
1930 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1933 * ptr: Host pointer to look up
1934 * round_offset: If true round the result offset down to a page boundary
1935 * *ram_addr: set to result ram_addr
1936 * *offset: set to result offset within the RAMBlock
1938 * Returns: RAMBlock (or NULL if not found)
1940 * By the time this function returns, the returned pointer is not protected
1941 * by RCU anymore. If the caller is not within an RCU critical section and
1942 * does not hold the iothread lock, it must have other means of protecting the
1943 * pointer, such as a reference to the region that includes the incoming
1946 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1947 ram_addr_t
*ram_addr
,
1951 uint8_t *host
= ptr
;
1953 if (xen_enabled()) {
1955 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1956 block
= qemu_get_ram_block(*ram_addr
);
1958 *offset
= (host
- block
->host
);
1965 block
= atomic_rcu_read(&ram_list
.mru_block
);
1966 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1970 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1971 /* This case append when the block is not mapped. */
1972 if (block
->host
== NULL
) {
1975 if (host
- block
->host
< block
->max_length
) {
1984 *offset
= (host
- block
->host
);
1986 *offset
&= TARGET_PAGE_MASK
;
1988 *ram_addr
= block
->offset
+ *offset
;
1994 * Finds the named RAMBlock
1996 * name: The name of RAMBlock to find
1998 * Returns: RAMBlock (or NULL if not found)
2000 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2004 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2005 if (!strcmp(name
, block
->idstr
)) {
2013 /* Some of the softmmu routines need to translate from a host pointer
2014 (typically a TLB entry) back to a ram offset. */
2015 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2018 ram_addr_t offset
; /* Not used */
2020 block
= qemu_ram_block_from_host(ptr
, false, ram_addr
, &offset
);
2029 /* Called within RCU critical section. */
2030 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2031 uint64_t val
, unsigned size
)
2033 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2034 tb_invalidate_phys_page_fast(ram_addr
, size
);
2038 stb_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2041 stw_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2044 stl_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2049 /* Set both VGA and migration bits for simplicity and to remove
2050 * the notdirty callback faster.
2052 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2053 DIRTY_CLIENTS_NOCODE
);
2054 /* we remove the notdirty callback only if the code has been
2056 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2057 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2061 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2062 unsigned size
, bool is_write
)
2067 static const MemoryRegionOps notdirty_mem_ops
= {
2068 .write
= notdirty_mem_write
,
2069 .valid
.accepts
= notdirty_mem_accepts
,
2070 .endianness
= DEVICE_NATIVE_ENDIAN
,
2073 /* Generate a debug exception if a watchpoint has been hit. */
2074 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2076 CPUState
*cpu
= current_cpu
;
2077 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2078 CPUArchState
*env
= cpu
->env_ptr
;
2079 target_ulong pc
, cs_base
;
2084 if (cpu
->watchpoint_hit
) {
2085 /* We re-entered the check after replacing the TB. Now raise
2086 * the debug interrupt so that is will trigger after the
2087 * current instruction. */
2088 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2091 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2092 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2093 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2094 && (wp
->flags
& flags
)) {
2095 if (flags
== BP_MEM_READ
) {
2096 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2098 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2100 wp
->hitaddr
= vaddr
;
2101 wp
->hitattrs
= attrs
;
2102 if (!cpu
->watchpoint_hit
) {
2103 if (wp
->flags
& BP_CPU
&&
2104 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2105 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2108 cpu
->watchpoint_hit
= wp
;
2109 tb_check_watchpoint(cpu
);
2110 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2111 cpu
->exception_index
= EXCP_DEBUG
;
2114 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2115 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2116 cpu_resume_from_signal(cpu
, NULL
);
2120 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2125 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2126 so these check for a hit then pass through to the normal out-of-line
2128 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2129 unsigned size
, MemTxAttrs attrs
)
2133 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2134 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2136 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2139 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2142 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2145 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2153 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2154 uint64_t val
