postcopy: Plumb pagesize down into place helpers
[qemu/kevin.git] / migration / ram.c
blobff866643b67a28c56a0b7c06ee81a42026f70e8f
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
38 #include "migration/migration.h"
39 #include "migration/postcopy-ram.h"
40 #include "exec/address-spaces.h"
41 #include "migration/page_cache.h"
42 #include "qemu/error-report.h"
43 #include "trace.h"
44 #include "exec/ram_addr.h"
45 #include "qemu/rcu_queue.h"
46 #include "migration/colo.h"
48 static int dirty_rate_high_cnt;
50 static uint64_t bitmap_sync_count;
52 /***********************************************************/
53 /* ram save/restore */
55 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
56 #define RAM_SAVE_FLAG_COMPRESS 0x02
57 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
58 #define RAM_SAVE_FLAG_PAGE 0x08
59 #define RAM_SAVE_FLAG_EOS 0x10
60 #define RAM_SAVE_FLAG_CONTINUE 0x20
61 #define RAM_SAVE_FLAG_XBZRLE 0x40
62 /* 0x80 is reserved in migration.h start with 0x100 next */
63 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
65 static uint8_t *ZERO_TARGET_PAGE;
67 static inline bool is_zero_range(uint8_t *p, uint64_t size)
69 return buffer_is_zero(p, size);
72 /* struct contains XBZRLE cache and a static page
73 used by the compression */
74 static struct {
75 /* buffer used for XBZRLE encoding */
76 uint8_t *encoded_buf;
77 /* buffer for storing page content */
78 uint8_t *current_buf;
79 /* Cache for XBZRLE, Protected by lock. */
80 PageCache *cache;
81 QemuMutex lock;
82 } XBZRLE;
84 /* buffer used for XBZRLE decoding */
85 static uint8_t *xbzrle_decoded_buf;
87 static void XBZRLE_cache_lock(void)
89 if (migrate_use_xbzrle())
90 qemu_mutex_lock(&XBZRLE.lock);
93 static void XBZRLE_cache_unlock(void)
95 if (migrate_use_xbzrle())
96 qemu_mutex_unlock(&XBZRLE.lock);
100 * called from qmp_migrate_set_cache_size in main thread, possibly while
101 * a migration is in progress.
102 * A running migration maybe using the cache and might finish during this
103 * call, hence changes to the cache are protected by XBZRLE.lock().
105 int64_t xbzrle_cache_resize(int64_t new_size)
107 PageCache *new_cache;
108 int64_t ret;
110 if (new_size < TARGET_PAGE_SIZE) {
111 return -1;
114 XBZRLE_cache_lock();
116 if (XBZRLE.cache != NULL) {
117 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
118 goto out_new_size;
120 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
121 TARGET_PAGE_SIZE);
122 if (!new_cache) {
123 error_report("Error creating cache");
124 ret = -1;
125 goto out;
128 cache_fini(XBZRLE.cache);
129 XBZRLE.cache = new_cache;
132 out_new_size:
133 ret = pow2floor(new_size);
134 out:
135 XBZRLE_cache_unlock();
136 return ret;
139 /* accounting for migration statistics */
140 typedef struct AccountingInfo {
141 uint64_t dup_pages;
142 uint64_t skipped_pages;
143 uint64_t norm_pages;
144 uint64_t iterations;
145 uint64_t xbzrle_bytes;
146 uint64_t xbzrle_pages;
147 uint64_t xbzrle_cache_miss;
148 double xbzrle_cache_miss_rate;
149 uint64_t xbzrle_overflows;
150 } AccountingInfo;
152 static AccountingInfo acct_info;
154 static void acct_clear(void)
156 memset(&acct_info, 0, sizeof(acct_info));
159 uint64_t dup_mig_bytes_transferred(void)
161 return acct_info.dup_pages * TARGET_PAGE_SIZE;
164 uint64_t dup_mig_pages_transferred(void)
166 return acct_info.dup_pages;
169 uint64_t skipped_mig_bytes_transferred(void)
171 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
174 uint64_t skipped_mig_pages_transferred(void)
176 return acct_info.skipped_pages;
179 uint64_t norm_mig_bytes_transferred(void)
181 return acct_info.norm_pages * TARGET_PAGE_SIZE;
184 uint64_t norm_mig_pages_transferred(void)
186 return acct_info.norm_pages;
189 uint64_t xbzrle_mig_bytes_transferred(void)
191 return acct_info.xbzrle_bytes;
194 uint64_t xbzrle_mig_pages_transferred(void)
196 return acct_info.xbzrle_pages;
199 uint64_t xbzrle_mig_pages_cache_miss(void)
201 return acct_info.xbzrle_cache_miss;
204 double xbzrle_mig_cache_miss_rate(void)
206 return acct_info.xbzrle_cache_miss_rate;
209 uint64_t xbzrle_mig_pages_overflow(void)
211 return acct_info.xbzrle_overflows;
214 /* This is the last block that we have visited serching for dirty pages
216 static RAMBlock *last_seen_block;
217 /* This is the last block from where we have sent data */
218 static RAMBlock *last_sent_block;
219 static ram_addr_t last_offset;
220 static QemuMutex migration_bitmap_mutex;
221 static uint64_t migration_dirty_pages;
222 static uint32_t last_version;
223 static bool ram_bulk_stage;
225 /* used by the search for pages to send */
226 struct PageSearchStatus {
227 /* Current block being searched */
228 RAMBlock *block;
229 /* Current offset to search from */
230 ram_addr_t offset;
231 /* Set once we wrap around */
232 bool complete_round;
234 typedef struct PageSearchStatus PageSearchStatus;
236 static struct BitmapRcu {
237 struct rcu_head rcu;
238 /* Main migration bitmap */
239 unsigned long *bmap;
240 /* bitmap of pages that haven't been sent even once
241 * only maintained and used in postcopy at the moment
242 * where it's used to send the dirtymap at the start
243 * of the postcopy phase
245 unsigned long *unsentmap;
246 } *migration_bitmap_rcu;
248 struct CompressParam {
249 bool done;
250 bool quit;
251 QEMUFile *file;
252 QemuMutex mutex;
253 QemuCond cond;
254 RAMBlock *block;
255 ram_addr_t offset;
257 typedef struct CompressParam CompressParam;
259 struct DecompressParam {
260 bool done;
261 bool quit;
262 QemuMutex mutex;
263 QemuCond cond;
264 void *des;
265 uint8_t *compbuf;
266 int len;
268 typedef struct DecompressParam DecompressParam;
270 static CompressParam *comp_param;
271 static QemuThread *compress_threads;
272 /* comp_done_cond is used to wake up the migration thread when
273 * one of the compression threads has finished the compression.
274 * comp_done_lock is used to co-work with comp_done_cond.
276 static QemuMutex comp_done_lock;
277 static QemuCond comp_done_cond;
278 /* The empty QEMUFileOps will be used by file in CompressParam */
279 static const QEMUFileOps empty_ops = { };
281 static bool compression_switch;
282 static DecompressParam *decomp_param;
283 static QemuThread *decompress_threads;
284 static QemuMutex decomp_done_lock;
285 static QemuCond decomp_done_cond;
287 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
288 ram_addr_t offset);
290 static void *do_data_compress(void *opaque)
292 CompressParam *param = opaque;
293 RAMBlock *block;
294 ram_addr_t offset;
296 qemu_mutex_lock(&param->mutex);
297 while (!param->quit) {
298 if (param->block) {
299 block = param->block;
300 offset = param->offset;
301 param->block = NULL;
302 qemu_mutex_unlock(&param->mutex);
304 do_compress_ram_page(param->file, block, offset);
306 qemu_mutex_lock(&comp_done_lock);
307 param->done = true;
308 qemu_cond_signal(&comp_done_cond);
309 qemu_mutex_unlock(&comp_done_lock);
311 qemu_mutex_lock(&param->mutex);
312 } else {
313 qemu_cond_wait(&param->cond, &param->mutex);
316 qemu_mutex_unlock(&param->mutex);
318 return NULL;
321 static inline void terminate_compression_threads(void)
323 int idx, thread_count;
325 thread_count = migrate_compress_threads();
326 for (idx = 0; idx < thread_count; idx++) {
327 qemu_mutex_lock(&comp_param[idx].mutex);
328 comp_param[idx].quit = true;
329 qemu_cond_signal(&comp_param[idx].cond);
330 qemu_mutex_unlock(&comp_param[idx].mutex);
334 void migrate_compress_threads_join(void)
336 int i, thread_count;
338 if (!migrate_use_compression()) {
339 return;
341 terminate_compression_threads();
342 thread_count = migrate_compress_threads();
343 for (i = 0; i < thread_count; i++) {
344 qemu_thread_join(compress_threads + i);
345 qemu_fclose(comp_param[i].file);
346 qemu_mutex_destroy(&comp_param[i].mutex);
347 qemu_cond_destroy(&comp_param[i].cond);
349 qemu_mutex_destroy(&comp_done_lock);
350 qemu_cond_destroy(&comp_done_cond);
351 g_free(compress_threads);
352 g_free(comp_param);
353 compress_threads = NULL;
354 comp_param = NULL;
357 void migrate_compress_threads_create(void)
359 int i, thread_count;
361 if (!migrate_use_compression()) {
362 return;
364 compression_switch = true;
365 thread_count = migrate_compress_threads();
366 compress_threads = g_new0(QemuThread, thread_count);
367 comp_param = g_new0(CompressParam, thread_count);
368 qemu_cond_init(&comp_done_cond);
369 qemu_mutex_init(&comp_done_lock);
370 for (i = 0; i < thread_count; i++) {
371 /* comp_param[i].file is just used as a dummy buffer to save data,
372 * set its ops to empty.