, unsigned size
,
2158 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2159 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2161 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2164 address_space_stb(as
, addr
, val
, attrs
, &res
);
2167 address_space_stw(as
, addr
, val
, attrs
, &res
);
2170 address_space_stl(as
, addr
, val
, attrs
, &res
);
2177 static const MemoryRegionOps watch_mem_ops
= {
2178 .read_with_attrs
= watch_mem_read
,
2179 .write_with_attrs
= watch_mem_write
,
2180 .endianness
= DEVICE_NATIVE_ENDIAN
,
2183 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2184 unsigned len
, MemTxAttrs attrs
)
2186 subpage_t
*subpage
= opaque
;
2190 #if defined(DEBUG_SUBPAGE)
2191 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2192 subpage
, len
, addr
);
2194 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2201 *data
= ldub_p(buf
);
2204 *data
= lduw_p(buf
);
2217 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2218 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2220 subpage_t
*subpage
= opaque
;
2223 #if defined(DEBUG_SUBPAGE)
2224 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2225 " value %"PRIx64
"\n",
2226 __func__
, subpage
, len
, addr
, value
);
2244 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2248 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2249 unsigned len
, bool is_write
)
2251 subpage_t
*subpage
= opaque
;
2252 #if defined(DEBUG_SUBPAGE)
2253 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2254 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2257 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2261 static const MemoryRegionOps subpage_ops
= {
2262 .read_with_attrs
= subpage_read
,
2263 .write_with_attrs
= subpage_write
,
2264 .impl
.min_access_size
= 1,
2265 .impl
.max_access_size
= 8,
2266 .valid
.min_access_size
= 1,
2267 .valid
.max_access_size
= 8,
2268 .valid
.accepts
= subpage_accepts
,
2269 .endianness
= DEVICE_NATIVE_ENDIAN
,
2272 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2277 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2279 idx
= SUBPAGE_IDX(start
);
2280 eidx
= SUBPAGE_IDX(end
);
2281 #if defined(DEBUG_SUBPAGE)
2282 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2283 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2285 for (; idx
<= eidx
; idx
++) {
2286 mmio
->sub_section
[idx
] = section
;
2292 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2296 mmio
= g_malloc0(sizeof(subpage_t
));
2300 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2301 NULL
, TARGET_PAGE_SIZE
);
2302 mmio
->iomem
.subpage
= true;
2303 #if defined(DEBUG_SUBPAGE)
2304 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2305 mmio
, base
, TARGET_PAGE_SIZE
);
2307 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2312 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2316 MemoryRegionSection section
= {
2317 .address_space
= as
,
2319 .offset_within_address_space
= 0,
2320 .offset_within_region
= 0,
2321 .size
= int128_2_64(),
2324 return phys_section_add(map
, §ion
);
2327 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2329 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2330 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2331 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2332 MemoryRegionSection
*sections
= d
->map
.sections
;
2334 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2337 static void io_mem_init(void)
2339 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2340 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2342 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2344 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2348 static void mem_begin(MemoryListener
*listener
)
2350 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2351 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2354 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2355 assert(n
== PHYS_SECTION_UNASSIGNED
);
2356 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2357 assert(n
== PHYS_SECTION_NOTDIRTY
);
2358 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2359 assert(n
== PHYS_SECTION_ROM
);
2360 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2361 assert(n
== PHYS_SECTION_WATCH
);
2363 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2365 as
->next_dispatch
= d
;
2368 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2370 phys_sections_free(&d
->map
);
2374 static void mem_commit(MemoryListener
*listener
)
2376 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2377 AddressSpaceDispatch
*cur
= as
->dispatch
;
2378 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2380 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2382 atomic_rcu_set(&as
->dispatch
, next
);
2384 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2388 static void tcg_commit(MemoryListener
*listener
)
2390 CPUAddressSpace
*cpuas
;
2391 AddressSpaceDispatch
*d
;
2393 /* since each CPU stores ram addresses in its TLB cache, we must
2394 reset the modified entries */
2395 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2396 cpu_reloading_memory_map();
2397 /* The CPU and TLB are protected by the iothread lock.
2398 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2399 * may have split the RCU critical section.
2401 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2402 cpuas
->memory_dispatch
= d
;
2403 tlb_flush(cpuas
->cpu
, 1);
2406 void address_space_init_dispatch(AddressSpace
*as
)
2408 as
->dispatch
= NULL
;
2409 as
->dispatch_listener
= (MemoryListener
) {
2411 .commit
= mem_commit
,
2412 .region_add
= mem_add
,
2413 .region_nop
= mem_add
,
2416 memory_listener_register(&as
->dispatch_listener
, as
);
2419 void address_space_unregister(AddressSpace
*as
)
2421 memory_listener_unregister(&as
->dispatch_listener
);
2424 void address_space_destroy_dispatch(AddressSpace
*as
)
2426 AddressSpaceDispatch
*d
= as
->dispatch
;
2428 atomic_rcu_set(&as
->dispatch
, NULL
);
2430 call_rcu(d
, address_space_dispatch_free
, rcu
);
2434 static void memory_map_init(void)
2436 system_memory
= g_malloc(sizeof(*system_memory
));
2438 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2439 address_space_init(&address_space_memory
, system_memory
, "memory");
2441 system_io
= g_malloc(sizeof(*system_io
));
2442 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2444 address_space_init(&address_space_io
, system_io
, "I/O");
2447 MemoryRegion
*get_system_memory(void)
2449 return system_memory
;
2452 MemoryRegion
*get_system_io(void)
2457 #endif /* !defined(CONFIG_USER_ONLY) */
2459 /* physical memory access (slow version, mainly for debug) */
2460 #if defined(CONFIG_USER_ONLY)
2461 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2462 uint8_t *buf
, int len
, int is_write
)
2469 page
= addr
& TARGET_PAGE_MASK
;
2470 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2473 flags
= page_get_flags(page
);
2474 if (!(flags
& PAGE_VALID
))
2477 if (!(flags
& PAGE_WRITE
))
2479 /* XXX: this code should not depend on lock_user */
2480 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2483 unlock_user(p
, addr
, l
);
2485 if (!(flags
& PAGE_READ
))
2487 /* XXX: this code should not depend on lock_user */
2488 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2491 unlock_user(p
, addr
, 0);
2502 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2505 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2506 /* No early return if dirty_log_mask is or becomes 0, because
2507 * cpu_physical_memory_set_dirty_range will still call
2508 * xen_modified_memory.
2510 if (dirty_log_mask
) {
2512 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2514 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2515 tb_invalidate_phys_range(addr
, addr
+ length
);
2516 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2518 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2521 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2523 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2525 /* Regions are assumed to support 1-4 byte accesses unless
2526 otherwise specified. */
2527 if (access_size_max
== 0) {
2528 access_size_max
= 4;
2531 /* Bound the maximum access by the alignment of the address. */
2532 if (!mr
->ops
->impl
.unaligned
) {
2533 unsigned align_size_max
= addr
& -addr
;
2534 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2535 access_size_max
= align_size_max
;
2539 /* Don't attempt accesses larger than the maximum. */
2540 if (l
> access_size_max
) {
2541 l
= access_size_max
;
2548 static bool prepare_mmio_access(MemoryRegion
*mr
)
2550 bool unlocked
= !qemu_mutex_iothread_locked();
2551 bool release_lock
= false;
2553 if (unlocked
&& mr
->global_locking
) {
2554 qemu_mutex_lock_iothread();
2556 release_lock
= true;
2558 if (mr
->flush_coalesced_mmio
) {
2560 qemu_mutex_lock_iothread();
2562 qemu_flush_coalesced_mmio_buffer();
2564 qemu_mutex_unlock_iothread();
2568 return release_lock
;
2571 /* Called within RCU critical section. */
2572 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2575 int len
, hwaddr addr1
,
2576 hwaddr l
, MemoryRegion
*mr
)