374 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
375 comp_param[i].done = true;
376 comp_param[i].quit = false;
377 qemu_mutex_init(&comp_param[i].mutex);
378 qemu_cond_init(&comp_param[i].cond);
379 qemu_thread_create(compress_threads + i, "compress",
380 do_data_compress, comp_param + i,
381 QEMU_THREAD_JOINABLE);
386 * save_page_header: Write page header to wire
388 * If this is the 1st block, it also writes the block identification
390 * Returns: Number of bytes written
392 * @f: QEMUFile where to send the data
393 * @block: block that contains the page we want to send
394 * @offset: offset inside the block for the page
395 * in the lower bits, it contains flags
397 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
399 size_t size, len;
401 qemu_put_be64(f, offset);
402 size = 8;
404 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
405 len = strlen(block->idstr);
406 qemu_put_byte(f, len);
407 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
408 size += 1 + len;
410 return size;
413 /* Reduce amount of guest cpu execution to hopefully slow down memory writes.
414 * If guest dirty memory rate is reduced below the rate at which we can
415 * transfer pages to the destination then we should be able to complete
416 * migration. Some workloads dirty memory way too fast and will not effectively
417 * converge, even with auto-converge.
419 static void mig_throttle_guest_down(void)
421 MigrationState *s = migrate_get_current();
422 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
423 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
425 /* We have not started throttling yet. Let's start it. */
426 if (!cpu_throttle_active()) {
427 cpu_throttle_set(pct_initial);
428 } else {
429 /* Throttling already on, just increase the rate */
430 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
434 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
435 * The important thing is that a stale (not-yet-0'd) page be replaced
436 * by the new data.
437 * As a bonus, if the page wasn't in the cache it gets added so that
438 * when a small write is made into the 0'd page it gets XBZRLE sent
440 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
442 if (ram_bulk_stage || !migrate_use_xbzrle()) {
443 return;
446 /* We don't care if this fails to allocate a new cache page
447 * as long as it updated an old one */
448 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
449 bitmap_sync_count);
452 #define ENCODING_FLAG_XBZRLE 0x1
455 * save_xbzrle_page: compress and send current page
457 * Returns: 1 means that we wrote the page
458 * 0 means that page is identical to the one already sent
459 * -1 means that xbzrle would be longer than normal
461 * @f: QEMUFile where to send the data
462 * @current_data:
463 * @current_addr:
464 * @block: block that contains the page we want to send
465 * @offset: offset inside the block for the page
466 * @last_stage: if we are at the completion stage
467 * @bytes_transferred: increase it with the number of transferred bytes
469 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
470 ram_addr_t current_addr, RAMBlock *block,
471 ram_addr_t offset, bool last_stage,
472 uint64_t *bytes_transferred)
474 int encoded_len = 0, bytes_xbzrle;
475 uint8_t *prev_cached_page;
477 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
478 acct_info.xbzrle_cache_miss++;
479 if (!last_stage) {
480 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
481 bitmap_sync_count) == -1) {
482 return -1;
483 } else {
484 /* update *current_data when the page has been
485 inserted into cache */
486 *current_data = get_cached_data(XBZRLE.cache, current_addr);
489 return -1;
492 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
494 /* save current buffer into memory */
495 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
497 /* XBZRLE encoding (if there is no overflow) */
498 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
499 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
500 TARGET_PAGE_SIZE);
501 if (encoded_len == 0) {
502 trace_save_xbzrle_page_skipping();
503 return 0;
504 } else if (encoded_len == -1) {
505 trace_save_xbzrle_page_overflow();
506 acct_info.xbzrle_overflows++;
507 /* update data in the cache */
508 if (!last_stage) {
509 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
510 *current_data = prev_cached_page;
512 return -1;
515 /* we need to update the data in the cache, in order to get the same data */
516 if (!last_stage) {
517 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
520 /* Send XBZRLE based compressed page */
521 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
522 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
523 qemu_put_be16(f, encoded_len);
524 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
525 bytes_xbzrle += encoded_len + 1 + 2;
526 acct_info.xbzrle_pages++;
527 acct_info.xbzrle_bytes += bytes_xbzrle;
528 *bytes_transferred += bytes_xbzrle;
530 return 1;
533 /* Called with rcu_read_lock() to protect migration_bitmap
534 * rb: The RAMBlock to search for dirty pages in
535 * start: Start address (typically so we can continue from previous page)
536 * ram_addr_abs: Pointer into which to store the address of the dirty page
537 * within the global ram_addr space
539 * Returns: byte offset within memory region of the start of a dirty page
541 static inline
542 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb,
543 ram_addr_t start,
544 ram_addr_t *ram_addr_abs)
546 unsigned long base = rb->offset >> TARGET_PAGE_BITS;
547 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
548 uint64_t rb_size = rb->used_length;
549 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS);
550 unsigned long *bitmap;
552 unsigned long next;
554 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
555 if (ram_bulk_stage && nr > base) {
556 next = nr + 1;
557 } else {
558 next = find_next_bit(bitmap, size, nr);
561 *ram_addr_abs = next << TARGET_PAGE_BITS;
562 return (next - base) << TARGET_PAGE_BITS;
565 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr)
567 bool ret;
568 int nr = addr >> TARGET_PAGE_BITS;
569 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
571 ret = test_and_clear_bit(nr, bitmap);
573 if (ret) {
574 migration_dirty_pages--;
576 return ret;
579 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
581 unsigned long *bitmap;
582 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
583 migration_dirty_pages +=
584 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length);
587 /* Fix me: there are too many global variables used in migration process. */
588 static int64_t start_time;
589 static int64_t bytes_xfer_prev;
590 static int64_t num_dirty_pages_period;
591 static uint64_t xbzrle_cache_miss_prev;
592 static uint64_t iterations_prev;
594 static void migration_bitmap_sync_init(void)
596 start_time = 0;
597 bytes_xfer_prev = 0;
598 num_dirty_pages_period = 0;
599 xbzrle_cache_miss_prev = 0;
600 iterations_prev = 0;
603 /* Returns a summary bitmap of the page sizes of all RAMBlocks;
604 * for VMs with just normal pages this is equivalent to the
605 * host page size. If it's got some huge pages then it's the OR
606 * of all the different page sizes.
608 uint64_t ram_pagesize_summary(void)
610 RAMBlock *block;
611 uint64_t summary = 0;
613 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
614 summary |= block->page_size;
617 return summary;
620 static void migration_bitmap_sync(void)
622 RAMBlock *block;
623 uint64_t num_dirty_pages_init = migration_dirty_pages;
624 MigrationState *s = migrate_get_current();
625 int64_t end_time;
626 int64_t bytes_xfer_now;
628 bitmap_sync_count++;
630 if (!bytes_xfer_prev) {
631 bytes_xfer_prev = ram_bytes_transferred();
634 if (!start_time) {
635 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
638 trace_migration_bitmap_sync_start();
639 memory_global_dirty_log_sync();
641 qemu_mutex_lock(&migration_bitmap_mutex);
642 rcu_read_lock();
643 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
644 migration_bitmap_sync_range(block->offset, block->used_length);
646 rcu_read_unlock();
647 qemu_mutex_unlock(&migration_bitmap_mutex);
649 trace_migration_bitmap_sync_end(migration_dirty_pages
650 - num_dirty_pages_init);
651 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
652 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
654 /* more than 1 second = 1000 millisecons */
655 if (end_time > start_time + 1000) {
656 if (migrate_auto_converge()) {
657 /* The following detection logic can be refined later. For now:
658 Check to see if the dirtied bytes is 50% more than the approx.
659 amount of bytes that just got transferred since the last time we
660 were in this routine. If that happens twice, start or increase
661 throttling */
662 bytes_xfer_now = ram_bytes_transferred();
664 if (s->dirty_pages_rate &&
665 (num_dirty_pages_period * TARGET_PAGE_SIZE >
666 (bytes_xfer_now - bytes_xfer_prev)/2) &&
667 (dirty_rate_high_cnt++ >= 2)) {
668 trace_migration_throttle();
669 dirty_rate_high_cnt = 0;
670 mig_throttle_guest_down();
672 bytes_xfer_prev = bytes_xfer_now;
675 if (migrate_use_xbzrle()) {
676 if (iterations_prev != acct_info.iterations) {
677 acct_info.xbzrle_cache_miss_rate =
678 (double)(acct_info.xbzrle_cache_miss -
679 xbzrle_cache_miss_prev) /
680 (acct_info.iterations - iterations_prev);
682 iterations_prev = acct_info.iterations;
683 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
685 s->dirty_pages_rate = num_dirty_pages_period * 1000
686 / (end_time - start_time);
687 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
688 start_time = end_time;
689 num_dirty_pages_period = 0;
691 s->dirty_sync_count = bitmap_sync_count;
692 if (migrate_use_events()) {
693 qapi_event_send_migration_pass(bitmap_sync_count, NULL);
698 * save_zero_page: Send the zero page to the stream
700 * Returns: Number of pages written.
702 * @f: QEMUFile where to send the data
703 * @block: block that contains the page we want to send
704 * @offset: offset inside the block for the page
705 * @p: pointer to the page
706 * @bytes_transferred: increase it with the number of transferred bytes
708 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
709 uint8_t *p, uint64_t *bytes_transferred)
711 int pages = -1;
713 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
714 acct_info.dup_pages++;
715 *bytes_transferred += save_page_header(f, block,
716 offset | RAM_SAVE_FLAG_COMPRESS);
717 qemu_put_byte(f, 0);
718 *bytes_transferred += 1;
719 pages = 1;
722 return pages;
725 static void ram_release_pages(MigrationState *ms, const char *block_name,
726 uint64_t offset, int pages)
728 if (!migrate_release_ram() || !migration_in_postcopy(ms)) {
729 return;
732 ram_discard_range(NULL, block_name, offset, pages << TARGET_PAGE_BITS);
736 * ram_save_page: Send the given page to the stream
738 * Returns: Number of pages written.
739 * < 0 - error
740 * >=0 - Number of pages written - this might legally be 0
741 * if xbzrle noticed the page was the same.
743 * @ms: The current migration state.
744 * @f: QEMUFile where to send the data
745 * @block: block that contains the page we want to send
746 * @offset: offset inside the block for the page
747 * @last_stage: if we are at the completion stage
748 * @bytes_transferred: increase it with the number of transferred bytes
750 static int ram_save_page(MigrationState *ms, QEMUFile *f, PageSearchStatus *pss,
751 bool last_stage, uint64_t *bytes_transferred)
753 int pages = -1;
754 uint64_t bytes_xmit;
755 ram_addr_t current_addr;
756 uint8_t *p;
757 int ret;
758 bool send_async = true;
759 RAMBlock *block = pss->block;
760 ram_addr_t offset = pss->offset;
762 p = block->host + offset;
764 /* In doubt sent page as normal */
765 bytes_xmit = 0;
766 ret = ram_control_save_page(f, block->offset,
767 offset, TARGET_PAGE_SIZE, &bytes_xmit);
768 if (bytes_xmit) {
769 *bytes_transferred += bytes_xmit;
770 pages = 1;
773 XBZRLE_cache_lock();
775 current_addr = block->offset + offset;
777 if (block == last_sent_block) {
778 offset |= RAM_SAVE_FLAG_CONTINUE;
780 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
781 if (ret != RAM_SAVE_CONTROL_DELAYED) {
782 if (bytes_xmit > 0) {
783 acct_info.norm_pages++;
784 } else if (bytes_xmit == 0) {
785 acct_info.dup_pages++;
788 } else {
789 pages = save_zero_page(f, block, offset, p, bytes_transferred);
790 if (pages > 0) {
791 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
792 * page would be stale
794 xbzrle_cache_zero_page(current_addr);
795 ram_release_pages(ms, block->idstr, pss->offset, pages);
796 } else if (!ram_bulk_stage &&
797 !migration_in_postcopy(ms) && migrate_use_xbzrle()) {
798 pages = save_xbzrle_page(f, &p, current_addr, block,
799 offset, last_stage, bytes_transferred);
800 if (!last_stage) {
801 /* Can't send this cached data async, since the cache page
802 * might get updated before it gets to the wire
804 send_async = false;
809 /* XBZRLE overflow or normal page */
810 if (pages == -1) {
811 *bytes_transferred += save_page_header(f, block,
812 offset | RAM_SAVE_FLAG_PAGE);
813 if (send_async) {
814 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE,
815 migrate_release_ram() &
816 migration_in_postcopy(ms));
817 } else {
818 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
820 *bytes_transferred += TARGET_PAGE_SIZE;
821 pages = 1;
822 acct_info.norm_pages++;
825 XBZRLE_cache_unlock();
827 return pages;
830 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
831 ram_addr_t offset)
833 int bytes_sent, blen;
834 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
836 bytes_sent = save_page_header(f, block, offset |
837 RAM_SAVE_FLAG_COMPRESS_PAGE);
838 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
839 migrate_compress_level());
840 if (blen < 0) {
841 bytes_sent = 0;
842 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
843 error_report("compressed data failed!");
844 } else {
845 bytes_sent += blen;
846 ram_release_pages(migrate_get_current(), block->idstr,
847 offset & TARGET_PAGE_MASK, 1);
850 return bytes_sent;
853 static uint64_t bytes_transferred;
855 static void flush_compressed_data(QEMUFile *f)
857 int idx, len, thread_count;
859 if (!migrate_use_compression()) {
860 return;
862 thread_count = migrate_compress_threads();
864 qemu_mutex_lock(&comp_done_lock);
865 for (idx = 0; idx < thread_count; idx++) {
866 while (!comp_param[idx].done) {
867 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
870 qemu_mutex_unlock(&comp_done_lock);
872 for (idx = 0; idx < thread_count; idx++) {
873 qemu_mutex_lock(&comp_param[idx].mutex);
874 if (!comp_param[idx].quit) {
875 len = qemu_put_qemu_file(f, comp_param[idx].file);
876 bytes_transferred += len;
878 qemu_mutex_unlock(&comp_param[idx].mutex);
882 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
883 ram_addr_t offset)
885 param->block = block;
886 param->offset = offset;
889 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
890 ram_addr_t offset,
891 uint64_t *bytes_transferred)
893 int idx, thread_count, bytes_xmit = -1, pages = -1;
895 thread_count = migrate_compress_threads();
896 qemu_mutex_lock(&comp_done_lock);
897 while (true) {
898 for (idx = 0; idx < thread_count; idx++) {
899 if (comp_param[idx].done) {
900 comp_param[idx].done = false;
901 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
902 qemu_mutex_lock(&comp_param[idx].mutex);
903 set_compress_params(&comp_param[idx], block, offset);
904 qemu_cond_signal(&comp_param[idx].cond);
905 qemu_mutex_unlock(&comp_param[idx].mutex);
906 pages = 1;
907 acct_info.norm_pages++;
908 *bytes_transferred += bytes_xmit;
909 break;
912 if (pages > 0) {
913 break;
914 } else {
915 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
918 qemu_mutex_unlock(&comp_done_lock);
920 return pages;
924 * ram_save_compressed_page: compress the given page and send it to the stream
926 * Returns: Number of pages written.
928 * @ms: The current migration state.
929 * @f: QEMUFile where to send the data
930 * @block: block that contains the page we want to send
931 * @offset: offset inside the block for the page
932 * @last_stage: if we are at the completion stage
933 * @bytes_transferred: increase it with the number of transferred bytes
935 static int ram_save_compressed_page(MigrationState *ms, QEMUFile *f,
936 PageSearchStatus *pss, bool last_stage,
937 uint64_t *bytes_transferred)
939 int pages = -1;
940 uint64_t bytes_xmit = 0;
941 uint8_t *p;
942 int ret, blen;
943 RAMBlock *block = pss->block;
944 ram_addr_t offset = pss->offset;
946 p = block->host + offset;
948 ret = ram_control_save_page(f, block->offset,
949 offset, TARGET_PAGE_SIZE, &bytes_xmit);
950 if (bytes_xmit) {
951 *bytes_transferred += bytes_xmit;
952 pages = 1;
954 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
955 if (ret != RAM_SAVE_CONTROL_DELAYED) {
956 if (bytes_xmit > 0) {
957 acct_info.norm_pages++;
958 } else if (bytes_xmit == 0) {
959 acct_info.dup_pages++;
962 } else {
963 /* When starting the process of a new block, the first page of
964 * the block should be sent out before other pages in the same
965 * block, and all the pages in last block should have been sent
966 * out, keeping this order is important, because the 'cont' flag
967 * is used to avoid resending the block name.
969 if (block != last_sent_block) {
970 flush_compressed_data(f);
971 pages = save_zero_page(f, block, offset, p, bytes_transferred);
972 if (pages == -1) {
973 /* Make sure the first page is sent out before other pages */
974 bytes_xmit = save_page_header(f, block, offset |
975 RAM_SAVE_FLAG_COMPRESS_PAGE);
976 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
977 migrate_compress_level());
978 if (blen > 0) {
979 *bytes_transferred += bytes_xmit + blen;
980 acct_info.norm_pages++;
981 pages = 1;
982 } else {
983 qemu_file_set_error(f, blen);
984 error_report("compressed data failed!");
987 if (pages > 0) {
988 ram_release_pages(ms, block->idstr, pss->offset, pages);
990 } else {
991 offset |= RAM_SAVE_FLAG_CONTINUE;
992 pages = save_zero_page(f, block, offset, p, bytes_transferred);
993 if (pages == -1) {
994 pages = compress_page_with_multi_thread(f, block, offset,
995 bytes_transferred);
996 } else {
997 ram_release_pages(ms, block->idstr, pss->offset, pages);
1002 return pages;
1006 * Find the next dirty page and update any state associated with
1007 * the search process.