2580 MemTxResult result
= MEMTX_OK
;
2581 bool release_lock
= false;
2584 if (!memory_access_is_direct(mr
, true)) {
2585 release_lock
|= prepare_mmio_access(mr
);
2586 l
= memory_access_size(mr
, l
, addr1
);
2587 /* XXX: could force current_cpu to NULL to avoid
2591 /* 64 bit write access */
2593 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2597 /* 32 bit write access */
2599 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2603 /* 16 bit write access */
2605 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2609 /* 8 bit write access */
2611 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2618 addr1
+= memory_region_get_ram_addr(mr
);
2620 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2621 memcpy(ptr
, buf
, l
);
2622 invalidate_and_set_dirty(mr
, addr1
, l
);
2626 qemu_mutex_unlock_iothread();
2627 release_lock
= false;
2639 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2645 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2646 const uint8_t *buf
, int len
)
2651 MemTxResult result
= MEMTX_OK
;
2656 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2657 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2665 /* Called within RCU critical section. */
2666 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2667 MemTxAttrs attrs
, uint8_t *buf
,
2668 int len
, hwaddr addr1
, hwaddr l
,
2673 MemTxResult result
= MEMTX_OK
;
2674 bool release_lock
= false;
2677 if (!memory_access_is_direct(mr
, false)) {
2679 release_lock
|= prepare_mmio_access(mr
);
2680 l
= memory_access_size(mr
, l
, addr1
);
2683 /* 64 bit read access */
2684 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2689 /* 32 bit read access */
2690 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2695 /* 16 bit read access */
2696 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2701 /* 8 bit read access */
2702 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2711 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
2712 memory_region_get_ram_addr(mr
) + addr1
);
2713 memcpy(buf
, ptr
, l
);
2717 qemu_mutex_unlock_iothread();
2718 release_lock
= false;
2730 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2736 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2737 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2742 MemTxResult result
= MEMTX_OK
;
2747 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2748 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2756 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2757 uint8_t *buf
, int len
, bool is_write
)
2760 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2762 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2766 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2767 int len
, int is_write
)
2769 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2770 buf
, len
, is_write
);
2773 enum write_rom_type
{
2778 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2779 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2789 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2791 if (!(memory_region_is_ram(mr
) ||
2792 memory_region_is_romd(mr
))) {
2793 l
= memory_access_size(mr
, l
, addr1
);
2795 addr1
+= memory_region_get_ram_addr(mr
);
2797 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2800 memcpy(ptr
, buf
, l
);
2801 invalidate_and_set_dirty(mr
, addr1
, l
);
2804 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2815 /* used for ROM loading : can write in RAM and ROM */
2816 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2817 const uint8_t *buf
, int len
)
2819 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2822 void cpu_flush_icache_range(hwaddr start
, int len
)
2825 * This function should do the same thing as an icache flush that was
2826 * triggered from within the guest. For TCG we are always cache coherent,
2827 * so there is no need to flush anything. For KVM / Xen we need to flush
2828 * the host's instruction cache at least.