1009 * Returns: True if a page is found
1011 * @f: Current migration stream.
1012 * @pss: Data about the state of the current dirty page scan.
1013 * @*again: Set to false if the search has scanned the whole of RAM
1014 * *ram_addr_abs: Pointer into which to store the address of the dirty page
1015 * within the global ram_addr space
1017 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss,
1018 bool *again, ram_addr_t *ram_addr_abs)
1020 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset,
1021 ram_addr_abs);
1022 if (pss->complete_round && pss->block == last_seen_block &&
1023 pss->offset >= last_offset) {
1025 * We've been once around the RAM and haven't found anything.
1026 * Give up.
1028 *again = false;
1029 return false;
1031 if (pss->offset >= pss->block->used_length) {
1032 /* Didn't find anything in this RAM Block */
1033 pss->offset = 0;
1034 pss->block = QLIST_NEXT_RCU(pss->block, next);
1035 if (!pss->block) {
1036 /* Hit the end of the list */
1037 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1038 /* Flag that we've looped */
1039 pss->complete_round = true;
1040 ram_bulk_stage = false;
1041 if (migrate_use_xbzrle()) {
1042 /* If xbzrle is on, stop using the data compression at this
1043 * point. In theory, xbzrle can do better than compression.
1045 flush_compressed_data(f);
1046 compression_switch = false;
1049 /* Didn't find anything this time, but try again on the new block */
1050 *again = true;
1051 return false;
1052 } else {
1053 /* Can go around again, but... */
1054 *again = true;
1055 /* We've found something so probably don't need to */
1056 return true;
1061 * Helper for 'get_queued_page' - gets a page off the queue
1062 * ms: MigrationState in
1063 * *offset: Used to return the offset within the RAMBlock
1064 * ram_addr_abs: global offset in the dirty/sent bitmaps
1066 * Returns: block (or NULL if none available)
1068 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset,
1069 ram_addr_t *ram_addr_abs)
1071 RAMBlock *block = NULL;
1073 qemu_mutex_lock(&ms->src_page_req_mutex);
1074 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) {
1075 struct MigrationSrcPageRequest *entry =
1076 QSIMPLEQ_FIRST(&ms->src_page_requests);
1077 block = entry->rb;
1078 *offset = entry->offset;
1079 *ram_addr_abs = (entry->offset + entry->rb->offset) &
1080 TARGET_PAGE_MASK;
1082 if (entry->len > TARGET_PAGE_SIZE) {
1083 entry->len -= TARGET_PAGE_SIZE;
1084 entry->offset += TARGET_PAGE_SIZE;
1085 } else {
1086 memory_region_unref(block->mr);
1087 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1088 g_free(entry);
1091 qemu_mutex_unlock(&ms->src_page_req_mutex);
1093 return block;
1097 * Unqueue a page from the queue fed by postcopy page requests; skips pages
1098 * that are already sent (!dirty)
1100 * ms: MigrationState in
1101 * pss: PageSearchStatus structure updated with found block/offset
1102 * ram_addr_abs: global offset in the dirty/sent bitmaps
1104 * Returns: true if a queued page is found
1106 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss,
1107 ram_addr_t *ram_addr_abs)
1109 RAMBlock *block;
1110 ram_addr_t offset;
1111 bool dirty;
1113 do {
1114 block = unqueue_page(ms, &offset, ram_addr_abs);
1116 * We're sending this page, and since it's postcopy nothing else
1117 * will dirty it, and we must make sure it doesn't get sent again
1118 * even if this queue request was received after the background
1119 * search already sent it.
1121 if (block) {
1122 unsigned long *bitmap;
1123 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1124 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap);
1125 if (!dirty) {
1126 trace_get_queued_page_not_dirty(
1127 block->idstr, (uint64_t)offset,
1128 (uint64_t)*ram_addr_abs,
1129 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS,
1130 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap));
1131 } else {
1132 trace_get_queued_page(block->idstr,
1133 (uint64_t)offset,
1134 (uint64_t)*ram_addr_abs);
1138 } while (block && !dirty);
1140 if (block) {
1142 * As soon as we start servicing pages out of order, then we have
1143 * to kill the bulk stage, since the bulk stage assumes
1144 * in (migration_bitmap_find_and_reset_dirty) that every page is
1145 * dirty, that's no longer true.
1147 ram_bulk_stage = false;
1150 * We want the background search to continue from the queued page
1151 * since the guest is likely to want other pages near to the page
1152 * it just requested.
1154 pss->block = block;
1155 pss->offset = offset;
1158 return !!block;
1162 * flush_page_queue: Flush any remaining pages in the ram request queue
1163 * it should be empty at the end anyway, but in error cases there may be
1164 * some left.
1166 * ms: MigrationState
1168 void flush_page_queue(MigrationState *ms)
1170 struct MigrationSrcPageRequest *mspr, *next_mspr;
1171 /* This queue generally should be empty - but in the case of a failed
1172 * migration might have some droppings in.
1174 rcu_read_lock();
1175 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) {
1176 memory_region_unref(mspr->rb->mr);
1177 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req);
1178 g_free(mspr);
1180 rcu_read_unlock();
1184 * Queue the pages for transmission, e.g. a request from postcopy destination
1185 * ms: MigrationStatus in which the queue is held
1186 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last)
1187 * start: Offset from the start of the RAMBlock
1188 * len: Length (in bytes) to send
1189 * Return: 0 on success
1191 int ram_save_queue_pages(MigrationState *ms, const char *rbname,
1192 ram_addr_t start, ram_addr_t len)
1194 RAMBlock *ramblock;
1196 ms->postcopy_requests++;
1197 rcu_read_lock();
1198 if (!rbname) {
1199 /* Reuse last RAMBlock */
1200 ramblock = ms->last_req_rb;
1202 if (!ramblock) {
1204 * Shouldn't happen, we can't reuse the last RAMBlock if
1205 * it's the 1st request.
1207 error_report("ram_save_queue_pages no previous block");
1208 goto err;
1210 } else {
1211 ramblock = qemu_ram_block_by_name(rbname);
1213 if (!ramblock) {
1214 /* We shouldn't be asked for a non-existent RAMBlock */
1215 error_report("ram_save_queue_pages no block '%s'", rbname);
1216 goto err;
1218 ms->last_req_rb = ramblock;
1220 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1221 if (start+len > ramblock->used_length) {
1222 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1223 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1224 __func__, start, len, ramblock->used_length);
1225 goto err;
1228 struct MigrationSrcPageRequest *new_entry =
1229 g_malloc0(sizeof(struct MigrationSrcPageRequest));
1230 new_entry->rb = ramblock;
1231 new_entry->offset = start;
1232 new_entry->len = len;
1234 memory_region_ref(ramblock->mr);
1235 qemu_mutex_lock(&ms->src_page_req_mutex);
1236 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req);
1237 qemu_mutex_unlock(&ms->src_page_req_mutex);
1238 rcu_read_unlock();
1240 return 0;
1242 err:
1243 rcu_read_unlock();
1244 return -1;
1248 * ram_save_target_page: Save one target page
1251 * @f: QEMUFile where to send the data
1252 * @block: pointer to block that contains the page we want to send
1253 * @offset: offset inside the block for the page;
1254 * @last_stage: if we are at the completion stage
1255 * @bytes_transferred: increase it with the number of transferred bytes
1256 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1258 * Returns: Number of pages written.
1260 static int ram_save_target_page(MigrationState *ms, QEMUFile *f,
1261 PageSearchStatus *pss,
1262 bool last_stage,
1263 uint64_t *bytes_transferred,
1264 ram_addr_t dirty_ram_abs)
1266 int res = 0;
1268 /* Check the pages is dirty and if it is send it */
1269 if (migration_bitmap_clear_dirty(dirty_ram_abs)) {
1270 unsigned long *unsentmap;
1271 if (compression_switch && migrate_use_compression()) {
1272 res = ram_save_compressed_page(ms, f, pss,
1273 last_stage,
1274 bytes_transferred);
1275 } else {
1276 res = ram_save_page(ms, f, pss, last_stage,
1277 bytes_transferred);
1280 if (res < 0) {
1281 return res;
1283 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1284 if (unsentmap) {
1285 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap);
1287 /* Only update last_sent_block if a block was actually sent; xbzrle
1288 * might have decided the page was identical so didn't bother writing
1289 * to the stream.
1291 if (res > 0) {
1292 last_sent_block = pss->block;
1296 return res;
1300 * ram_save_host_page: Starting at *offset send pages up to the end
1301 * of the current host page. It's valid for the initial
1302 * offset to point into the middle of a host page
1303 * in which case the remainder of the hostpage is sent.
1304 * Only dirty target pages are sent.
1306 * Returns: Number of pages written.
1308 * @f: QEMUFile where to send the data
1309 * @block: pointer to block that contains the page we want to send
1310 * @offset: offset inside the block for the page; updated to last target page
1311 * sent
1312 * @last_stage: if we are at the completion stage
1313 * @bytes_transferred: increase it with the number of transferred bytes
1314 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space
1316 static int ram_save_host_page(MigrationState *ms, QEMUFile *f,
1317 PageSearchStatus *pss,
1318 bool last_stage,
1319 uint64_t *bytes_transferred,
1320 ram_addr_t dirty_ram_abs)
1322 int tmppages, pages = 0;
1323 do {
1324 tmppages = ram_save_target_page(ms, f, pss, last_stage,
1325 bytes_transferred, dirty_ram_abs);
1326 if (tmppages < 0) {
1327 return tmppages;
1330 pages += tmppages;
1331 pss->offset += TARGET_PAGE_SIZE;
1332 dirty_ram_abs += TARGET_PAGE_SIZE;
1333 } while (pss->offset & (qemu_host_page_size - 1));
1335 /* The offset we leave with is the last one we looked at */
1336 pss->offset -= TARGET_PAGE_SIZE;
1337 return pages;
1341 * ram_find_and_save_block: Finds a dirty page and sends it to f
1343 * Called within an RCU critical section.
1345 * Returns: The number of pages written
1346 * 0 means no dirty pages
1348 * @f: QEMUFile where to send the data
1349 * @last_stage: if we are at the completion stage
1350 * @bytes_transferred: increase it with the number of transferred bytes
1352 * On systems where host-page-size > target-page-size it will send all the
1353 * pages in a host page that are dirty.
1356 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
1357 uint64_t *bytes_transferred)
1359 PageSearchStatus pss;
1360 MigrationState *ms = migrate_get_current();
1361 int pages = 0;
1362 bool again, found;
1363 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in
1364 ram_addr_t space */
1366 /* No dirty page as there is zero RAM */
1367 if (!ram_bytes_total()) {
1368 return pages;
1371 pss.block = last_seen_block;
1372 pss.offset = last_offset;
1373 pss.complete_round = false;
1375 if (!pss.block) {
1376 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1379 do {
1380 again = true;
1381 found = get_queued_page(ms, &pss, &dirty_ram_abs);
1383 if (!found) {
1384 /* priority queue empty, so just search for something dirty */
1385 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs);
1388 if (found) {
1389 pages = ram_save_host_page(ms, f, &pss,
1390 last_stage, bytes_transferred,
1391 dirty_ram_abs);
1393 } while (!pages && again);
1395 last_seen_block = pss.block;
1396 last_offset = pss.offset;
1398 return pages;
1401 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1403 uint64_t pages = size / TARGET_PAGE_SIZE;
1404 if (zero) {
1405 acct_info.dup_pages += pages;
1406 } else {
1407 acct_info.norm_pages += pages;
1408 bytes_transferred += size;
1409 qemu_update_position(f, size);
1413 static ram_addr_t ram_save_remaining(void)
1415 return migration_dirty_pages;
1418 uint64_t ram_bytes_remaining(void)
1420 return ram_save_remaining() * TARGET_PAGE_SIZE;
1423 uint64_t ram_bytes_transferred(void)
1425 return bytes_transferred;
1428 uint64_t ram_bytes_total(void)
1430 RAMBlock *block;
1431 uint64_t total = 0;
1433 rcu_read_lock();
1434 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1435 total += block->used_length;
1436 rcu_read_unlock();
1437 return total;
1440 void free_xbzrle_decoded_buf(void)
1442 g_free(xbzrle_decoded_buf);
1443 xbzrle_decoded_buf = NULL;
1446 static void migration_bitmap_free(struct BitmapRcu *bmap)
1448 g_free(bmap->bmap);
1449 g_free(bmap->unsentmap);
1450 g_free(bmap);
1453 static void ram_migration_cleanup(void *opaque)
1455 /* caller have hold iothread lock or is in a bh, so there is
1456 * no writing race against this migration_bitmap
1458 struct BitmapRcu *bitmap = migration_bitmap_rcu;
1459 atomic_rcu_set(&migration_bitmap_rcu, NULL);
1460 if (bitmap) {
1461 memory_global_dirty_log_stop();
1462 call_rcu(bitmap, migration_bitmap_free, rcu);
1465 XBZRLE_cache_lock();
1466 if (XBZRLE.cache) {
1467 cache_fini(XBZRLE.cache);
1468 g_free(XBZRLE.encoded_buf);
1469 g_free(XBZRLE.current_buf);
1470 g_free(ZERO_TARGET_PAGE);
1471 XBZRLE.cache = NULL;
1472 XBZRLE.encoded_buf = NULL;
1473 XBZRLE.current_buf = NULL;
1475 XBZRLE_cache_unlock();
1478 static void reset_ram_globals(void)
1480 last_seen_block = NULL;
1481 last_sent_block = NULL;
1482 last_offset = 0;
1483 last_version = ram_list.version;
1484 ram_bulk_stage = true;
1487 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1489 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new)
1491 /* called in qemu main thread, so there is
1492 * no writing race against this migration_bitmap
1494 if (migration_bitmap_rcu) {
1495 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap;
1496 bitmap = g_new(struct BitmapRcu, 1);
1497 bitmap->bmap = bitmap_new(new);
1499 /* prevent migration_bitmap content from being set bit
1500 * by migration_bitmap_sync_range() at the same time.
1501 * it is safe to migration if migration_bitmap is cleared bit
1502 * at the same time.
1504 qemu_mutex_lock(&migration_bitmap_mutex);
1505 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old);
1506 bitmap_set(bitmap->bmap, old, new - old);
1508 /* We don't have a way to safely extend the sentmap
1509 * with RCU; so mark it as missing, entry to postcopy
1510 * will fail.
1512 bitmap->unsentmap = NULL;
1514 atomic_rcu_set(&migration_bitmap_rcu, bitmap);
1515 qemu_mutex_unlock(&migration_bitmap_mutex);
1516 migration_dirty_pages += new - old;
1517 call_rcu(old_bitmap, migration_bitmap_free, rcu);
1522 * 'expected' is the value you expect the bitmap mostly to be full
1523 * of; it won't bother printing lines that are all this value.
1524 * If 'todump' is null the migration bitmap is dumped.
1526 void ram_debug_dump_bitmap(unsigned long *todump, bool expected)
1528 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1530 int64_t cur;
1531 int64_t linelen = 128;
1532 char linebuf[129];
1534 if (!todump) {
1535 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1538 for (cur = 0; cur < ram_pages; cur += linelen) {
1539 int64_t curb;
1540 bool found = false;
1542 * Last line; catch the case where the line length
1543 * is longer than remaining ram
1545 if (cur + linelen > ram_pages) {
1546 linelen = ram_pages - cur;
1548 for (curb = 0; curb < linelen; curb++) {
1549 bool thisbit = test_bit(cur + curb, todump);
1550 linebuf[curb] = thisbit ? '1' : '.';
1551 found = found || (thisbit != expected);
1553 if (found) {
1554 linebuf[curb] = '\0';
1555 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1560 /* **** functions for postcopy ***** */
1562 void ram_postcopy_migrated_memory_release(MigrationState *ms)
1564 struct RAMBlock *block;
1565 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1567 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1568 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1569 unsigned long range = first + (block->used_length >> TARGET_PAGE_BITS);
1570 unsigned long run_start = find_next_zero_bit(bitmap, range, first);
1572 while (run_start < range) {
1573 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1574 ram_discard_range(NULL, block->idstr, run_start << TARGET_PAGE_BITS,
1575 (run_end - run_start) << TARGET_PAGE_BITS);
1576 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1582 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1583 * Note: At this point the 'unsentmap' is the processed bitmap combined
1584 * with the dirtymap; so a '1' means it's either dirty or unsent.
1585 * start,length: Indexes into the bitmap for the first bit
1586 * representing the named block and length in target-pages
1588 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1589 PostcopyDiscardState *pds,
1590 unsigned long start,
1591 unsigned long length)
1593 unsigned long end = start + length; /* one after the end */
1594 unsigned long current;
1595 unsigned long *unsentmap;
1597 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1598 for (current = start; current < end; ) {
1599 unsigned long one = find_next_bit(unsentmap, end, current);
1601 if (one <= end) {
1602 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1603 unsigned long discard_length;
1605 if (zero >= end) {
1606 discard_length = end - one;
1607 } else {
1608 discard_length = zero - one;
1610 if (discard_length) {
1611 postcopy_discard_send_range(ms, pds, one, discard_length);
1613 current = one + discard_length;
1614 } else {
1615 current = one;
1619 return 0;
1623 * Utility for the outgoing postcopy code.
1624 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1625 * passing it bitmap indexes and name.
1626 * Returns: 0 on success
1627 * (qemu_ram_foreach_block ends up passing unscaled lengths
1628 * which would mean postcopy code would have to deal with target page)
1630 static int postcopy_each_ram_send_discard(MigrationState *ms)
1632 struct RAMBlock *block;
1633 int ret;
1635 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1636 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1637 PostcopyDiscardState *pds = postcopy_discard_send_init(ms,
1638 first,
1639 block->idstr);
1642 * Postcopy sends chunks of bitmap over the wire, but it
1643 * just needs indexes at this point, avoids it having
1644 * target page specific code.