2830 if (tcg_enabled()) {
2834 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2835 start
, NULL
, len
, FLUSH_CACHE
);
2846 static BounceBuffer bounce
;
2848 typedef struct MapClient
{
2850 QLIST_ENTRY(MapClient
) link
;
2853 QemuMutex map_client_list_lock
;
2854 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2855 = QLIST_HEAD_INITIALIZER(map_client_list
);
2857 static void cpu_unregister_map_client_do(MapClient
*client
)
2859 QLIST_REMOVE(client
, link
);
2863 static void cpu_notify_map_clients_locked(void)
2867 while (!QLIST_EMPTY(&map_client_list
)) {
2868 client
= QLIST_FIRST(&map_client_list
);
2869 qemu_bh_schedule(client
->bh
);
2870 cpu_unregister_map_client_do(client
);
2874 void cpu_register_map_client(QEMUBH
*bh
)
2876 MapClient
*client
= g_malloc(sizeof(*client
));
2878 qemu_mutex_lock(&map_client_list_lock
);
2880 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2881 if (!atomic_read(&bounce
.in_use
)) {
2882 cpu_notify_map_clients_locked();
2884 qemu_mutex_unlock(&map_client_list_lock
);
2887 void cpu_exec_init_all(void)
2889 qemu_mutex_init(&ram_list
.mutex
);
2892 qemu_mutex_init(&map_client_list_lock
);
2895 void cpu_unregister_map_client(QEMUBH
*bh
)
2899 qemu_mutex_lock(&map_client_list_lock
);
2900 QLIST_FOREACH(client
, &map_client_list
, link
) {
2901 if (client
->bh
== bh
) {
2902 cpu_unregister_map_client_do(client
);
2906 qemu_mutex_unlock(&map_client_list_lock
);
2909 static void cpu_notify_map_clients(void)
2911 qemu_mutex_lock(&map_client_list_lock
);
2912 cpu_notify_map_clients_locked();
2913 qemu_mutex_unlock(&map_client_list_lock
);
2916 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2924 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2925 if (!memory_access_is_direct(mr
, is_write
)) {
2926 l
= memory_access_size(mr
, l
, addr
);
2927 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2939 /* Map a physical memory region into a host virtual address.
2940 * May map a subset of the requested range, given by and returned in *plen.
2941 * May return NULL if resources needed to perform the mapping are exhausted.
2942 * Use only for reads OR writes - not for read-modify-write operations.
2943 * Use cpu_register_map_client() to know when retrying the map operation is
2944 * likely to succeed.
2946 void *address_space_map(AddressSpace
*as
,
2953 hwaddr l
, xlat
, base
;
2954 MemoryRegion
*mr
, *this_mr
;
2964 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2966 if (!memory_access_is_direct(mr
, is_write
)) {
2967 if (atomic_xchg(&bounce
.in_use
, true)) {
2971 /* Avoid unbounded allocations */
2972 l
= MIN(l
, TARGET_PAGE_SIZE
);
2973 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2977 memory_region_ref(mr
);
2980 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2986 return bounce
.buffer
;
2990 raddr
= memory_region_get_ram_addr(mr
);
3001 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3002 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3007 memory_region_ref(mr
);
3009 ptr
= qemu_ram_ptr_length(mr
->ram_block
, raddr
+ base
, plen
);
3015 /* Unmaps a memory region previously mapped by address_space_map().
3016 * Will also mark the memory as dirty if is_write == 1. access_len gives
3017 * the amount of memory that was actually read or written by the caller.
3019 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3020 int is_write
, hwaddr access_len
)
3022 if (buffer
!= bounce
.buffer
) {
3026 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
3029 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3031 if (xen_enabled()) {
3032 xen_invalidate_map_cache_entry(buffer
);
3034 memory_region_unref(mr
);
3038 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3039 bounce
.buffer
, access_len
);
3041 qemu_vfree(bounce
.buffer
);
3042 bounce
.buffer
= NULL
;
3043 memory_region_unref(bounce
.mr
);
3044 atomic_mb_set(&bounce
.in_use
, false);
3045 cpu_notify_map_clients();
3048 void *cpu_physical_memory_map(hwaddr addr
,
3052 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3055 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3056 int is_write
, hwaddr access_len
)
3058 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3061 /* warning: addr must be aligned */
3062 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3064 MemTxResult
*result
,
3065 enum device_endian endian
)
3073 bool release_lock
= false;
3076 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3077 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3078 release_lock
|= prepare_mmio_access(mr
);
3081 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3082 #if defined(TARGET_WORDS_BIGENDIAN)
3083 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3087 if (endian
== DEVICE_BIG_ENDIAN
) {
3093 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3094 (memory_region_get_ram_addr(mr
)
3098 case DEVICE_LITTLE_ENDIAN
:
3099 val
= ldl_le_p(ptr
);
3101 case DEVICE_BIG_ENDIAN
:
3102 val
= ldl_be_p(ptr
);
3114 qemu_mutex_unlock_iothread();
3120 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3121 MemTxAttrs attrs
, MemTxResult
*result
)
3123 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3124 DEVICE_NATIVE_ENDIAN
);
3127 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3128 MemTxAttrs attrs
, MemTxResult
*result
)
3130 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3131 DEVICE_LITTLE_ENDIAN
);
3134 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3135 MemTxAttrs attrs
, MemTxResult
*result
)
3137 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3141 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3143 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3146 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3148 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3151 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3153 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3156 /* warning: addr must be aligned */
3157 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3159 MemTxResult
*result
,
3160 enum device_endian endian
)
3168 bool release_lock
= false;
3171 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3173 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3174 release_lock
|= prepare_mmio_access(mr
);
3177 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3178 #if defined(TARGET_WORDS_BIGENDIAN)
3179 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3183 if (endian
== DEVICE_BIG_ENDIAN
) {
3189 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3190 (memory_region_get_ram_addr(mr
)
3194 case DEVICE_LITTLE_ENDIAN
:
3195 val
= ldq_le_p(ptr
);
3197 case DEVICE_BIG_ENDIAN
:
3198 val
= ldq_be_p(ptr
);
3210 qemu_mutex_unlock_iothread();
3216 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3217 MemTxAttrs attrs
, MemTxResult
*result
)
3219 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3220 DEVICE_NATIVE_ENDIAN
);
3223 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3224 MemTxAttrs attrs
, MemTxResult
*result
)
3226 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3227 DEVICE_LITTLE_ENDIAN
);
3230 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3231 MemTxAttrs attrs
, MemTxResult
*result
)
3233 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3237 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3239 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3242 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3244 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3247 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3249 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3253 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3254 MemTxAttrs attrs
, MemTxResult
*result
)
3259 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3266 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3268 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3271 /* warning: addr must be aligned */
3272 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3275 MemTxResult
*result
,
3276 enum device_endian endian
)
3284 bool release_lock
= false;
3287 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3289 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3290 release_lock
|= prepare_mmio_access(mr
);
3293 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3294 #if defined(TARGET_WORDS_BIGENDIAN)
3295 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3299 if (endian
== DEVICE_BIG_ENDIAN
) {
3305 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3306 (memory_region_get_ram_addr(mr
)
3310 case DEVICE_LITTLE_ENDIAN
:
3311 val
= lduw_le_p(ptr
);
3313 case DEVICE_BIG_ENDIAN
:
3314 val
= lduw_be_p(ptr
);
3326 qemu_mutex_unlock_iothread();
3332 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3333 MemTxAttrs attrs
, MemTxResult
*result
)
3335 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3336 DEVICE_NATIVE_ENDIAN
);
3339 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3340 MemTxAttrs attrs
, MemTxResult
*result
)
3342 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3343 DEVICE_LITTLE_ENDIAN
);
3346 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3347 MemTxAttrs attrs
, MemTxResult
*result
)
3349 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3353 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3355 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3358 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3360 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3363 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3365 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3368 /* warning: addr must be aligned. The ram page is not masked as dirty
3369 and the code inside is not invalidated. It is useful if the dirty
3370 bits are used to track modified PTEs */
3371 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3372 MemTxAttrs attrs
, MemTxResult
*result
)
3379 uint8_t dirty_log_mask
;
3380 bool release_lock
= false;
3383 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3385 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3386 release_lock
|= prepare_mmio_access(mr
);
3388 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3390 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3391 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3394 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3395 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3396 cpu_physical_memory_set_dirty_range(addr1
, 4, dirty_log_mask
);
3403 qemu_mutex_unlock_iothread();
3408 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3410 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3413 /* warning: addr must be aligned */
3414 static inline void address_space_stl_internal(AddressSpace
*as
,
3415 hwaddr addr
, uint32_t val
,
3417 MemTxResult
*result
,
3418 enum device_endian endian
)
3425 bool release_lock
= false;
3428 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3430 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3431 release_lock
|= prepare_mmio_access(mr
);
3433 #if defined(TARGET_WORDS_BIGENDIAN)
3434 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3438 if (endian
== DEVICE_BIG_ENDIAN
) {
3442 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3445 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3446 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3448 case DEVICE_LITTLE_ENDIAN