1646 ret = postcopy_send_discard_bm_ram(ms, pds, first,
1647 block->used_length >> TARGET_PAGE_BITS);
1648 postcopy_discard_send_finish(ms, pds);
1649 if (ret) {
1650 return ret;
1654 return 0;
1658 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup
1659 * the two bitmaps, that are similar, but one is inverted.
1661 * We search for runs of target-pages that don't start or end on a
1662 * host page boundary;
1663 * unsent_pass=true: Cleans up partially unsent host pages by searching
1664 * the unsentmap
1665 * unsent_pass=false: Cleans up partially dirty host pages by searching
1666 * the main migration bitmap
1669 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1670 RAMBlock *block,
1671 PostcopyDiscardState *pds)
1673 unsigned long *bitmap;
1674 unsigned long *unsentmap;
1675 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
1676 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1677 unsigned long len = block->used_length >> TARGET_PAGE_BITS;
1678 unsigned long last = first + (len - 1);
1679 unsigned long run_start;
1681 if (block->page_size == TARGET_PAGE_SIZE) {
1682 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1683 return;
1686 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1687 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1689 if (unsent_pass) {
1690 /* Find a sent page */
1691 run_start = find_next_zero_bit(unsentmap, last + 1, first);
1692 } else {
1693 /* Find a dirty page */
1694 run_start = find_next_bit(bitmap, last + 1, first);
1697 while (run_start <= last) {
1698 bool do_fixup = false;
1699 unsigned long fixup_start_addr;
1700 unsigned long host_offset;
1703 * If the start of this run of pages is in the middle of a host
1704 * page, then we need to fixup this host page.
1706 host_offset = run_start % host_ratio;
1707 if (host_offset) {
1708 do_fixup = true;
1709 run_start -= host_offset;
1710 fixup_start_addr = run_start;
1711 /* For the next pass */
1712 run_start = run_start + host_ratio;
1713 } else {
1714 /* Find the end of this run */
1715 unsigned long run_end;
1716 if (unsent_pass) {
1717 run_end = find_next_bit(unsentmap, last + 1, run_start + 1);
1718 } else {
1719 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1);
1722 * If the end isn't at the start of a host page, then the
1723 * run doesn't finish at the end of a host page
1724 * and we need to discard.
1726 host_offset = run_end % host_ratio;
1727 if (host_offset) {
1728 do_fixup = true;
1729 fixup_start_addr = run_end - host_offset;
1731 * This host page has gone, the next loop iteration starts
1732 * from after the fixup
1734 run_start = fixup_start_addr + host_ratio;
1735 } else {
1737 * No discards on this iteration, next loop starts from
1738 * next sent/dirty page
1740 run_start = run_end + 1;
1744 if (do_fixup) {
1745 unsigned long page;
1747 /* Tell the destination to discard this page */
1748 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1749 /* For the unsent_pass we:
1750 * discard partially sent pages
1751 * For the !unsent_pass (dirty) we:
1752 * discard partially dirty pages that were sent
1753 * (any partially sent pages were already discarded
1754 * by the previous unsent_pass)
1756 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1757 host_ratio);
1760 /* Clean up the bitmap */
1761 for (page = fixup_start_addr;
1762 page < fixup_start_addr + host_ratio; page++) {
1763 /* All pages in this host page are now not sent */
1764 set_bit(page, unsentmap);
1767 * Remark them as dirty, updating the count for any pages
1768 * that weren't previously dirty.
1770 migration_dirty_pages += !test_and_set_bit(page, bitmap);
1774 if (unsent_pass) {
1775 /* Find the next sent page for the next iteration */
1776 run_start = find_next_zero_bit(unsentmap, last + 1,
1777 run_start);
1778 } else {
1779 /* Find the next dirty page for the next iteration */
1780 run_start = find_next_bit(bitmap, last + 1, run_start);
1786 * Utility for the outgoing postcopy code.
1788 * Discard any partially sent host-page size chunks, mark any partially
1789 * dirty host-page size chunks as all dirty. In this case the host-page
1790 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
1792 * Returns: 0 on success
1794 static int postcopy_chunk_hostpages(MigrationState *ms)
1796 struct RAMBlock *block;
1798 /* Easiest way to make sure we don't resume in the middle of a host-page */
1799 last_seen_block = NULL;
1800 last_sent_block = NULL;
1801 last_offset = 0;
1803 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1804 unsigned long first = block->offset >> TARGET_PAGE_BITS;
1806 PostcopyDiscardState *pds =
1807 postcopy_discard_send_init(ms, first, block->idstr);
1809 /* First pass: Discard all partially sent host pages */
1810 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1812 * Second pass: Ensure that all partially dirty host pages are made
1813 * fully dirty.
1815 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1817 postcopy_discard_send_finish(ms, pds);
1818 } /* ram_list loop */
1820 return 0;
1824 * Transmit the set of pages to be discarded after precopy to the target
1825 * these are pages that:
1826 * a) Have been previously transmitted but are now dirty again
1827 * b) Pages that have never been transmitted, this ensures that
1828 * any pages on the destination that have been mapped by background
1829 * tasks get discarded (transparent huge pages is the specific concern)
1830 * Hopefully this is pretty sparse
1832 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1834 int ret;
1835 unsigned long *bitmap, *unsentmap;
1837 rcu_read_lock();
1839 /* This should be our last sync, the src is now paused */
1840 migration_bitmap_sync();
1842 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap;
1843 if (!unsentmap) {
1844 /* We don't have a safe way to resize the sentmap, so
1845 * if the bitmap was resized it will be NULL at this
1846 * point.
1848 error_report("migration ram resized during precopy phase");
1849 rcu_read_unlock();
1850 return -EINVAL;
1853 /* Deal with TPS != HPS and huge pages */
1854 ret = postcopy_chunk_hostpages(ms);
1855 if (ret) {
1856 rcu_read_unlock();
1857 return ret;
1861 * Update the unsentmap to be unsentmap = unsentmap | dirty
1863 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap;
1864 bitmap_or(unsentmap, unsentmap, bitmap,
1865 last_ram_offset() >> TARGET_PAGE_BITS);
1868 trace_ram_postcopy_send_discard_bitmap();
1869 #ifdef DEBUG_POSTCOPY
1870 ram_debug_dump_bitmap(unsentmap, true);
1871 #endif
1873 ret = postcopy_each_ram_send_discard(ms);
1874 rcu_read_unlock();
1876 return ret;
1880 * At the start of the postcopy phase of migration, any now-dirty
1881 * precopied pages are discarded.
1883 * start, length describe a byte address range within the RAMBlock
1885 * Returns 0 on success.
1887 int ram_discard_range(MigrationIncomingState *mis,
1888 const char *block_name,
1889 uint64_t start, size_t length)
1891 int ret = -1;
1893 trace_ram_discard_range(block_name, start, length);
1895 rcu_read_lock();
1896 RAMBlock *rb = qemu_ram_block_by_name(block_name);
1898 if (!rb) {
1899 error_report("ram_discard_range: Failed to find block '%s'",
1900 block_name);
1901 goto err;
1904 ret = ram_block_discard_range(rb, start, length);
1906 err:
1907 rcu_read_unlock();
1909 return ret;
1912 static int ram_save_init_globals(void)
1914 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1916 dirty_rate_high_cnt = 0;
1917 bitmap_sync_count = 0;
1918 migration_bitmap_sync_init();
1919 qemu_mutex_init(&migration_bitmap_mutex);
1921 if (migrate_use_xbzrle()) {
1922 XBZRLE_cache_lock();
1923 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
1924 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1925 TARGET_PAGE_SIZE,
1926 TARGET_PAGE_SIZE);
1927 if (!XBZRLE.cache) {
1928 XBZRLE_cache_unlock();
1929 error_report("Error creating cache");
1930 return -1;
1932 XBZRLE_cache_unlock();
1934 /* We prefer not to abort if there is no memory */
1935 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1936 if (!XBZRLE.encoded_buf) {
1937 error_report("Error allocating encoded_buf");
1938 return -1;
1941 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1942 if (!XBZRLE.current_buf) {
1943 error_report("Error allocating current_buf");
1944 g_free(XBZRLE.encoded_buf);
1945 XBZRLE.encoded_buf = NULL;
1946 return -1;
1949 acct_clear();
1952 /* For memory_global_dirty_log_start below. */
1953 qemu_mutex_lock_iothread();
1955 qemu_mutex_lock_ramlist();
1956 rcu_read_lock();
1957 bytes_transferred = 0;
1958 reset_ram_globals();
1960 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1);
1961 /* Skip setting bitmap if there is no RAM */
1962 if (ram_bytes_total()) {
1963 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1964 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages);
1965 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages);
1967 if (migrate_postcopy_ram()) {
1968 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages);
1969 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages);
1974 * Count the total number of pages used by ram blocks not including any
1975 * gaps due to alignment or unplugs.
1977 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1979 memory_global_dirty_log_start();
1980 migration_bitmap_sync();
1981 qemu_mutex_unlock_ramlist();
1982 qemu_mutex_unlock_iothread();
1983 rcu_read_unlock();
1985 return 0;
1988 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1989 * long-running RCU critical section. When rcu-reclaims in the code
1990 * start to become numerous it will be necessary to reduce the
1991 * granularity of these critical sections.
1994 static int ram_save_setup(QEMUFile *f, void *opaque)
1996 RAMBlock *block;
1998 /* migration has already setup the bitmap, reuse it. */
1999 if (!migration_in_colo_state()) {
2000 if (ram_save_init_globals() < 0) {
2001 return -1;
2005 rcu_read_lock();
2007 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2009 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2010 qemu_put_byte(f, strlen(block->idstr));
2011 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2012 qemu_put_be64(f, block->used_length);
2013 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
2014 qemu_put_be64(f, block->page_size);
2018 rcu_read_unlock();
2020 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2021 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2023 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2025 return 0;
2028 static int ram_save_iterate(QEMUFile *f, void *opaque)
2030 int ret;
2031 int i;
2032 int64_t t0;
2033 int done = 0;
2035 rcu_read_lock();
2036 if (ram_list.version != last_version) {
2037 reset_ram_globals();
2040 /* Read version before ram_list.blocks */
2041 smp_rmb();
2043 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2045 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2046 i = 0;
2047 while ((ret = qemu_file_rate_limit(f)) == 0) {
2048 int pages;
2050 pages = ram_find_and_save_block(f, false, &bytes_transferred);
2051 /* no more pages to sent */
2052 if (pages == 0) {
2053 done = 1;
2054 break;
2056 acct_info.iterations++;
2058 /* we want to check in the 1st loop, just in case it was the 1st time
2059 and we had to sync the dirty bitmap.
2060 qemu_get_clock_ns() is a bit expensive, so we only check each some
2061 iterations
2063 if ((i & 63) == 0) {
2064 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2065 if (t1 > MAX_WAIT) {
2066 trace_ram_save_iterate_big_wait(t1, i);
2067 break;
2070 i++;
2072 flush_compressed_data(f);
2073 rcu_read_unlock();
2076 * Must occur before EOS (or any QEMUFile operation)
2077 * because of RDMA protocol.
2079 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2081 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2082 bytes_transferred += 8;
2084 ret = qemu_file_get_error(f);
2085 if (ret < 0) {
2086 return ret;
2089 return done;
2092 /* Called with iothread lock */
2093 static int ram_save_complete(QEMUFile *f, void *opaque)
2095 rcu_read_lock();
2097 if (!migration_in_postcopy(migrate_get_current())) {
2098 migration_bitmap_sync();
2101 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2103 /* try transferring iterative blocks of memory */
2105 /* flush all remaining blocks regardless of rate limiting */
2106 while (true) {
2107 int pages;
2109 pages = ram_find_and_save_block(f, !migration_in_colo_state(),
2110 &bytes_transferred);
2111 /* no more blocks to sent */
2112 if (pages == 0) {
2113 break;
2117 flush_compressed_data(f);
2118 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2120 rcu_read_unlock();
2122 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2124 return 0;
2127 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2128 uint64_t *non_postcopiable_pending,
2129 uint64_t *postcopiable_pending)
2131 uint64_t remaining_size;
2133 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2135 if (!migration_in_postcopy(migrate_get_current()) &&
2136 remaining_size < max_size) {
2137 qemu_mutex_lock_iothread();
2138 rcu_read_lock();
2139 migration_bitmap_sync();
2140 rcu_read_unlock();
2141 qemu_mutex_unlock_iothread();
2142 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
2145 /* We can do postcopy, and all the data is postcopiable */
2146 *postcopiable_pending += remaining_size;
2149 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2151 unsigned int xh_len;
2152 int xh_flags;
2153 uint8_t *loaded_data;
2155 if (!xbzrle_decoded_buf) {
2156 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2158 loaded_data = xbzrle_decoded_buf;
2160 /* extract RLE header */
2161 xh_flags = qemu_get_byte(f);
2162 xh_len = qemu_get_be16(f);
2164 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2165 error_report("Failed to load XBZRLE page - wrong compression!");
2166 return -1;
2169 if (xh_len > TARGET_PAGE_SIZE) {
2170 error_report("Failed to load XBZRLE page - len overflow!");
2171 return -1;
2173 /* load data and decode */
2174 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2176 /* decode RLE */
2177 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2178 TARGET_PAGE_SIZE) == -1) {
2179 error_report("Failed to load XBZRLE page - decode error!");
2180 return -1;
2183 return 0;
2186 /* Must be called from within a rcu critical section.
2187 * Returns a pointer from within the RCU-protected ram_list.
2190 * Read a RAMBlock ID from the stream f.
2192 * f: Stream to read from
2193 * flags: Page flags (mostly to see if it's a continuation of previous block)
2195 static inline RAMBlock *ram_block_from_stream(QEMUFile *f,
2196 int flags)
2198 static RAMBlock *block = NULL;
2199 char id[256];
2200 uint8_t len;
2202 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2203 if (!block) {
2204 error_report("Ack, bad migration stream!");
2205 return NULL;
2207 return block;
2210 len = qemu_get_byte(f);
2211 qemu_get_buffer(f, (uint8_t *)id, len);
2212 id[len] = 0;
2214 block = qemu_ram_block_by_name(id);
2215 if (!block) {
2216 error_report("Can't find block %s", id);
2217 return NULL;
2220 return block;
2223 static inline void *host_from_ram_block_offset(RAMBlock *block,
2224 ram_addr_t offset)
2226 if (!offset_in_ramblock(block, offset)) {
2227 return NULL;
2230 return block->host + offset;
2234 * If a page (or a whole RDMA chunk) has been
2235 * determined to be zero, then zap it.
2237 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2239 if (ch != 0 || !is_zero_range(host, size)) {
2240 memset(host, ch, size);
2244 static void *do_data_decompress(void *opaque)
2246 DecompressParam *param = opaque;
2247 unsigned long pagesize;
2248 uint8_t *des;
2249 int len;
2251 qemu_mutex_lock(&param->mutex);
2252 while (!param->quit) {
2253 if (param->des) {
2254 des = param->des;
2255 len = param->len;
2256 param->des = 0;
2257 qemu_mutex_unlock(&param->mutex);
2259 pagesize = TARGET_PAGE_SIZE;
2260 /* uncompress() will return failed in some case, especially
2261 * when the page is dirted when doing the compression, it's
2262 * not a problem because the dirty page will be retransferred
2263 * and uncompress() won't break the data in other pages.
2265 uncompress((Bytef *)des, &pagesize,
2266 (const Bytef *)param->compbuf, len);
2268 qemu_mutex_lock(&decomp_done_lock);
2269 param->done = true;
2270 qemu_cond_signal(&decomp_done_cond);
2271 qemu_mutex_unlock(&decomp_done_lock);
2273 qemu_mutex_lock(&param->mutex);
2274 } else {
2275 qemu_cond_wait(&param->cond, &param->mutex);
2278 qemu_mutex_unlock(&param->mutex);
2280 return NULL;
2283 static void wait_for_decompress_done(void)
2285 int idx, thread_count;
2287 if (!migrate_use_compression()) {
2288 return;
2291 thread_count = migrate_decompress_threads();
2292 qemu_mutex_lock(&decomp_done_lock);
2293 for (idx = 0; idx < thread_count; idx++) {
2294 while (!decomp_param[idx].done) {
2295 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2298 qemu_mutex_unlock(&decomp_done_lock);
2301 void migrate_decompress_threads_create(void)
2303 int i, thread_count;
2305 thread_count = migrate_decompress_threads();
2306 decompress_threads = g_new0(QemuThread, thread_count);
2307 decomp_param = g_new0(DecompressParam, thread_count);
2308 qemu_mutex_init(&decomp_done_lock);
2309 qemu_cond_init(&decomp_done_cond);
2310 for (i = 0; i < thread_count; i++) {
2311 qemu_mutex_init(&decomp_param[i].mutex);
2312 qemu_cond_init(&decomp_param[i].cond);
2313 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2314 decomp_param[i].done = true;
2315 decomp_param[i].quit = false;
2316 qemu_thread_create(decompress_threads + i, "decompress",
2317 do_data_decompress, decomp_param + i,
2318 QEMU_THREAD_JOINABLE);
2322 void migrate_decompress_threads_join(void)
2324 int i, thread_count;
2326 thread_count = migrate_decompress_threads();
2327 for (i = 0; i < thread_count; i++) {
2328 qemu_mutex_lock(&decomp_param[i].mutex);
2329 decomp_param[i].quit = true;
2330 qemu_cond_signal(&decomp_param[i].cond);
2331 qemu_mutex_unlock(&decomp_param[i].mutex);
2333 for (i = 0; i < thread_count; i++) {
2334 qemu_thread_join(decompress_threads + i);
2335 qemu_mutex_destroy(&decomp_param[i].mutex);
2336 qemu_cond_destroy(&decomp_param[i].cond);
2337 g_free(decomp_param[i].compbuf);
2339 g_free(decompress_threads);
2340 g_free(decomp_param);
2341 decompress_threads = NULL;
2342 decomp_param = NULL;
2345 static void decompress_data_with_multi_threads(QEMUFile *f,
2346 void *host, int len)
2348 int idx, thread_count;
2350 thread_count = migrate_decompress_threads();
2351 qemu_mutex_lock(&decomp_done_lock);
2352 while (true) {
2353 for (idx = 0; idx < thread_count; idx++) {
2354 if (decomp_param[idx].done) {
2355 decomp_param[idx].done = false;
2356 qemu_mutex_lock(&decomp_param[idx].mutex);
2357 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2358 decomp_param[idx].des = host;
2359 decomp_param[idx].len = len;
2360 qemu_cond_signal(&decomp_param[idx].cond);
2361 qemu_mutex_unlock(&decomp_param[idx].mutex);
2362 break;
2365 if (idx < thread_count) {
2366 break;
2367 } else {
2368 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2371 qemu_mutex_unlock(&decomp_done_lock);
2375 * Allocate data structures etc needed by incoming migration with postcopy-ram
2376 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work
2378 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2380 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
2382 return postcopy_ram_incoming_init(mis, ram_pages);
2386 * Called in postcopy mode by ram_load().