:
3451 case DEVICE_BIG_ENDIAN
:
3458 invalidate_and_set_dirty(mr
, addr1
, 4);
3465 qemu_mutex_unlock_iothread();
3470 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3471 MemTxAttrs attrs
, MemTxResult
*result
)
3473 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3474 DEVICE_NATIVE_ENDIAN
);
3477 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3478 MemTxAttrs attrs
, MemTxResult
*result
)
3480 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3481 DEVICE_LITTLE_ENDIAN
);
3484 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3485 MemTxAttrs attrs
, MemTxResult
*result
)
3487 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3491 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3493 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3496 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3498 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3501 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3503 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3507 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3508 MemTxAttrs attrs
, MemTxResult
*result
)
3513 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3519 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3521 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3524 /* warning: addr must be aligned */
3525 static inline void address_space_stw_internal(AddressSpace
*as
,
3526 hwaddr addr
, uint32_t val
,
3528 MemTxResult
*result
,
3529 enum device_endian endian
)
3536 bool release_lock
= false;
3539 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3540 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3541 release_lock
|= prepare_mmio_access(mr
);
3543 #if defined(TARGET_WORDS_BIGENDIAN)
3544 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3548 if (endian
== DEVICE_BIG_ENDIAN
) {
3552 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3555 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3556 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3558 case DEVICE_LITTLE_ENDIAN
:
3561 case DEVICE_BIG_ENDIAN
:
3568 invalidate_and_set_dirty(mr
, addr1
, 2);
3575 qemu_mutex_unlock_iothread();
3580 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3581 MemTxAttrs attrs
, MemTxResult
*result
)
3583 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3584 DEVICE_NATIVE_ENDIAN
);
3587 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3588 MemTxAttrs attrs
, MemTxResult
*result
)
3590 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3591 DEVICE_LITTLE_ENDIAN
);
3594 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3595 MemTxAttrs attrs
, MemTxResult
*result
)
3597 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3601 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3603 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3606 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3608 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3611 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3613 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3617 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3618 MemTxAttrs attrs
, MemTxResult
*result
)
3622 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3628 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3629 MemTxAttrs attrs
, MemTxResult
*result
)
3632 val
= cpu_to_le64(val
);
3633 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3638 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3639 MemTxAttrs attrs
, MemTxResult
*result
)
3642 val
= cpu_to_be64(val
);
3643 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3649 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3651 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3654 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3656 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3659 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3661 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3664 /* virtual memory access for debug (includes writing to ROM) */
3665 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3666 uint8_t *buf
, int len
, int is_write
)
3676 page
= addr
& TARGET_PAGE_MASK
;
3677 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3678 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3679 /* if no physical page mapped, return an error */
3680 if (phys_addr
== -1)
3682 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3685 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3687 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3690 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3691 MEMTXATTRS_UNSPECIFIED
,
3702 * Allows code that needs to deal with migration bitmaps etc to still be built
3703 * target independent.
3705 size_t qemu_target_page_bits(void)
3707 return TARGET_PAGE_BITS
;
3713 * A helper function for the _utterly broken_ virtio device model to find out if
3714 * it's running on a big endian machine. Don't do this at home kids!
3716 bool target_words_bigendian(void);
3717 bool target_words_bigendian(void)
3719 #if defined(TARGET_WORDS_BIGENDIAN)
3726 #ifndef CONFIG_USER_ONLY
3727 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3734 mr
= address_space_translate(&address_space_memory
,
3735 phys_addr
, &phys_addr
, &l
, false);
3737 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3742 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3748 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3749 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3750 block
->used_length
, opaque
);