2387 * rcu_read_lock is taken prior to this being called.
2389 static int ram_load_postcopy(QEMUFile *f)
2391 int flags = 0, ret = 0;
2392 bool place_needed = false;
2393 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE;
2394 MigrationIncomingState *mis = migration_incoming_get_current();
2395 /* Temporary page that is later 'placed' */
2396 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2397 void *last_host = NULL;
2398 bool all_zero = false;
2400 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2401 ram_addr_t addr;
2402 void *host = NULL;
2403 void *page_buffer = NULL;
2404 void *place_source = NULL;
2405 RAMBlock *block = NULL;
2406 uint8_t ch;
2408 addr = qemu_get_be64(f);
2409 flags = addr & ~TARGET_PAGE_MASK;
2410 addr &= TARGET_PAGE_MASK;
2412 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2413 place_needed = false;
2414 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
2415 block = ram_block_from_stream(f, flags);
2417 host = host_from_ram_block_offset(block, addr);
2418 if (!host) {
2419 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2420 ret = -EINVAL;
2421 break;
2424 * Postcopy requires that we place whole host pages atomically.
2425 * To make it atomic, the data is read into a temporary page
2426 * that's moved into place later.
2427 * The migration protocol uses, possibly smaller, target-pages
2428 * however the source ensures it always sends all the components
2429 * of a host page in order.
2431 page_buffer = postcopy_host_page +
2432 ((uintptr_t)host & ~qemu_host_page_mask);
2433 /* If all TP are zero then we can optimise the place */
2434 if (!((uintptr_t)host & ~qemu_host_page_mask)) {
2435 all_zero = true;
2436 } else {
2437 /* not the 1st TP within the HP */
2438 if (host != (last_host + TARGET_PAGE_SIZE)) {
2439 error_report("Non-sequential target page %p/%p",
2440 host, last_host);
2441 ret = -EINVAL;
2442 break;
2448 * If it's the last part of a host page then we place the host
2449 * page
2451 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2452 ~qemu_host_page_mask) == 0;
2453 place_source = postcopy_host_page;
2455 last_host = host;
2457 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2458 case RAM_SAVE_FLAG_COMPRESS:
2459 ch = qemu_get_byte(f);
2460 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2461 if (ch) {
2462 all_zero = false;
2464 break;
2466 case RAM_SAVE_FLAG_PAGE:
2467 all_zero = false;
2468 if (!place_needed || !matching_page_sizes) {
2469 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2470 } else {
2471 /* Avoids the qemu_file copy during postcopy, which is
2472 * going to do a copy later; can only do it when we
2473 * do this read in one go (matching page sizes)
2475 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2476 TARGET_PAGE_SIZE);
2478 break;
2479 case RAM_SAVE_FLAG_EOS:
2480 /* normal exit */
2481 break;
2482 default:
2483 error_report("Unknown combination of migration flags: %#x"
2484 " (postcopy mode)", flags);
2485 ret = -EINVAL;
2488 if (place_needed) {
2489 /* This gets called at the last target page in the host page */
2490 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2492 if (all_zero) {
2493 ret = postcopy_place_page_zero(mis, place_dest,
2494 block->page_size);
2495 } else {
2496 ret = postcopy_place_page(mis, place_dest,
2497 place_source, block->page_size);
2500 if (!ret) {
2501 ret = qemu_file_get_error(f);
2505 return ret;
2508 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2510 int flags = 0, ret = 0;
2511 static uint64_t seq_iter;
2512 int len = 0;
2514 * If system is running in postcopy mode, page inserts to host memory must
2515 * be atomic
2517 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2518 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2519 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE;
2521 seq_iter++;
2523 if (version_id != 4) {
2524 ret = -EINVAL;
2527 /* This RCU critical section can be very long running.
2528 * When RCU reclaims in the code start to become numerous,
2529 * it will be necessary to reduce the granularity of this
2530 * critical section.
2532 rcu_read_lock();
2534 if (postcopy_running) {
2535 ret = ram_load_postcopy(f);
2538 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2539 ram_addr_t addr, total_ram_bytes;
2540 void *host = NULL;
2541 uint8_t ch;
2543 addr = qemu_get_be64(f);
2544 flags = addr & ~TARGET_PAGE_MASK;
2545 addr &= TARGET_PAGE_MASK;
2547 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2548 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2549 RAMBlock *block = ram_block_from_stream(f, flags);
2551 host = host_from_ram_block_offset(block, addr);
2552 if (!host) {
2553 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2554 ret = -EINVAL;
2555 break;
2559 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2560 case RAM_SAVE_FLAG_MEM_SIZE:
2561 /* Synchronize RAM block list */
2562 total_ram_bytes = addr;
2563 while (!ret && total_ram_bytes) {
2564 RAMBlock *block;
2565 char id[256];
2566 ram_addr_t length;
2568 len = qemu_get_byte(f);
2569 qemu_get_buffer(f, (uint8_t *)id, len);
2570 id[len] = 0;
2571 length = qemu_get_be64(f);
2573 block = qemu_ram_block_by_name(id);
2574 if (block) {
2575 if (length != block->used_length) {
2576 Error *local_err = NULL;
2578 ret = qemu_ram_resize(block, length,
2579 &local_err);
2580 if (local_err) {
2581 error_report_err(local_err);
2584 /* For postcopy we need to check hugepage sizes match */
2585 if (postcopy_advised &&
2586 block->page_size != qemu_host_page_size) {
2587 uint64_t remote_page_size = qemu_get_be64(f);
2588 if (remote_page_size != block->page_size) {
2589 error_report("Mismatched RAM page size %s "
2590 "(local) %zd != %" PRId64,
2591 id, block->page_size,
2592 remote_page_size);
2593 ret = -EINVAL;
2596 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2597 block->idstr);
2598 } else {
2599 error_report("Unknown ramblock \"%s\", cannot "
2600 "accept migration", id);
2601 ret = -EINVAL;
2604 total_ram_bytes -= length;
2606 break;
2608 case RAM_SAVE_FLAG_COMPRESS:
2609 ch = qemu_get_byte(f);
2610 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2611 break;
2613 case RAM_SAVE_FLAG_PAGE:
2614 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2615 break;
2617 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2618 len = qemu_get_be32(f);
2619 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2620 error_report("Invalid compressed data length: %d", len);
2621 ret = -EINVAL;
2622 break;
2624 decompress_data_with_multi_threads(f, host, len);
2625 break;
2627 case RAM_SAVE_FLAG_XBZRLE:
2628 if (load_xbzrle(f, addr, host) < 0) {
2629 error_report("Failed to decompress XBZRLE page at "
2630 RAM_ADDR_FMT, addr);
2631 ret = -EINVAL;
2632 break;
2634 break;
2635 case RAM_SAVE_FLAG_EOS:
2636 /* normal exit */
2637 break;
2638 default:
2639 if (flags & RAM_SAVE_FLAG_HOOK) {
2640 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2641 } else {
2642 error_report("Unknown combination of migration flags: %#x",
2643 flags);
2644 ret = -EINVAL;
2647 if (!ret) {
2648 ret = qemu_file_get_error(f);
2652 wait_for_decompress_done();
2653 rcu_read_unlock();
2654 trace_ram_load_complete(ret, seq_iter);
2655 return ret;
2658 static SaveVMHandlers savevm_ram_handlers = {
2659 .save_live_setup = ram_save_setup,
2660 .save_live_iterate = ram_save_iterate,
2661 .save_live_complete_postcopy = ram_save_complete,
2662 .save_live_complete_precopy = ram_save_complete,
2663 .save_live_pending = ram_save_pending,
2664 .load_state = ram_load,
2665 .cleanup = ram_migration_cleanup,
2668 void ram_mig_init(void)
2670 qemu_mutex_init(&XBZRLE.lock);
2671 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);